Skip to main content

Disambiguating Lexical Meaning: Conceptual meta-modelling as a means of controlling semantic language analysis

  • Conference paper
Information Systems and Data Analysis
  • 402 Accesses

Summary

A formal terminology consists of a set of conceptual definitions for the semantical reconstruction of a vocabulary on an intensional level of description. The marking of comparatively abstract concepts as semantic categories and their relational positioning on a meta-level is shown to be instrumental in adapting the conceptual design to domain -specific characteristics. Such a meta-model implies that concepts subsumed by categories may share their compositional possibilities as regards the construction of complex structures. Our approach to language processing leads to an automatic derivation of contextual semantic information about the linguistic expressions under review. This information is encoded by means of values of certain attributes defined in a feature-based grammatical framework. A standard process controlling grammatical analysis, the unification of feature structures, is used for its evalution. One important example for the usefulness of this approach is the disambiguation of lexical meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Backofen, R., Trost, H., Uszkoreit, H. (1991). Linking Typed Feature Formalisms and Terminiological Knowledge Representation Languages in Natural Language Front-Ends. In: Brauer, W., Hernandez, D. (Hrsg.). Verteilte Künstliche Intelligenz und kooperatives Arbeiten. Proc. 4. Int. GI-Kongreß ‘Wissensbasierte Systeme’, München, Okt. 1991, Informatik-Fachberichte 291. Berlin: Springer, 375–383.

    Google Scholar 

  • Brachman, R.J., Schmolze, J.G. (1985). An Overview of the KL-ONE Knowledge Representation System. Cognitive Science 9, 171–216.

    Google Scholar 

  • Burton, R.R. (1976). Semantic Grammar: An Engineering Technique for Constructing Natural Language Understanding Systems, Rep. 3453, Bolt Beranek/Newman Inc., Dec.

    Google Scholar 

  • Doyle, J., Patil, R.S. (1991). Two theses of knowledge representation: language restrictions, taxonomic classification, and the utility of representation services. Artificial Intelligence 48, 261–297.

    Article  Google Scholar 

  • Fillmore, C. (1968). The Case for Case. In: Bach, E., Harms, R. (Eds.). Universals in Linguistic Theory. New York: Holt, 1–88.

    Google Scholar 

  • Frost, R.A. (1986). Introduction to Knowledge Base Systems. London: Collins.

    Google Scholar 

  • Gazdar, G., Mellish, C. (1989). Natural Language Processing in PROLOG: An Introduction to Computional Linguistics. Reading: Addison-Wesley.

    Google Scholar 

  • Hahn, U. (1992). Forschungsstrategien und Erkenntnisinteressen in der anwendungsorien-tierten automatischen SprachverarbeitungÜberlegungen zu einer ingenieurorientierten Computerlinguistik. Freiburg/im Breisgau: Technical Report 1/92.

    Google Scholar 

  • Herzog, O. Rollinger, D.-R. (Eds.) (1991). Text Understanding in LILOG (Integrating Computational Linguistics and Artificial Intelligence: Final Report on the IBM Germany LILOG-Projekt), Lecture Notes in Computer Sciences 546. Berlin: Springer.

    Google Scholar 

  • Ingenerf, J. (1993). Benutzeranpaßbare semantische Sprachanalyse und Begriffsrepräsentation für die medizinische Dokumentation. Dissertation an der Mathematisch-Naturwissenschaftlichen Fakultät, RWTH Aachen. Sankt Augustin: infix.

    Google Scholar 

  • Ingenerf, J. (1994a). Die Notwendigkeit und das Dilemma monohierarchischer, nicht-kombinatorischer Klassifikationen. Erscheint in: Ellsässer, K.H., Köhler, CO. (Hrsg.). Grundlagen und Methoden der Klassifikation — Einsatzgebiete in der Medizin. Landsberg: ecomed, 30 Seiten.

    Google Scholar 

  • Ingenerf, J. (1994b). Koppelung merkmalsbasierter Grammatikformalismen mit terminologischen Repräsentationsformalismen. Eingereicht in: Künstliche Intelligenz, 16 Seiten.

    Google Scholar 

  • Kilbury, J. (1985). Chart Parsing and the Early Algorithm. In: Klenk, U. (Hrsg.). Kontextfreie Syntaxen und verwandte Systeme. Tübingen: Niemeyer, 76–89.

    Chapter  Google Scholar 

  • Luck, B. von (1991). Hybride logikbasierte Systeme. Künstliche Intelligenz 2, 27–31.

    Google Scholar 

  • Nagao, M. (1988). Panel: Language EngineeringThe Real Bottle Neck of Natural Language Processing. COLING Budapest — Proc. 12th Int. Conf. on Computional Linguistics, Vol.2. Budapest: John v. Neumann Society for Computing Sciences, 448–453.

    Google Scholar 

  • Nebel, B. (1990). Terminological Reasoning is Inherently Intractable. Artificial Intelligence 43, 235–249.

    Article  Google Scholar 

  • Pereira, F.C.N., Pollack, M.E. (1991). Incremental interpretation. Artificial Intelligence 50, 37–82.

    Article  Google Scholar 

  • Rahmstorf, G. (1991). Compositional semantics and concept representation. In: Bock, H.-H., Ihm, P. (Eds.). Classification, Data Analysis and Knowledge Organisation — Proc. of the 14th Annual Conf. of the GfKl in Marburg. Berlin: Springer, 163–172.

    Chapter  Google Scholar 

  • Rector, A.L., Nowlan, W.A., Kay, S. (1992). Conceptual knowledge: The core of medical information systems. In: Lun, K.C., Degoulet, P., Piemme, T.E., Rienhoff, O. (Eds.) (1992). MEDINFO-92 — Proceedings of the 7th World Congress on Medical Informatics in Geneva Palexpo, Switzerland. Amsterdam: North-Holland.

    Google Scholar 

  • Sager, N., Friedman, C., Lyman, M.S. (1987). Medical Language Processing: Computer Management of Narrative Data. Reading, Ma.: Addison Wesley.

    Google Scholar 

  • Schefe, P. (1981). Zur Funktionalität der WissenschaftsspracheAm Beispiel der Medizin. In: Bundgarten, T. (Hrsg.). Wissenschaftsssprache. München: Fink, 356–371.

    Google Scholar 

  • Shieber, S.M. (1986). An Introduction to Unification-based Approaches to Grammar. CSLI Lecture Notes, no. 4.

    Google Scholar 

  • Schmiedel, A. (1991). Modelling the Medical Data of the Heart Catheter Report. Interner Arbeitsbericht, Projektgruppe Medizinische Informatik, Berlin.

    Google Scholar 

  • Wingert, F. (1984). SNOMEDSystematische Nomenklatur der Medizin, 2 Bände. New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Ingenerf, J. (1994). Disambiguating Lexical Meaning: Conceptual meta-modelling as a means of controlling semantic language analysis. In: Bock, HH., Lenski, W., Richter, M.M. (eds) Information Systems and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46808-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46808-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58057-7

  • Online ISBN: 978-3-642-46808-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics