Skip to main content

Nonstandard Concepts of Similarity in Case-Based Reasoning

  • Conference paper
Information Systems and Data Analysis

Summary

The present paper is motivated by the author’s work in learning, by his work on case-based learning and by his machine learning work in the case-based reasoning research project FABEL, in particular. The presentation is focussed on case-based classification, but the paper is more specific in one respect and more general in another. The core of the paper is more specific, as it is driven by investigations in learning, and it is more general, as the nonstandard concepts developed are of importance for case-based reasoning, in general. It seems that a much too restricted view at similarity is one of the basic drawbacks of recent research in case-based reasoning. A rigorous criticism is intended to set the stage for new approaches to similarity which may contribute to a considerable progress in the similarity-based use of cases. New generation approaches to similarity should allow both non-symmetric similarity concepts and similarity of more than two objects. Those concepts exist already in certain specific versions mainly in the cognitive sciences area. The present paper is introducing nonstandard concepts of similarity in a quite formal setting which allows an integration of well-known procedures like unification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helmut Alt and Johannes Blömer. Resemblance and symmetries of geometric patterns. In Burkhard Monien and Thomas Ottmann, editors, Data Structures and Efficient Algorithms, volume 594 of Lecture Notes in Computer Science, pages 1–24. Springer-Verlag, 1992.

    Chapter  Google Scholar 

  2. David W. Aha. Case-based learning algorithms. In DARPA Workshop on Case Based Reasoning, pages 147–157. Morgan Kaufmann, 1991.

    Google Scholar 

  3. David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms. Machine Learning, 6:37–66, 1991.

    Google Scholar 

  4. Klaus-Dieter Althoff. Eine fallbasierte Lernkomponente als integrierter Bestandteil der MOLTKE- Werkbank zur Diagnose technischer Systeme, volume 23 of DISKI, Dissertationen zur Künstlichen Intelligenz, infix, 1993.

    Google Scholar 

  5. Dana Angluin. Finding patterns common to a set of strings. Journal of Computer and System Sciences, 21:46–62, 1980.

    Article  Google Scholar 

  6. Dana Angluin and Carl H. Smith. A survey of inductive inference: Theory and methods. Computing Surveys, 15:237–269, 1983.

    Article  Google Scholar 

  7. E Mark Gold. Language identification in the limit. Information and Control, 14:447–474, 1967.

    Article  Google Scholar 

  8. Hans-Joachim Goltz. Unifikationstheorie. In Jan Grabowski, Klaus P. Jantke, and Helmut Thiele, editors, Grundlagen der Künstlichen Intelligenz, pages 188–222. Akademie-Verlag Berlin, 1989.

    Google Scholar 

  9. Franz Höfting, Thomas Lengauer, and Egon Wanke. Processing of hi-erarchally defined graphs and graph families. In Burkhard Monien and Thomas Ottmann, editors, Data Structures and Efficient Algorithms, volume 594 of Lecture Notes in Computer Science, pages 44–69. Springer-Verlag, 1992.

    Chapter  Google Scholar 

  10. Ludger Hovestadt. A4 — digital building — extensive computer support for design, construction, and management of buildings. In Proc. CAAD Futures ‘93, Pittsburgh, USA, page to appear, 1993.

    Google Scholar 

  11. Ludger Hovestadt. Armilla4 — an integrated building model based on visualisation. In Proc. EuropIA ‘93, Delft, The Netherlands, page to appear, 1993.

    Google Scholar 

  12. Bipin Indurkhya. Modes of analogy. In Klaus P. Jantke, editor, Analogical and Inductive Inference, AII’89, volume 397 of Lecture Notes in Artificial Intelligence, pages 217–230. Springer-Verlag, 1989.

    Chapter  Google Scholar 

  13. Bipin Indurkhya. On the role of interpretative analogy in learning. New Generation Computing, 8(4):385–402, 1991.

    Article  Google Scholar 

  14. Klaus P. Jantke. Algorithmic learning from incomplete information: Principles and problems. In J. Dassow and J. Kelemen, editors, Machines, Languages, and Complexity, Lecture Notes in Computer Science, pages 188–207. Springer-Verlag, 1989.

    Google Scholar 

  15. Klaus P. Jantke. Case based learning and inductive inference. GOSLER Report 08/92, Technische Hochschule Leipzig, FB Mathematik & Informatik, February 1992.

    Book  Google Scholar 

  16. Klaus P. Jantke. Case based learning in inductive inference. In Proc. of the 5th ACM Workshop on Computational Learning Theory, (COLT’92), July 27–29, 1992, Pittsburgh, PA, USA, pages 218–223. ACM Press, 1992.

    Google Scholar 

  17. Klaus P. Jantke and Hans-Rainer Beick. Combining postulates of naturalness in inductive inference. EIK, 17(8/9):465–484, 1981.

    Google Scholar 

  18. Yves Kodratoff. Introduction to Machine Learning. Pitman, 1988.

    Google Scholar 

  19. Janet L. Kolodner, Robert L. Simpson jr., and Katia Sycara-Cyranski. A process model of case-based reasoning in problem solving. In Aravind Joshi, editor, Proc. IJCAI’85, Intern. Joint Conference on Artificial Intelligence, April 18–23, 1985, Los Angeles, CA, USA, pages 284–290. Morgan Kaufmann Publ., 1985.

    Google Scholar 

  20. Reinhard Klette and Rolf Wiehagen. Research in the theory of inductive inference by GDR mathematicians — a survey. Information Sciences, 22:149–169, 1980.

    Article  Google Scholar 

  21. George Lakoff. Women, Fire, and Dangerous Things. The University of Chicago Press, 1987.

    Google Scholar 

  22. A. Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions on Programming Languages and Systems, 4:258–282, 1982.

    Article  Google Scholar 

  23. Takeano Ohkawa, Toshiaki Mori, Noboru Babaguchi, and Yoshikazu Tezuka. Analogical generalization. In Intern. Conference on Fifth Generation Computer Systems, June 1–5, 1992, volume 2, pages 497–513. Institute for New Generation Computer Technology (ICOT), Tokyo, Japan, 1992.

    Google Scholar 

  24. Gordon D. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 153–163. American Elsevier, 1970.

    Google Scholar 

  25. Christian Posthoff and Michael Schlosser. Ähnlichkeitsbetrachtungen beim Problemlösen. In Proc. Ähnlichkeit von Fällen beim fallbasierten Schließen, Workshop, June 25–26, 1992, Kaiserslautern, pages 1–8. Universität Kaiserslautern, FB Informatik, SEKI Working Paper SWP-92–11, 1992.

    Google Scholar 

  26. M.S. Paterson and M.N. Wegman. Linear unification. Journal of Computer and Systems Science, 16:158–167, 1978.

    Article  Google Scholar 

  27. Michael M. Richter. Classification and learning of similarity measures. In Proc. Ähnlichkeit von Fällen beim fallbasierten Schließen, Workshop, June 25–26, 1992, Kaiserslautern, pages 1–8. Universität Kaiserslautern, FB Informatik, SEKI Working Paper SWP-92–11, 1992.

    Google Scholar 

  28. J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12:23–41, 1965.

    Article  Google Scholar 

  29. Eleanor Rosch. Cognitive reference points. Cognitive Psychology, 7:531–547, 1975.

    Google Scholar 

  30. Jörg H. Siekmann. Universal unification. In R.E. Shostak, editor, Proc. CADE’84, 7th Conference on Automated Deduction, volume 170 of Lecture Notes in Computer Science, pages 1–42. Springer-Verlag, 1989.

    Chapter  Google Scholar 

  31. Philip D. Summers. Program Construction from Examples. PhD thesis, Yale University, Dept. Comp. Sci., 1975.

    Google Scholar 

  32. Philip D. Summers. A methodology for LISP program construction from examples. Journal of the ACM, 24(1):161–175, 1977.

    Article  Google Scholar 

  33. Amos Tverski and I. Gati. Studies of similarity. In Eleanor Rosch and B.B. Lloyd, editors, Cognition and Categorization, pages 79–98. Lawrence Erlbaum Assoc, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Jantke, K.P. (1994). Nonstandard Concepts of Similarity in Case-Based Reasoning. In: Bock, HH., Lenski, W., Richter, M.M. (eds) Information Systems and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46808-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46808-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58057-7

  • Online ISBN: 978-3-642-46808-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics