Advertisement

Learning Diagnostic Rules for Power Distribution Systems

  • Andrea Leufke
  • Angelika Hecht
  • Regine Meunier
  • Ruxandra Scheiterer
Conference paper
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 287)

Abstract

This paper discusses the machine generation of diagnostic rules for fault diagnosis in power distribution systems. The Machine Learning technique that we have implemented processes examples of fault events with the associated diagnoses (from records of previous errors), and derives rules that correctly classify the available examples. In order to formalize relevant domain knowledge and to build adequate diagnostic rules, first order concepts had to be introduced. The paper describes the existing prototype RUDI (Learning Rules for Diagnosis) and the initial results of the test phase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Lang87]
    Langley, P.: A General Theory of Discrimination, in Klahr, D., Langley, P., Neches, R. (Eds.), Production System Models of Learning and Development, MIT- Press, 1987, pp. 99–161.Google Scholar
  2. [Löwe90]
    Löwen, U.: Nedex: Expertensystem zur Störungsanalyse im Hochspannungsnetz, Bulletin SEV\VSE 81 (1990) 3, pp. 37–43.Google Scholar
  3. [Quin86]
    Quinlan, J.R.: Induction of Decision Trees, in Machine Learning 1 (1) 1986 pp. 81–106.Google Scholar
  4. [Meun91]
    Meunier, R., Scheiterer, R., Hecht, A.: Lernen von Regeln zur Fehlerdiagnose in Stromversorgungsnetzen in KI 1/1991Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Andrea Leufke
    • 1
  • Angelika Hecht
    • 1
  • Regine Meunier
    • 1
  • Ruxandra Scheiterer
    • 1
  1. 1.ZFE IS INF 3Siemens AGMünchen 83Deutschland

Personalised recommendations