Model-Based Diagnosis with Constraint Logic Programs

  • Igor Mozetič
  • Christian Holzbaur
Part of the Informatik-Fachberichte book series (INFORMATIK, volume 287)


Model-based diagnosis is the activity of locating malfunctioning components of a system solely on the basis of its structure and behavior. In the paper we describe the role of Constraint Logic Programming (CLP) in representing models and the search space of minimal diagnoses. In particular, we concentrate on two instances of the CLP scheme: CLP (B) and CLP (R). CLP (B) extends the standard computational domain of logic programs by boolean expressions, while CLP(R) comprises a solver for systems of linear equations and inequalities over real-valued variables.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boole, G. (1947). The Mathematical Analysis of Logic. Macmillan.Google Scholar
  2. Biittner, W., Simonis, H. (1987). Embedding Boolean expressions into logic programming. Journal of Symbolic Computation 4, pp. 191–205.MathSciNetCrossRefGoogle Scholar
  3. Cohen, J. (1990). Constraint logic programming languages. Communications of the ACM 33 (7), pp. 52–68.CrossRefGoogle Scholar
  4. Crone-Rawe, B. (1989) Unification algorithms for boolean rings. SEKI Working Paper SWP-89-01, University of Kaiserslautern, Germany.Google Scholar
  5. Dague, P., Deves, P., Luciani, P., Taillibert, P. (1990). Analog systems diagnosis. Proc. 9th ECAI, pp. 173–178, Stockholm.Google Scholar
  6. Davis, R. (1984). Diagnostic reasoning based on structure and behaviour. Artificial Intelligence 24, pp. 347–410.CrossRefGoogle Scholar
  7. de Kleer, J., Mackworth, A.K., Reiter, R. (1990). Characterizing diagnoses. Proc. 8th AAAI, pp. 324–330, Boston, MIT Press.Google Scholar
  8. de Kleer, J., Williams, B.C. (1987). Diagnosing multiple faults. Artificial Intelligence 32, pp. 97–130.zbMATHCrossRefGoogle Scholar
  9. de Kleer, J., Williams, B.C. (1989). Diagnosis with behavioral modes. Proc. 11th IJCAI, pp. 1324–1330, Detroit, Morgan Kaufmann.Google Scholar
  10. de Kleer, J., Williams, B.C. (1990). Focusing the diagnosis engine. Unpublished draft, presented at the First Intl. Workshop on Principles of Diagnosis, Stanford University.Google Scholar
  11. Friedrich, G., Gottlob, G., Nejdl, W. (1990). Hypothesis classification, abductive diagnosis and therapy. Proc. First Intl. Workshop on Principles of Diagnosis, pp. 124–128, Stanford University.Google Scholar
  12. Gallanti, M., Roncato, M., Stefanini, A., Tornielli, G. (1989). A diagnostic algorithm based on models at different level of abstraction. Proc. 11th IJCAI, pp. 1350–1355, Detroit, Morgan Kaufmann.Google Scholar
  13. Genesereth, M.R. (1984). The use of design descriptions in automated diagnosis. Artificial Intelligence 24, pp. 411–436.CrossRefGoogle Scholar
  14. Heintze, N., Jaffar, J., Michaylov, S., Stuckey, P., Yap, R. (1987). The CLP(U) programmer’s manual. Dept. of Computer Science, Monash University, Australia.Google Scholar
  15. Heintze, N., Michaylov, S., Stuckey, P. (1987). CLP (R) and some electrical engineering problems. Proc. 4 th Intl. Conference on Logic Programming, pp. 675–703, Melbourne, Australia, The MIT Press.Google Scholar
  16. Holzbaur, C. (1990). Specification of constraint based inference mechanisms through extended unification. Ph.D. Thesis, Vienna University of Technology, Austria.Google Scholar
  17. Jaffar, J. (1990). CLP(Sft) version 1.0 reference manual. IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY.Google Scholar
  18. Jaffar, J., Lassez, J.-L., Mahler, J. (1986). A logic programming language scheme. In D. de Groot, G. Linstrom (eds.), Logic Programming: Functions, Relations, and Equations, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  19. Kraemer, F.-J. (1989). A decision procedure for Presburger arithmetic with functions and equality. SEKI working paper SWP-89–4, FB Informatik, University of Kaiserslautern, Germany.Google Scholar
  20. Lloyd, J.W. (1987). Foundations of Logic Programming (Second edition). Springer-Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  21. Martin, U., Nipkov, T. (1986). Unification in boolean rings. Proc. 8th Intl. Conference on Automated Deduction, pp. 506–513.Google Scholar
  22. Mozetic, I. (1990). Reduction of diagnostic complexity through model abstractions. Report TR-90–10, Austrian Research Institute for Artificial Intelligence, Vienna. Proc. First Intl. Workshop on Principles of Diagnosis, pp. 102–111, Stanford University, Palo Alto.Google Scholar
  23. Mozetic, I., Holzbaur, C. (1991a). Integrating qualitative and numerical models within Constraint Logic Programming. Report TR-91–2, Austrian Research Institute for Artificial Intelligence, Vienna, Austria. Proc. 1st European Workshop on Qualitative Reasoning about Physical Systems, Genova, Italy.Google Scholar
  24. Mozetic, I., Holzbaur, C. (1991b). Controlling the complexity in model-based diagnosis. Report TR-91–3, Austrian Research Institute for Artificial Intelligence, Vienna, Austria.Google Scholar
  25. Poole, D. (1989). Normality and faults in logic-based diagnosis. Proc. 11th IJCAI, pp. 1304–1310, Detroit, Morgan Kaufmann.Google Scholar
  26. Raiman, O. (1989). Diagnosis as a trial: the alibi principle. IBM Scientific Center, Paris.Google Scholar
  27. Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence 32, pp. 57–95.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Shostak, R. (1981). Deciding linear inequalities by computing loop residues. Journal of the ACM 28 (4), pp. 769–779.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Struss, P., Dressier, O., (1989). “Physical negation” — integrating fault models into the general diagnostic engine. Proc. 11th IJCAI, pp. 1318–1323, Detroit, Morgan Kaufmann.Google Scholar
  30. Wakeling, A., McKeon A. (1989). On automatic fault finding in analogue circuits. Electronic Engineering, pp. 95–101, Nov. 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Igor Mozetič
    • 1
  • Christian Holzbaur
    • 2
  1. 1.Austrian Research Institute for Artificial IntelligenceViennaAustria
  2. 2.Austrian Research Institute for Artificial Intelligence, and Department of Medical Cybernetics and Artificial IntelligenceUniversity of ViennaViennaAustria

Personalised recommendations