Skip to main content

Molecular Insights into Alzheimer’s Disease

  • Conference paper
Biological Markers of Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

Recent in vitro and in vivo 31P NMR studies demonstrate increased levels of PME and PDE in Alzheimer’s brain. The PME levels have an inverse correlation with the numbers of SP and are thought to represent an early molecular event in the pathogenesis of the disease. Similar high levels of PME are observed normally in the developing brain, especially during the period of dendritic proliferation. Cytological studies demonstrate the elaboration of dendritic processes in AD. The levels of PDE have a positive correlation with the numbers of SP and are thought to represent markers of neuronal degeneration. Fluorescence spectroscopy studies reveal that PME and PDE can alter membrane molecular dynamics. Solid-state 31P NMR studies reveal that PME but not PDE can alter the conformation of synthetic phospholipid model membranes and induce transformations from the bilayer phase to the hexagonal II and micellar phases. Similar transformations in vivo could induce the formation of vesicles (micellar) and the fusion of membranes (hexagonal II) with important biological consequences. Computer modeling studies demonstrate the PME to have striking conformational similarities with the neurotransmitters NMD A and l-glutamate. Recent studies reveal the PME to be neuromodulators at l-glutamate receptors in hippocampal CAI pyramidal cells. This finding suggests possible molecular mechanisms for memory loss and the degenerative features of the disease. The elevated levels of PME also could reflect enhanced phospholipase С activity, which could stimulate protein kinase С activity. Enhanced protein kinase С activity could lead to many diverse biological effects, including the hyperphosphorylation of proteins such as the ADAP and microtubule-associated tau proteins, resulting in altered posttranslational processing of these proteins. These findings provide insights into the molecular pathology of AD which could guide future therapeutic and preventive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball MJ, Hachinski V, Fox A, Kirshen AJ, Fisman M, Blume M, Kral VA, Fox H, Merskey H (1985) A new definition of Alzheimer’s disease: a hippocampal dementia. Lancet I:14–16

    Article  Google Scholar 

  • Barrionuevo G, Bradler JE, Pettegrew JW (1988) Electrophysiological effects of phos-phomonoesters on hippocampal brain slices (abstract). Neurology (Cleveland) 38/1:336

    Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    Article  PubMed  CAS  Google Scholar 

  • Beradi A, Haxby JV, Grady CL, Rapoport SI (1987) Asymmetries of brain glucose consumption and memory performance in mild dementia of the Alzheimer type and in healthy aging (abstract). Neurology (Cleveland) 37/1:160

    Google Scholar 

  • Berent S, Foster NL, Gilman S, Hichwa R, Lehtinen S (1987) Patterns of cortical 18F-FDG metabolism in Alzheimer’s and progressive supranuclear palsy patients are related to the types of cognitive impairments (abstract). Neurology (Cleveland) 37/1:172

    Google Scholar 

  • Brown GG, Levine SR, Goreli JM, Pettegrew JW, Gdowski JW, Bueri JA, Helpem JA, Welch KMA (1989) In vivo 31P NMR profiles of Alzheimer’s disease and multiple subcortical infarct dementia. Neurology, in press

    Google Scholar 

  • Buell SJ, Coleman PD (1979) Dendritic growth in the aged human brain and failure of growth in senile dementia. Science 206:854–856

    Article  PubMed  CAS  Google Scholar 

  • Buell SJ, Coleman PD (1981) Quantitative evidence for selective dendritic growth in normal human aging but not in senile dementia. Brain Res 241:23–41

    Article  Google Scholar 

  • Cady EB, Dawson MJ, Hope PL, Tofts PS, De L, Costello AM, Delpy DT, Reynolds EOR, Wilkie DR (1983) Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 1:1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Cohen MM, Lin S (1962) Acid soluble phosphates in the developing rabbit brain. J Neurochem 9:345–352

    Article  PubMed  CAS  Google Scholar 

  • Cohen MM, Pettegrew JW, Kopp SJ, Minshew N, Glonek T (1984) P-31 nuclear magnetic resonance analysis of brain. Normoxic and anoxic brain slices. Neurochem Res 9:785–801

    Article  PubMed  CAS  Google Scholar 

  • Cole G, Dobkins KR, Hansen L, Terry RD, Saitoh T (1988) Decreased levels of protein kinase С in Alzheimer brain. Brain Res 452:165–174

    Article  PubMed  CAS  Google Scholar 

  • Connor JR, Diamond MC, Johnson RE (1980) Occipital cortical morphology of the rat: alterations with age and environment. Exp Neurol 68:158–170

    Article  PubMed  Google Scholar 

  • Connor JR, Beban SE, Hopper PA, Hansen B, Diamond MC (1982) A Golgi study of the superficial pyramidal cells in the somatosensory cortex of socially reared old adult rats. Exp Neurol 76:35–45

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM (1970) Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin Heidelberg New York, pp 217–251

    Google Scholar 

  • Cutler NR, Haxby JV, Duara R, Grady CL, Moore AM, Parisi JE, White J, Heston L, Margolin R, Rapoport S (1985) Brain metabolism as measured with positron emission tomography: serial assessment in a patient with familial Alzheimer’s disease. Neurology (Cleveland) 35:1556–1561

    CAS  Google Scholar 

  • Dawson RMC (1985) Enzymatic pathways of phospholipid metabolism in the nervous system. In: Eichberg J (ed) Phospholipids in nervous tissues. Wiley, New York, pp 45–78

    Google Scholar 

  • Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L, Moore A, Schlageter N, Larson S, Rapoport SI (1986) Positron emission tomography in Alzheimer’s disease [18F] 2-fluoro-2-deoxy-d-glucose study in the resting state. Neurology (Cleveland) 36:879–887

    CAS  Google Scholar 

  • Duchen LW (1984) General pathology of neurons and neuroglia. In: Adams JH, Corsellis JAN (eds) Greenfield’s Neuropathology. Wiley, New York

    Google Scholar 

  • Fletcher WA, Sharpe JA (1986) Saccadic eye movements dysfunction in Alzheimer’s disease. Ann Neurol 20:464–471

    Article  PubMed  CAS  Google Scholar 

  • Fletcher WA, Sharpe JA (1988) Smooth pursuit dysfunction in Alzheimer’s disease. Neurology 38/2:272–276

    PubMed  CAS  Google Scholar 

  • Flood DG, Buell SJ, Horwitz GJ, Coleman Ρ (1986) Dendritic extent in human dentate gyrus granule cells in normal aging and senile dementia. Brain Res 402/2:205–216

    Article  Google Scholar 

  • Flood G, Coleman PD (1986) Failed compensatory dendritic growth as a pathophysiological process in Alzheimer’s disease. Can J Neurol Sci 13:475–479

    PubMed  CAS  Google Scholar 

  • Friedland RP, Jagust WJ, Budinger TF, Koss E, Ober ΒΑ (1987) Consistency of temporal parietal cortex hypometabolism in probable Alzheimer’s disease (AD): relationships to cognitive decline (abstract). Neurology (Cleveland) 37/1:224

    Google Scholar 

  • Gandy S, Czernik AJ, Greengard Ρ (1988) Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase С and Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 85:6218–6221

    Article  PubMed  CAS  Google Scholar 

  • Gdowski JW, Brown GG, Levine SR, Smith M, Helpem J, Bueri H, Goreli J, Welch KMA (1988) Patterns of phospholipid metabolism differ between Alzheimer and multi-infarct dementia (abstract). Neurology (Cleveland) 38/1:268

    Google Scholar 

  • Geddes JW, Monaghan DT, Cotman CW, Lott IT, Kim TC, Chui HC (1985) Plasticity of hippo-campal circuitry in Alzheimer’s disease. Science 230:1179–1181

    Article  PubMed  CAS  Google Scholar 

  • Geddes JW, Chang-Chui H, Cooper SM, Lott IT, Cotman CW (1986) Density and distribution of NMD A receptors in the human hippocampus in Alzheimer’s disease. Brain Res 399:156–161

    Article  PubMed  CAS  Google Scholar 

  • Glonek Τ, Kopp SJ, Kot E, Pettegrew JW, Harrison WH, Cohen MM (1982) P-31 nuclear magnetic resonance analysis of brain: the perchloric acid extract spectrum. J Neurochem 39:1210–1219

    Article  PubMed  CAS  Google Scholar 

  • Goreli JM, Bueri JA, Brown GG, Levine SR, Welch KMA, Gdowski JW, Helpern JA, Smith MB (1988) Parietal and frontal high-energy cerebral phosphate metabolism in Alzheimer and Parkinson dementia. Neurology 38:227

    Google Scholar 

  • Graveland GA, Williams RS, DeFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227:770–773

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Penny JB Jr., Young AB, Amato CJ, Hicks SP, Shoulson I (1985) Alterations in l-glutamate binding in Alzheimer’s and Huntington’s diseases. Science 227:1496–1499

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wiśniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  • Halper J, Scheithauer В, Okazaki Η, Laws E (1986) Meningioangiomatosis: a report of six cases with special reference to the occurrence of neurofibrillary tangles. J Neuropathol Exp Neurol 45/4:426–446

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Grady CL, Ross E, Friedland RP, Rapoport SI (1987) Heterogenous metabolic and neuropsychological patterns in dementia of the Alzheimer type: cross-sectional and longitudinal studies (abstract). Neurology (Cleveland) 37/1:159

    Google Scholar 

  • Hinds JW, McNelly NA (1977) Aging of the rat olfactory bulb: Growth atrophy of constituent layers and changes in size and number of mitral cells. J Comp Neurol 171:345–368

    Article  Google Scholar 

  • Hinds JW, McNelly NA (1981) Aging in the rat olfactory system: correlation of changes in the olfactory epithelium and olfactory bulb. J Comp Neurol 203:441–453

    Article  PubMed  CAS  Google Scholar 

  • Horwitz B, Grady CL, Schlageter NL, Duara R, Rapoport SI (1987) Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer’s disease. Brain Res 407:294–306

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K, Zaidi T, Wen GY, Grundke-Iqbal I, Merz PA, Shaikh SS, Wisniewski HM, Alafuzoff I, Winblad В (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 11:421–426

    Article  Google Scholar 

  • Jagust WJ, Friedland RP, Koss E, Ober BA, Mathis CA, Huesman RH, Budinger TF (1987) Progression of regional cerebral glucose metabolic abnormalities in Alzheimer’s disease (abstract). Neurology (Cleveland) 37/1:156

    Google Scholar 

  • Kanfer JN, McCartney DG (1987) Phosphatase and phospholipase activity in Alzheimer brain tissues. In: Wurtman RJ, Corkin S, Growden JH (eds) Topics in the basic and clinical science of dementia. Springer, Vienna New York, pp 183–188 (Journal of neural transmission, suppl 24)

    Google Scholar 

  • Lacal JC, Moscat J, Aaronson S (1987) Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Nature 330/19:269–271

    Article  PubMed  CAS  Google Scholar 

  • Maragos WF, Greenamyre JT, Penney JB Jr., Young AB (1987) Glutamate dysfunction in Alzheimer’s disease: an hypothesis. Trends Neurosci 10:65–68

    Article  CAS  Google Scholar 

  • Maris JM, Evans AE, McLaughlin AC, D’Angio GJ, Bolinger L, Manos H, Chance В (1985) 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ. N Engl J Med 312:1500–1505

    Google Scholar 

  • Meneses P, Glonek Τ (1988) High resolution 31P NMR of extracted phospholipids. J Lipid Res 29:679–690

    PubMed  CAS  Google Scholar 

  • Miotto О, Gonzalez RG, Buonanno F, Growdon J (1986) In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer’s disease. Can J Neurol Sci (Suppl) 13:535–539

    Google Scholar 

  • Nishizuka Y (1986) Studies and perspectives of protein kinase С Science 233:305–312

    CAS  Google Scholar 

  • Pearson RCA, Sofroniew MV, Cuello AC, Powell TPS, Eckenstein F, Esiri MM, Wilcock GK (1983a) Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyl-transferase. Brain Res 289:375–379

    Article  PubMed  CAS  Google Scholar 

  • Pearson RCA, Gatter KС, Powell TPS (1983b) Retrograde cell degeneration in the basal nucleus in monkey and man. Brain Res 261:321–326

    Article  PubMed  CAS  Google Scholar 

  • Pearson RCA, Powell TPS (1987) Anterograde vs. retrograde degeneration of the nucleus basalis medialis in Alzheimer’s disease. J Neural Transm 24:139–146

    CAS  Google Scholar 

  • Pelech SL, Audubert F, Vance DE (1985) Regulation of phosphatidylcholine biosynthesis in mammalian systems. In: Horrocks LA, Kanfer JN, Porcellati G (eds) Phospholipids in the nervous system, vol 2. Raven Press, New York, pp 247–258

    Google Scholar 

  • Pettegrew JW, Panchalingam K (1989) Solid state % and 27A1 NMR studies of model membranes and mammalian brain: possible implications for Alzheimer’s disease. In: Pettegrew J W (ed) Nuclear magnetic resonance: the principles and applications of NMR spectroscopy and imaging to biomedical research. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pettegrew JW, Minshew NJ, Glonek T, Kopp SJ, Cohen MM (1982a) Phosphorus-31 nuclear magnetic resonance analysis of Huntington and control brain (abstract). Ann Neurol 12:91

    Google Scholar 

  • Pettegrew JW, Minshew NJ, Glonek T, Kopp SJ, Cohen MM (1982b) Phosphorus NMR study of gerbil stroke model (abstract). Neurology (Cleveland) 32:196

    Google Scholar 

  • Pettegrew JW, Kopp SJ, Glonek T, Minshew NJ, Cohen MM (1983) Phosphorus-31 NMR analysis of normoxic and anoxic brain slices (abstract). Neurology (Cleveland) 33/2:152

    Google Scholar 

  • Pettegrew JW, Minshew NJ, Cohen MM, Kopp SJ, Glonek T (1984) P-31 NMR changes in Alzheimer’s and Huntington’s disease brain (abstract). Neurology (Minneapolis) 34/1:281

    Google Scholar 

  • Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP, Cohen MM (1985) 31P NMR studies of phospholipid metabolism in developing and degenerating brain. Neurology 35/1:257

    Google Scholar 

  • Pettegrew JW, Kopp SJ, Dadok J, Minshew NJ, Feliksik JM, Glonek T, Cohen MM (1986a) Chemical characterization of a prominent phosphomonoester resonance from mammalian brain: 31P and 27Al NMR analysis at 4.7 and 14.1 Tesla. J Magn Res 67:443–450

    Article  CAS  Google Scholar 

  • Pettegrew JW, Post JFM, Withers G, Panchalingam K (1986b) 31P NMR studies of brain development (abstract). Ann Neurol 20:400–401

    Google Scholar 

  • Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP, Cohen MM (1987a) 31P Nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: preliminary observations. J Neuropathol Exp Neurol 46:419–430

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Withers G, Panchalingam K, Post JFM (1987b) 31P nuclear magnetic resonance (NMR) spectroscopy of brain in aging and Alzheimer’s disease. J Neural Trans 24:261–268

    CAS  Google Scholar 

  • Pettegrew JW, Moossy J, Withers G, McKeag D, Panchalingam K (1988a) 31P nuclear magnetic resonance study of the brain in Alzheimer’s disease. J Neuropath Exp Neurol 47/3:235–248

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Panchalingam K, Moossy J, Martinez JA, Rao G, Boiler F (1988b) Correlation of P NMR and morphological findings in Alzheimer’s disease. Arch Neurol 45:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Withers G, Panchalingam K, Post JFM (1988c) Considerations for brain pH assessment by 31P NMR. Magn Res Imag 6:135–142

    Article  CAS  Google Scholar 

  • Pettegrew JW, Moossy J, Strychor S, McKeag D, Boiler F (1988d) Membrane phospholipid alterations in Alzheimer’s brain (abstract). Neurology (Cleveland) 38/1:267

    Google Scholar 

  • Pettegrew JW, Panchalingam K, McKeag D, Barrionuevo G (1988e) Metabolic effects of phosphomonoesters on hippocampal brain slices (abstract). Neurology (Cleveland) 38/1:323

    Google Scholar 

  • Porcellati G, Arienti G (1983) Metabolism of phosphoglycerides. In: Lajtha A (ed) Metabolism in the nervous system. Plenum, New York, pp 133–161 (Handbook of neurochemistry, vol 3)

    Google Scholar 

  • Rapoport SI, Horwitz B, Haxby J, Grady CL (1986) Alzheimer’s disease: metabolic uncoupling of associative brain regions. Can J Neurol Sci 13:540–545

    PubMed  CAS  Google Scholar 

  • Rogers J, Zornetzer SF, Bloom FE, Mervis RE (1984) Senescent microstructural changes in rat cerebellum. Brain Res 292:23–32

    Article  PubMed  CAS  Google Scholar 

  • Scheibel AB (1979) Dendritic changes in senile and presenile dementias. In: Katzman R (ed) Congenital and acquired cognitive disorders. Based on the proceedings of the 57th annual meeting of the Association for Research in Nervous and Mental Diseases, December 2–3, 1977. Raven, New York, pp 107–124

    Google Scholar 

  • Sofroniew MV, Pearson RCA, Eckenstein F, Cuello AC, Powell TPS (1983) Retrograde changes in cholinergic neurons in the basal nucleus of the forebrain of the rat following cortical damage. Brain Res 289:370–374

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV, Pearson RCA (1985) Degeneration of cholinergic neurons in the basal nucleus following kainic or iV-methyl-D-aspartic acid application to the cerebral cortex in the rat. Brain Res 339:186–190

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Hansen LA, DeTeresa R, Davies P, Tobias H, Katzman R (1987) Senile dementia of the Alzheimer type without neocortical neurofibrillary tangles. J Neuropathol Exp Neurol 46:262–268

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson BE (1972) Morphological brain changes in non-demented old people. In: Von Praag HM, Kalverboer AF (eds) Aging of the central nervous system. Bohn, New York, pp 37–57

    Google Scholar 

  • Tomlinson BE, Corsellis JAN (1984) Aging and the dementias. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s neuropathology. Wiley, New York, pp 951–1025

    Google Scholar 

  • Veech R, Harris RL, Veloso D, Veech DH (1973) Freeze-blowing: a new technique for the study of the brain in vivo. J Neuro Chem 20:183–188

    CAS  Google Scholar 

  • Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S Jr, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  • Whitson JS, Selkoe DJ, Cotman CW (1989) Amyloid β protein enhances the survival of hip-pocampal neurons in vitro. Science 243:1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Young AB, Greenamyre JT (1986) Autoradiographic analysis of l-3H-glutamate receptors in mammalian brain. In: Boast CA, Snowhill EW, Altar CA (eds) Quantitative receptor autoradiography. Liss, New York, pp 79–101

    Google Scholar 

  • Younkin DP, Delivoria-Papadopoulos M, Leonard JC, Harihara V, Subramanian VH, Eleff S, Leigh JS Jr, Chance B (1984) Unique aspects of human newborn cerebral metabolism evaluated with phosphorus nuclear magnetic resonance spectroscopy. Ann Neurol 16:581–586

    Article  PubMed  CAS  Google Scholar 

  • Zubenko GS, Cohen BM, Growdin J, Corkin S (1984) Cell membrane abnormality in Alzheimer’s disease (letter). Lancet 11:235

    Article  Google Scholar 

  • Zubenko GS, Malinakova I, Chojnacki B (1987a) Proliferation of internal membranes in platelets from patients with Alzheimer’s disease. J Neuropathol Exp Neurol 407–418

    Google Scholar 

  • Zubenko GS, Cohen BM, Reynolds CF, Boiler F, Malinakova I, Keefe MA (1987b) Platelet membrane fluidity in Alzheimer’s disease and major depression. Am J Psych 144:860–868

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pettegrew, J.W. (1989). Molecular Insights into Alzheimer’s Disease. In: Boller, F., Katzman, R., Rascol, A., Signoret, JL., Christen, Y. (eds) Biological Markers of Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46690-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46690-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46692-2

  • Online ISBN: 978-3-642-46690-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics