Skip to main content

Part of the book series: Informatik-Fachberichte ((2252,volume 287))

Abstract

When using resolution for showing the unsatisfiability of logic formulas one often encounters infinite sequences of structurally similar clauses. We suggest to use deductive generalization to derive a small number of meta-clauses subsuming these infinite sequences. Resolution is extended by meta-unification in order to resolve meta-clauses instead of ordinary ones.

As a step towards a unification procedure for general meta-terms we investigate the unification of monadic ones. We describe an algorithm yielding a finite, complete and orthonormal set of unifiers. First experiments show the usefulness of our approach: theorem provers save space as well as time, proofs become considerably shorter.

And the Lord God formed man from the dust of the ground and breathed into his nostrils the breath of life; and man became a living soul.

(Genesis 2:1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bibel. Advanced Topics in Automated Deduction. Advanced Topics in Artificial Intelligence, LNCS 345, 41–59. Springer Verlag, New York, 1988.

    Chapter  Google Scholar 

  2. M. Clausen and A. Fortenbacher. Efficient Solution of Linear Diophantine Equations. J. Symbolic Computation 8 (1989), 201–216.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. L. Chang and R. C. T. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press, New York, 1973.

    MATH  Google Scholar 

  4. J. L. Darlington. Automatic Theorem Proving with Equality Substitutions and Mathematical Induction. Machine Intelligence Vol. 3 (B. Meitzer and D. Mitchie eds.), 113–127. Edinburgh University Press, 1968.

    Google Scholar 

  5. P. Devienne. Weighted graphs: a tool for studying the halting problem and time complexity in term rewriting systems and logic programming. Theoretical Computer Science 75 (1990), 157–215.

    Article  MathSciNet  MATH  Google Scholar 

  6. The Gideons, eds. The Holy Bible. National Publishing Company, 1975.

    Google Scholar 

  7. D. E. Knuth and P. B. Bendix. Simple Word Problems in Universal Algebra. Computational Problems in Abstract Algebra (J. Leech ed.), 263–297. Pergamon Press, 1970.

    Google Scholar 

  8. D. Lankford. Non-negative Integer Basis Algorithms for Linear Equations with Integer Coefficients. J. Automated Reasoning 5 (1989), 25–35.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. W. Loveland. Automated Theorem Proving: A Logical Basis., North Holland, Amsterdam, 1978.

    Google Scholar 

  10. G. S. Makanin. The Problem of Solvability of Equations in a Free Semigroup. Mat. Sb. 103(145) (1977), 147–236. English translation in Math. USSR Sb. 32.

    Google Scholar 

  11. G. D. Plotkin. A Note on Inductive Generalization. Machine Intelligence Vol. 5 (B. Meitzer and D. Mitchie eds.), 153–163. Edinburgh University Press, 1970.

    Google Scholar 

  12. G. D. Plotkin. A Further Note on Inductive Generalization. Machine Intelligence Vol. 6 (B. Meitzer and D. Mitchie eds.), 101–124. Edinburgh University Press, 1971.

    Google Scholar 

  13. P. Purdom. Detecting Looping Simplifications. 2nd Int. Conf. on Rewriting Techniques and Applications #x0027;87, LNCS 256, 54–61. Springer Verlag, New York, 1987.

    Google Scholar 

  14. J. C. Reynolds. Transformational Systems and the Algebraic Structure of Atomic Formulas. Machine Intelligence Vol. 5 (B. Meitzer and D. Mitchie eds.), 135–151. Edinburgh University Press, 1970.

    Google Scholar 

  15. J. A. Robinson. A Machine Oriented Logic based on the Resolution Principle. J. ACM Vol 12 No. 1 (1965), 23–41.

    Article  MATH  Google Scholar 

  16. J. A. Robinson. Automatic Deduction with Hyper-Resolution. Int. J. Comput. Math. 1 (1965), 227–234.

    MATH  Google Scholar 

  17. G. Salzer. Deductive Generalization for Clause Logic. Year-book of the Kurt- Godel-Society 1989, 47–59, Wien, 1990.

    Google Scholar 

  18. G. Salzer. Unification of Strings with Repetitions. TR E1803/S03, Technische Universität Wien, 1990.

    Google Scholar 

  19. G. Salzer. Unique Representation of the Nonnegative Solutions of Linear Dio-phantine Equations. TR E1803/S04, Technische Universität Wien, 1991.

    Google Scholar 

  20. D. Schreye, M. Bruynooghe, K. Verschaetse. On the Existence of Nonterminating Queries for a Restricted Class of Prolog-Clauses. Artificial Intelligence 41 (1989/90), 237–248.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commutativity, and Associativity. J. ACM Vol. 21 No. 4 (1974), 622–642.

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Wos, G. A. Robinson, D. F. Carson and L. Shalla. The Concept of Demodulation in Theorem Proving. J. ACM Vol. 14 No. 4 (1967), 698–709.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salzer, G. (1991). Deductive Generalization and Meta-Reasoning or How to Formalize Genesis. In: Kaindl, H. (eds) 7. Österreichische Artificial-Intelligence-Tagung / Seventh Austrian Conference on Artificial Intelligence. Informatik-Fachberichte, vol 287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46752-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46752-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54567-5

  • Online ISBN: 978-3-642-46752-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics