Skip to main content

Probes for the Molecular Components of Plaques and Tangles Point to a Broadening View of Alzheimer Pathology

  • Conference paper
  • 83 Accesses

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

The use of new antibody and cDNA probes has broadened our view as to the anatomical loci of the lesions in Alzheimer’s disease. Amyloid is deposited in many locations in the central nervous system, including areas that are not clinically affected by the disease process. Likewise, the neurofibrillary lesions are seen in locations beyond the classical distribution of NFT; however, these lesions do remain restricted to regions such as the hippocampus, cerebrocortical association areas, and certain limbic and brainstem nuclei that are affected clinically. Associated with the neurofibrillary lesions are some of the light microscopic stigmata of a growth or regenerative response. The stimulus for this response may arise as a result of the deposition of β-amyloid protein. Regenerative-type neurites are present in neurons undergoing degeneration, and therefore these processes occur concurrently in the same cell. A major component of the neuritic response is the microtubule-associated protein tau, which we have shown to undergo development ally regulated splicing. One of the previously reported sequences obtained directly from paired helical filament preparations corresponds to an immature tau isoform. The presence of an immature isoform in the paired helical filament may occur as a recapitulation of development, and its presence within a mature cellular milieu may be associated with the assembly of tau into filaments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa H, Kawasaki H, Murofushi H, Kotani S, Suzuki K, Sakai H (1988) Microtubule-binding domain of tau proteins. J Biol Chem 263:7703–7707

    PubMed  CAS  Google Scholar 

  • Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hip-pocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci USA 85:8335–8339

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Cole RD (1987) Phosphorylation of tau proteins to a state like that in Alzheimer’s brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J Biol Chem 262:17577–17583

    PubMed  CAS  Google Scholar 

  • Baudier J, Lee SH, Cole DR (1987) Separation of the different microtubule-associated tau protein species from bovine brain and their mode II phosphorylation by CA2+/phospholipid-dependent protein kinase С J Biol Chem 262:17584–17590

    CAS  Google Scholar 

  • Braak H, Braak E, Grundke-Iqbal I, Iqbal K (1986) Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease; a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci Lett 65:351–355

    Article  PubMed  CAS  Google Scholar 

  • Brion JP, Passareiro H, Nunez J, Flament-Durand J (1985) Mise en evidence immunologique de la proteine tau au niveau des lesions de dégénérescence neurofibrillaire de la maladie d’Alzheimer. Arch Biol (Bruxelles) 95:229–235

    Google Scholar 

  • Butler M, Shelanski M (1986) Microheterogeneity of microtubule-associated tau proteins is due to differences in phosphorylation. J Neurochem 47:1517–1522

    Article  PubMed  CAS  Google Scholar 

  • Corsellis JAN, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3:270–303

    Article  PubMed  CAS  Google Scholar 

  • Delacourte A, Défossez A (1986) Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are the major components of paired helical filaments. J Neurol Sci 76:173–186

    Article  PubMed  CAS  Google Scholar 

  • Dotti CG, Banker GA (1987) Experimentally induced alteration in the polarity of developing neurons. Nature 330:254–256

    Article  PubMed  CAS  Google Scholar 

  • Geddes JW, Monaghan DT, Cotman CW, Lott IT, Kim RC, Chui HC (1985) Plasticity of hip-pocampal circuitry in Alzheimer’s disease. Science 230:1179–1181

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85:4051–4055

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wiśniewski H, Binder LI (1986a) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y-C, Zaidi MS, Wisniewski HM (1986b) Microtubule-associated protein tau: a component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    PubMed  CAS  Google Scholar 

  • Hall GF, Cohen MJ (1983) Extensive dendritic sprouting induced by close axotomy of central neurons in the lamprey. Science 222:518–521

    Article  PubMed  CAS  Google Scholar 

  • Hall GF, Cohen MJ (1988a) The pattern of dendritic sprouting and retraction induced by axotomy of lamprey central neurons. J Neurosci 8:3584–3597

    PubMed  CAS  Google Scholar 

  • Hall GF, Cohen MJ (1988b) Dendritic amputation redistributes sprouting evoked by axotomy in lamprey central neurons. J Neurosci 8:3598–3606

    PubMed  CAS  Google Scholar 

  • Hall GF, Poulos A, Cohen M J (1989) Sprouts emerging from the dendrites of axotomized lamprey central neurons have axonlike ultrastructure. J Neurosci 9:588–599

    PubMed  CAS  Google Scholar 

  • Hoffman PN, Cleveland DW (1988) Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific beta-tubulin isotype. Proc Natl Acad Sci USA 85:4530–4533

    Article  PubMed  CAS  Google Scholar 

  • Hoshi M, Nishida E, Miyata Y, Sakai H, Miyoshi T, Ogawara H, Akiyama T (1987) Protein kinase С phosphorylates tau and induces its functional alterations. FEBS Lett 217:237–241

    Article  PubMed  CAS  Google Scholar 

  • Ihara Y, Nukina N, Miura R, Ogawara M (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem 99:1807–1810

    PubMed  CAS  Google Scholar 

  • Ishiguro K, Ihara Y, Uchida T, Imahori K (1988) A novel tubulin-dependent protein kinase forming a paired helical filament epitope on tau. J Biochem 104:319–321

    PubMed  CAS  Google Scholar 

  • Joachim CL, Morris JH, Selkoe DJ, Kosik KS (1988) Pathological changes in the cerebellum in Alzheimer’s disease (Abstract). Neurology 38:325

    Google Scholar 

  • Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23:138–144

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Methods in laboratory investigation: formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57:230–236

    PubMed  CAS  Google Scholar 

  • Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer’s disease. Proc Natl Acad Sci USA 83:4044–4048

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS, Finch E A (1987) MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neuntes: an immunocytochemical study of cultured rat cerebrum. J Neurosci 7:3142–3153

    PubMed  CAS  Google Scholar 

  • Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989a) Development ally regulated expression of specific tau sequences. Neuron 2:1389–1397

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS, Crandall JE, Mufson EJ, Neve RL (1989b) Tau in situ hybridization in normal and Alzheimer brain: localization in the somatodendritic compartment. Ann Neurol, in press

    Google Scholar 

  • Kowali NW, Kosik KS (1987) Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease. Ann Neurol 22:639–643

    Article  Google Scholar 

  • Lee G, Cowan N, Kirschner M (1988) The primary structure and heterogeneity of tau protein from mouse brain. Science 239:285–289

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Neve RL, Kosik KS (1989) Characterization of human tau protein and its microtubule binding domain. Neuron, in press

    Google Scholar 

  • Lewis SA, Wang D, Cowan NJ (1988) Microtubule associated protein MAP2 shares a similar microtubule binding motif with tau protein. Science 242:936–939

    Article  PubMed  CAS  Google Scholar 

  • Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259:5301–5305

    PubMed  CAS  Google Scholar 

  • Mann D, Isiri MM (1988) The site of the earliest lesions of Alzheimer’s disease (Letter). N Engl J Med 318:789

    Article  PubMed  CAS  Google Scholar 

  • McKee AC, Kowali NW, Kosik KS (1989) Microtubular reorganization and growth response in Alzheimer’s disease. Ann Neurol, in press

    Google Scholar 

  • Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Mol Brain Res 1:271–280

    Article  CAS  Google Scholar 

  • Nukina N, Ihara Y (1986) One of the antigenic determinants of paired helical filaments is related to tau protein. J Biochem 99:1541–1544

    PubMed  CAS  Google Scholar 

  • Saitoh T, Dobkins KR (1986) Increased in vitro phosphorylation of a Mr 60,000 protein in brain from patients with Alzheimer’s disease. Proc Natl Acad Sci USA 83:9764–9767

    Article  PubMed  CAS  Google Scholar 

  • Schulman H (1984) Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin-dependent protein kinase. J Cell Biol 99:11–19

    Article  PubMed  CAS  Google Scholar 

  • Struble RG, Becker PS, Hedreen JC, Price DL (1988) Multiple types of senile plaques in Alzheimer’s disease: assortment in familial and sporadic cases (Abstract). J Neuropathol Exp Neurol 47:393

    Article  Google Scholar 

  • Tagliavini F, Giaccone G, Frangione В, Bugiani O (1988) Preamyloid deposits in the cerebral cortex of patients with Alzheimer’s disease and nondemented individuals. Neurosci Lett 93:191–196

    Article  PubMed  CAS  Google Scholar 

  • Ulrich J (1985) Alzheimer changes in non-demented patients younger than sixty-five: possible early stages of Alzheimer’s disease and senile dementia of Alzheimer type. Ann Neurol 17:273–277

    Article  PubMed  CAS  Google Scholar 

  • Van Duinen SG (1987) Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci USA 84:5991–5994

    Article  PubMed  Google Scholar 

  • Wischik CM, Crowther RA (1986) Subunit structure of the Alzheimer tangle. Br Med Bull 42:51–56

    PubMed  CAS  Google Scholar 

  • Wisniewski HM, Terry RD, Hirano A (1970) Neurofibrillary pathology. J Neuropathol Exp Neurol 29:163–176

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski K, Jervis GA, Moretz RC, Wiśniewski HM (1979) Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 5:288–294

    Article  PubMed  CAS  Google Scholar 

  • Wood JG, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (τ). Proc Natl Acad Sci USA 83:4040–4043

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Ihara Y (1988) A variety of cerebral amyloid deposits in the brains of the Alzheimer-type dementia demonstrated by beta-protein immunostaining. Acta Neuropathol 76:541–549

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Nakazato Y (1989) Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by β protein immuno-stain. Acta Neuropathol 77:314–319

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Fukunaga K, Tanaka E, Miyamoto E (1983) Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and comparison with the cyclic AMP-dependent phosphorylation. J Neurochem 41:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Yen S-H, Dickson DW, Crowe A, Butler M, Shelanski ML (1987) Alzheimer’s neurofibrillary tangles contain unique epitopes and epitopes in common with the heat-stable microtubule-associated proteins, tau and MAP2. Am J Pathol 126:81–91

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kosik, K.S., Selkoe, D.J. (1989). Probes for the Molecular Components of Plaques and Tangles Point to a Broadening View of Alzheimer Pathology. In: Boller, F., Katzman, R., Rascol, A., Signoret, JL., Christen, Y. (eds) Biological Markers of Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46690-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46690-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46692-2

  • Online ISBN: 978-3-642-46690-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics