Skip to main content

Generalized Convexity in the Light of Nonsmooth Analysis

  • Chapter
Recent Developments in Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 429))

Abstract

Generalized directional derivatives on one hand and subdifferentials on the other hand are used to characterize various convexity properties such as quasiconvexity. Our results apply to a wide spectrum of concepts from nonsmooth analysis as they are not bound up with a specific notion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-P. Aubin and H. Frankowska, Set-valued Analysis( Birkhauser, Basel, 1990 ).

    Google Scholar 

  2. D. Aussel, “Théorème de la valeur moyenne et convexité généralisée en analyse non régulière”, Thesis, Univ. B. Pascal, Clermont, Nov. 1994.

    Google Scholar 

  3. D. Aussel, J.N. Corvellec and M. Lassonde, “Mean value property,and subdifferential criteria for lower semicontinuous functions”, to appear in Trans. Amer. Math. Soc.

    Google Scholar 

  4. D. Aussel, J.N. Corvellec and M. Lassonde, “Subdifferental characterization quasiconvexity and convexity”, to appear in J. Convex Anal.

    Google Scholar 

  5. M. Avriel, W.E. Diewert, S. Schaible and I. Zang, Generalized Concavity (Plenum Press, New York and London 1988 ).

    Google Scholar 

  6. A. Ben-Israel and B. Mond, “What is invexity?”, J. Austral. Math. Soc. Ser. B28 (1986) 1–9.

    Article  Google Scholar 

  7. J. Bordes and J.-P. Crouzeix, “Continuity properties of the normal cone to the level sets of a quasiconvex function”, J. Opt. Theory Appl.66 (1990) 415–429.

    Article  Google Scholar 

  8. J.M. Borwein, S.P. Fitzpatrick and J.R. Giles, “The differentiability of real functions on normed linear spaces using generalized subgradients”, J. Math. Anal. Appl.128 (1987) 512–534.

    Article  Google Scholar 

  9. A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni, S. Schaible, eds, Generalized Convexity and fractional programming with economic applications, Proc. Pisa, 1988, Lecture Notes in Economics and Math. Systems 345, (Springer-Verlag, Berlin, 1990 ).

    Google Scholar 

  10. F.H. Clarke, Optimization and Nonsmooth Analysis( Wiley-Interscience, New York, 1983 ).

    Google Scholar 

  11. F.H. Clarke and Yu S. Ledyaev, “New finite increment formulas”, Russian Acad. Dokl. Math.48 (1) (1994) 75–79.

    Google Scholar 

  12. F.H. Clarke, Yu S. Ledyaev, R.J. Stern and P.R. Wolenski, Introduction to Nonsmooth Analysis, book in preparation.

    Google Scholar 

  13. F.H. Clarke, R.J. Stern and P.R. Wolenski, “Subgradient criteria for monotonicity, the Lipschitz condition and monotonicity”, Canad. J. Math.45 (1993) 1167–1183.

    Article  Google Scholar 

  14. R. Correa, A. Jofre and L. Thibault, “Characterization of lower semicontinuous convex functions”, Proc. Am. Math. Soc.116 (1992) 67–72.

    Article  Google Scholar 

  15. R. Correa, A. Jofre and L. Thibault, “Subdifferential monotonicity as a characterization of convex functions”, Numer. Funct. Anal. Opt.15 (1984) 531–535.

    Article  Google Scholar 

  16. B.D. Craven, “Invex functions and constrained local minima”, Bull. Austral. Math. Soc.24 (1981) 357–366.

    Article  Google Scholar 

  17. B.D. Craven and B. Glover, “Invex functions and duality”, J. Austral. Math. Soc., Ser. A41 (1986) 64–78.

    Article  Google Scholar 

  18. B.D. Craven, P.H. Sach, N.D. Yen and T.D. Phuong, “A new class of invex multifunction”, in: F. Giannessi (ed.) “Nonsmooth Optimization: Methods and Applications”( Gordon and Breach, London, 1992 ).

    Google Scholar 

  19. J.-P. Crouzeix, “Contribution à l’étude des fonctions quasi-convexes”, Thèse d’Etat, Univ. de Clermont II, 1977.

    Google Scholar 

  20. J.-P. Crouzeix, “Duality between direct and indirect utility functions”, J. Math. Econom.12 (1983) 149–165.

    Article  Google Scholar 

  21. J.-P. Crouzeix and J.A. Ferland, “Criteria for quasiconvexity and pseudo-convexity: relationships and comparisons”, Math. Programming23 (1982) 193–205.

    Article  Google Scholar 

  22. J.-P. Crouzeix, J.A. Ferland and S. Schaible, “Generalized convexity on affine subspaces with an application to potential functions”, Math. Programming56 (1992) 223–232.

    Article  Google Scholar 

  23. R.A. Danao, “Some properties of explicitely quasiconcave functions”, J. Optim. Theory Appl.74 (3) (1992) 457–468.

    Article  Google Scholar 

  24. R. Deville, G. Godefroy and V. Zizler, “A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions”, J. Funct. Anal.111 (1993) 197–212.

    Article  Google Scholar 

  25. R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs in Math. 64 (Longman, 1993 ).

    Google Scholar 

  26. W.E. Diewert, “Alternative characterizations of six kinds of quasiconcavity in the nondifferentiable case with applications to nonsmooth programming”, in: S. Schaible and W.T. Ziemba, eds., Generalized Concavity in Optimization and Economics( Academic Press, New-York, 1981 ).

    Google Scholar 

  27. W.E. Diewert, “Duality approaches to microeconomics theory”, in: Handbook of Mathematical Economics, Vol. 2, K.J. Arrow and M.D. Intriligator, eds., ( North Holland, Amsterdam, 1982 ) 535–599.

    Google Scholar 

  28. R. Ellaia and H. Hassouni, “Characterization of nonsmooth functions through their generalized gradients”, Optimization22 (1991) 401–416.

    Article  Google Scholar 

  29. M. Fabian, “Subdifferentials, local e-supports and Asplund spaces”, J. London Math. Soc. (2) 34 (1986) 568–576.

    Article  Google Scholar 

  30. M. Fabian, “On classes of subdifferentiability spaces of Ioffe”, Nonlinear Anal. 12 (1) (1988) 63–74.

    Article  Google Scholar 

  31. M. Fabian, “Subdifferentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss”, Acta Univ. Carolinae30 (1989) 51–56.

    Google Scholar 

  32. M. Fabian and N. V. Zivkov, “A characterization of Asplund spaces with help of local e-support of Ekeland-Lebourg”, C.R. Acad. Bulgare Sci.38 (1985) 671–674.

    Google Scholar 

  33. G. Giorgi and S. Komlosi, “Dini derivatives in optimization”, Istituto di Matematica Finanziaria dell’Universita di Torino, preprint 60, 1991.

    Google Scholar 

  34. G. Giorgi and S. Mitutelu, “Convexités généralisées et propriétés”, Rev. Roumaine Math. Pures Appl.38 (1993) 125–142.

    Google Scholar 

  35. B.M. Glover, “Generalized convexity in nondifferentiable programming”, Bull. Austral. Math. Soc.30 (1984) 193–218.

    Article  Google Scholar 

  36. M.A. Hanson, “On sufficiency of the Kuhn-Tucker conditions”, J. Math. Anal. Appl.80 (1981) 545–550.

    Article  Google Scholar 

  37. M.A. Hanson and B. Mond, “Necessary and sufficient conditions in constrained optimization”, Math. Programming37 (1987) 51–58.

    Article  Google Scholar 

  38. M.A. Hanson and B. Mond, “Further generalizations of convexity in mathematical programming”, J. Inform. Optim. Sci.3 (1982) 25–32.

    Google Scholar 

  39. A. Hassouni, “Sous-différentiel des fonctions quasi-convexes”, Thèse de Troisième Cycle, Univ. P. Sabatier, Toulouse, 1983.

    Google Scholar 

  40. A.D. Ioffe, “On subdifferentiability spaces”, Ann. New York Acad. Sci.410 (1983) 107–119.

    Article  Google Scholar 

  41. A.D. Ioffe, “Subdifferentiability spaces and nonsmooth analysis”, Bull. Amer. Math. Soc.10 (1984) 87–90.

    Article  Google Scholar 

  42. A.D. Ioffe, “Approximate subdifferentials and applications I. The finite dimensional theory”, Trans. Amer. Math. Soc.281 (1984) 289–316.

    Google Scholar 

  43. A.D. Ioffe, “Approximate subdifferentials and applications II. The metric theory”, Mathematika36 (1989) 1–38.

    Article  Google Scholar 

  44. A.D. Ioffe, “Proximal analysis and approximate subdifferentials”, J. London Math. Soc.41 (1990) 261–268

    Article  Google Scholar 

  45. A.D. Ioffe, “Non-smooth subdifferentials: Their calculus and applications”, in V. Lakhmikantham, ed., Proc. Symposium Nonlinear Analysis( Tampa, August 1992 ).

    Google Scholar 

  46. V. Jeyakumar, “Nondifferentiable programming and duality with modified convexity”, Bull. Austral. Math. Soc.35 (1987) 309–313.

    Article  Google Scholar 

  47. V. Jeyakumar, W. Oettli and M. Natividad, “A solvability theorem for a class of quasiconvex mappings with applications to optimization”, J. Math. Anal. Appl.179 (1993) 537–546.

    Article  Google Scholar 

  48. C. Jouron, “On some structural design problems”, in: Analyse non convexe, Pau, 1979, Bull. Soc. Math. France, Mümoire 60, 1979, 87–93.

    Google Scholar 

  49. M.V. Jovanovic, “On strong quasiconvex functions and boundedness of level sets”, Optimization20 (1989) 163–165.

    Article  Google Scholar 

  50. M.V. Jovanovic, “Some inequalities for strong quasiconvex functions”, Glasnik Matematicki24 (1989) 25–29.

    Google Scholar 

  51. S. Karamardian, “Complementarity over cones with monotone and pseudomonotone maps”, J. Optim. Theory Appl.18 (1976) 445–454.

    Article  Google Scholar 

  52. S. Karamardian and S. Schaible, “Seven kinds of monotone maps”, J. Optim. Theory Appl.66 (1990) 37–46.

    Article  Google Scholar 

  53. S. Karamardian, S. Schaible and J.-P. Crouzeix, “Characterizations of Generalized Monotone Maps”, J. Optim. Theory Appl.76 (3) (1993) 399–413.

    Article  Google Scholar 

  54. S. Komlosi, “Some properties of nondifferentiable pseudoconvex functions”, Math. Programming26 (1983) 232–237.

    Article  Google Scholar 

  55. S. Komlosi, “On generalized upper quasidifferentiability”, in: F. Gian-nessi, ed., Nonsmooth Optimization: Methods and Applications( Gordon and Breach, London, 1992 ).

    Google Scholar 

  56. S. Komlosi, “Generalized monotonicity and generalized convexity”, Computer and Automation Institute, Hungarian Academy of Sciences MTA, CZTAKI, Working Paper 92–16, to appear in J. Optim. Theory Appl.

    Google Scholar 

  57. G. Lebourg, “Valeur moyenne pour un gradient généralisé”, C.R. Acad. Sci. Paris, 281 (1975) 795–797.

    Google Scholar 

  58. G. Lebourg, “Generic differentiability of Lipschitzian functions”, Trans. Amer. Math. Soc.256 (1979) 125–144.

    Article  Google Scholar 

  59. Ph. Loewen, “A Mean Value Theorem for Fréchet subgradients”, preprint, Univ. British Columbia, Vancouver, August 1992.

    Google Scholar 

  60. D.T. Luc, “Characterizations of quasiconvex functions”, Bull. Austral. Math. Soc.48 (1993) 393–405.

    Article  Google Scholar 

  61. D.T. Luc and C. Malivert, “Invex optimization problems”, Bull. Austral. Math. Soc.

    Google Scholar 

  62. D.T. Luc and S. Swaminathan, “A characterization of convex functions”, Nonlinear Anal. 30 (1993) 697–701.

    Google Scholar 

  63. O.L. Mangasarian, “Pseudoconvex functions”, SIAM J. Control3 (1965) 281–290.

    Google Scholar 

  64. O.L. Mangasarian, Nonlinear Programming( Mc Graw-Hill, New-York, 1969 ).

    Google Scholar 

  65. D.H. Martin, “The essence of invexity”, J. Optim. Theory Appl.47 (1985) 278–300.

    Article  Google Scholar 

  66. J.-E. Martinez-Legaz, “Quasiconvex duality theory by generalized conjugation methods”, Optimization, 19 (1988) 603–652.

    Article  Google Scholar 

  67. J.-E. Martinez-Legaz, “Duality between direct and indirect utility functions under minimal hypothesis”, J. Math. Econom.20 (1991) 199–209.

    Article  Google Scholar 

  68. J. Martinez-Legaz, “Alower subdifferentiable functions”, Siam J. Optim.3 (1993) 800–825.

    Article  Google Scholar 

  69. J. Martinez-Legaz and M.S. Santos, “Duality between direct and indirect preferences”, Econom. Theory3 (1993) 335–351.

    Article  Google Scholar 

  70. B. Martos, Nonlinear programming, theory and methods( North Holland, Amsterdam, 1975 ).

    Google Scholar 

  71. P. Mazzoleni, Generalized concavity for economic applications, Proc. Workshop Pisa 1992, Univ. Verona.

    Google Scholar 

  72. J.-J. Moreau, “Inf-convolution, sous-additivité, convexité des fonctions numériques”, J. Math. Pures Appl.49 (1970) 109–154.

    Google Scholar 

  73. Ph. Michel and J.-P. Penot, “A generalized derivative for calm and stable functions”, Differential Integral Equations, 5 (1992) 433–454.

    Google Scholar 

  74. J.-P. Penot, “A characterization of tangential regularity”, Nonlinear Anal. 5 (1981) 625–643.

    Article  Google Scholar 

  75. J.-P. Penot, “Variations on the theme of nonsmooth analysis: another subdifferential”, in V.F. Demyanov and D. Pallaschke, eds., Nondifferentiable optimization: Motivations and Applications, Proc. Sopron, 1984, Lect. Notes in Econom. and Math. Systems 255 (Springer-Verlag, Berlin, 1985 ) 41–54.

    Google Scholar 

  76. J.-P. Penot, “A mean value theorem with small subdifferentials”, (submitted).

    Google Scholar 

  77. J.-P. Penot, “Miscellaneous incidences of convergence theories in optimization, Part II: applications to nonsmooth analysis”, to appear in: D. Du, L. Qi and R. Womersley, eds, Recent Advances in Nonsmooth Optimization (World Scientific).

    Google Scholar 

  78. J.-P. Penot, “Favorable classes of mappings and multimappings in nonlinear analysis and optimization”, (to appear in J. Convex Anal.).

    Google Scholar 

  79. J.-P. Penot and P.H. Quang, “On generalized convex functions and generalized monotonicity of set-valued maps”, preprint Univ. Pau, Nov. 1992.

    Google Scholar 

  80. J.-P. Penot and P.H. Sach, “Generalized monotonicity of subdifferentials and generalized convexity”, (submitted).

    Google Scholar 

  81. J.-P. Penot and P. Terpolilli, “Cônes tangents et singularités”, C.R. Acad. Sc. Paris296 (1983) 721–724.

    Google Scholar 

  82. J.-P. Penot and M. Volle, “On quasi-convex duality”, Math. Oper. Res15 (1990) 597–625.

    Article  Google Scholar 

  83. R. Pini, “Invexity and generalized convexity”, Optimization22 (1991) 513–525.

    Article  Google Scholar 

  84. R.A. Poliquin, “Subgradient monotonicity and convex functions”, Nonlinear Anal. 14 (1990) 305–317.

    Article  Google Scholar 

  85. J. Ponstein, “Seven kinds of convexity”, SIAM Review9 (1967) 115–119.

    Article  Google Scholar 

  86. B.N. Pchenitchny and Y. Daniline, Méthodes numériques dans les problèmes d’extrémum, (Mir, French transi., Moscow, 1975 ).

    Google Scholar 

  87. B.N. Pshenichnyi, Necessary conditions for an extremum( Dekker, New York, 1971 ).

    Google Scholar 

  88. T.W. Reiland, “Nonsmooth invexity”, Bull. Austral. Math. Soc.42 (1990) 437–446.

    Article  Google Scholar 

  89. R.T. Rockafellar, The theory of subgradients and its applications to problems of optimization of convex and nonconvex functions( Presses de l’Université de Montréal and Helderman Verlag, Berlin 1981 ).

    Google Scholar 

  90. R.T. Rockafellar, “Favorable classes of Lipschitz continuous functions in subgradient optimization”, in: E. Nurminski, ed., Progress in nondifferentiable optimization( IIASA, Laxenburg, 1982 ) 125–144.

    Google Scholar 

  91. R.T. Rockafellar, “Generalized subgradients in mathematical programming”, in: A. Bachel, M. Groetschel and B. Korte, eds., Mathematical Programming Bonn, 1982, The State of theArt (Springer Verlag, 1983 ) 368–380.

    Google Scholar 

  92. P.H. Sach and B.D. Craven, “Invexity in multifunction optimization”, preprint, 1991.

    Google Scholar 

  93. P.H. Sach and J.-P. Penot, “Characterizations of generalized convexities via generalized directional derivatives”, preprint, Univ. of Pau, January 1994.

    Google Scholar 

  94. S. Schaible, “Generalized monotone maps”, in: F. Giannessi, ed., Nonsmooth Optimization: Methods and Applications, Proc. Symp. Erice, June 1991 ( Gordon and Breach, Amsterdam, 1992 ) 392–408.

    Google Scholar 

  95. S. Schaible and W.T. Ziemba, eds., Generalized Concavity in Optimization and Economics ( Academic Press, New York, 1981 ).

    Google Scholar 

  96. C. Sutti, “Quasidifferentiability of nonsmooth quasiconvex functions”, Optimization27 (1993) 313–320.

    Article  Google Scholar 

  97. C. Sutti, “Quasidifferential analysis of positively homogeneous functions”, Optimization27 (1993) 43–50.

    Article  Google Scholar 

  98. Y. Tanaka, “Note on generalized convex function”, J. Opt. Theory Appl.66 (1990) 345–349.

    Article  Google Scholar 

  99. P.T. Thach, “Quasiconjugate of functions, duality relationships between quasiconvex minimization under a reverse convex convex constraint and quasiconvex maximization under a convex constraint and application”, J. Math. Anal. Appl.159 (1991) 299–322.

    Article  Google Scholar 

  100. L. Thibault and D. Zagrodny, “Integration of subdifferential of lower semi-continuous functions on Banach spaces”, preprint, 1993.

    Google Scholar 

  101. J.-P. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res.8 (1983) 231–259.

    Article  Google Scholar 

  102. A.A. Vladimirov, Yu. Nesterov and Yu. N. Chekanov, “On uniformly quasi-convex functionals”, Vestnik. Moskov. Univ. Ser. 15, (4) (1978) 1827.

    Google Scholar 

  103. M. Volle, “Conjugaison par tranches”, Annali Mat. Pura Appl.139 (1985) 279–312.

    Article  Google Scholar 

  104. D. Ward, “The quantificational tangent cones”, Canad. J. Math.40 (1988) 666–694.

    Article  Google Scholar 

  105. Z.K. Xu, “On invexity-type nonlinear programming problems”, J. Opt. Theory Appl.80 (1994) 135–148.

    Article  Google Scholar 

  106. D. Zagrodny, “Approximate mean value theorem for upper subderivatives”, Nonlinear Anal. 12 (1988) 1413–1428.

    Article  Google Scholar 

  107. D. Zagrodny, “A note on the equivalence between the Mean Value Theorem for the Dini derivative and the Clarke-Rockafellar derivative”, Optimization21 (1990) 179–183.

    Article  Google Scholar 

  108. D. Zagrodny, “Some recent mean value theorems in nonsmooth analysis”, in: F. Giannessi, ed., Nonsmooth Optimization. Methods and Applications, Proc. Symp. Erice 1991 ( Gordon and Breach, London, 1992 ) 421–428.

    Google Scholar 

  109. D. Zagrodny, “General sufficient conditions for the convexity of a function”, Z. Anal. Anwendungen11 (1992) 277–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Penot, JP. (1995). Generalized Convexity in the Light of Nonsmooth Analysis. In: Durier, R., Michelot, C. (eds) Recent Developments in Optimization. Lecture Notes in Economics and Mathematical Systems, vol 429. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46823-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46823-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60041-1

  • Online ISBN: 978-3-642-46823-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics