Skip to main content

Cellular Signaling Mechanisms Regulating Opioid Peptide Gene Expression

  • Chapter
Neurobiology of Opioids

Abstract

Since the discovery of the first endogenous opioid peptides, methionine (Met-) and leucine-enkephalin (Leu-EN K) (Hughes et al. 1975), a large number of biologically active peptides, all possessing the N-terminal sequence Tyr-Gly-Gly-Phe-Met/Leu, have been identified. Early biochemical and immunohistochemical studies suggested that the diversity of opioid peptides results from tissue-specific processing of distinct high molecular weight precursors: their characterization was subsequently achieved by the molecular cloning of three opioid peptide precursors; proopiomelanocortin (POMC) (Nakanishi et al. 1979), proenkephalin (PENK) (Noda et al. 1982), and prodynorphin (PDYN) (Kakidani et al. 1982). POMC and PENK are the best studied of the three opioid peptide precursor genes, both at the structural and functional level. They are expressed in several distinct brain regions and a multitude of peripheral tissues. Their major sites of expression are the pituitary gland and the adrenal gland, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter HU, Giraud P, Hotchkiss AJ, Eiden LE (1984) Stimulus-secretion-synthesis coupling: a model for cholinergic regulation of enkephalin secretion and gene transcription in adrenomedullary chromaffin cells. In: Fraioli F (ed) Opiate peptides in the periphery. Elsevier, Amsterdam, pp 23–30

    Google Scholar 

  • Behr JP, Demeneix BA, Loeffler JP, Perez T (1989) Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc Natl Acad Sci USA (in apress)

    Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature (London) 312: 315–321

    Article  CAS  Google Scholar 

  • Biales B, Dichler M, Tischler A (1976) Electrical exitability of cultured adrenal chromaffin cells. J Physiol 262: 743–753

    PubMed  CAS  Google Scholar 

  • Brocklehurst KW, Morita K, Pollard HB (1985) Characterisation of protein kinase C and its role in catecholamine secretion from bovine adrenal-medullary cells. Biochem J 228: 35–42

    PubMed  CAS  Google Scholar 

  • Comb M, Birnberg NC, Seasholtz A, Herbert E. Goodman HM (1986) A cyclic AMP- and phorbol ester-inducible DNA element. Nature (London) 323: 353–356

    Article  CAS  Google Scholar 

  • Comb M, Hyman SE, Goodman HM (1988a) Mechanism oftranssynaptic regulation of gene expression. Trends Neurosci 10: 473–478

    Article  Google Scholar 

  • Comb M, Mermod N, Hyman SE, Pearlberg J, Ross ME, Goodman HM (1988b) Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMBO J 7: 3793–3805

    PubMed  CAS  Google Scholar 

  • Cote TE, Grewe CW, Tsuruta K, Stoot GC, Eskay RL, Kebabian GW (1982) D-2 dopamine receptor-mediated inhibition of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland requires GTP. Endocrinology 110: 812–816

    Article  PubMed  CAS  Google Scholar 

  • Cote TE, Felder R, Kebabian JW, Sekura RD, Reisine T, Affolter HU (1986) D-2 dopamine receptor-mediated inhibition of proopiomelanocortin synthesis in rat intermediate lobe. J Biol Chem 261: 4555–4561

    PubMed  CAS  Google Scholar 

  • Curran T, Franza BR (1988) Fos and jun: the API connection. Cell 55: 395–397

    Article  PubMed  CAS  Google Scholar 

  • Curran T, Morgan JI (1986) Barium modulates c-fos expression and post-translational modification. Proc. Natl Acad Sci USA 83: 8521–8524

    Google Scholar 

  • Dave JR, Eiden LE, Lozovsky D, Washek JA, Eskay RL (1987) Calcium-independent and calcium-dependent mechanisms regulate corticotropin-releasing factor-stimulated proopiomelanocortin peptide secretion and messenger ribonucleic acid production. Endocrinology 120: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Distel RJ, Ro H-S, Rosen BS, Grovers DL, Spiegelman BM (1987) Nucleoprotein complexes that regulate gene expression in adipocyte differentiation: direct participation of c-fos. Cell 49: 1835–1844

    Article  Google Scholar 

  • Douglas WW, Taraskevich PS (1978) Action potentials in gland cells of rat pituitary pars intermedia: inhibition by dopamine, an inhibitor of ASH secretion. J Physiol 285: 171–178

    PubMed  CAS  Google Scholar 

  • Douglas WW, Kanno T, Sampson SR (1967) Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarising effect of acetylcholine. J Physiol 262: 743–753

    Google Scholar 

  • Eberhard DA, Holz RW (1988) Intracellular Cat activates phospholipase C. Trends Neurosci 11: 517–520

    Article  PubMed  CAS  Google Scholar 

  • Eberwine JH, Jonassen JA, Evinger MJR, Roberts JL (1988) Complex transcriptional regulation by glucocorticoids and corticotropin-releasing hormone of proopiomelanocortin gene expression in rat pituitary cultures. DNA 6: 483–492

    Article  Google Scholar 

  • Eiden LE, Hotchkiss AJ (1983) Cyclic adenosine monophosphate regulates vasoactive intestinal polypeptide and enkephalin biosynthesis in cultured bovine chromaffin cells. Neuropeptides 4: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Eiden LE, Giraud P, Dave JR, Hotchkiss AJ, Affolter HU (1984) Nicotinic receptor stimulation activates enkephalin release and biosynthesis in adrenal chromaffin cells. Nature (London) 312: 661–663

    Article  CAS  Google Scholar 

  • Eipper BA, Mains RE (1980) Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocrine Rev 1: 1–27

    Article  CAS  Google Scholar 

  • Gagner J-P, Drouin J (1987) Opposite regulation of proopiomelanocortin gene transcription by glucocorticoids and CRH. Mol Cell Endocrinology 40: 25–32

    Article  Google Scholar 

  • Gene CE, Chen CLC, Roberts JL, Thopson R, Watson SR (1983) Identification of proopiomelanocortin neurons in rat hypothalamus by in situ cDNA-mRNA hybridisation. Nature (London) 306: 374–376

    Article  Google Scholar 

  • Greenberg ME, Ziff EB, Green LA (1986) Stimulation of neuronal acetylcholin receptors induces rapid gene transcription. Science 234: 80–83

    Article  PubMed  CAS  Google Scholar 

  • Grove JR, Price DJ, Goodman HM, Avruch J (1987) Recombinant fragment of protein kinase inhibitor blocks cyclic AMP-dependent gene transcription. Science 238: 530–533

    Article  PubMed  CAS  Google Scholar 

  • Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature (London) 309: 453–456

    Article  CAS  Google Scholar 

  • Hockberger P, Toselli M. Swandulla D. Lux D (1989) A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation. Nature (London) 338: 340–342

    Article  CAS  Google Scholar 

  • Höllt V (1983) Multiple endogenous opioid peptides. Trends Neurosci 1: 24–26

    Article  Google Scholar 

  • Höllt V, Haarmann I (1984) Corticotropin-releasing factor differentially regulates proopiomelanocortin messenger ribonucleic acid levels in anterior as compared to intermediate pituitary lobes of rats. Biochem Biophys Res Commun 124: 407–415

    Article  PubMed  Google Scholar 

  • Höllt V. Haarmann 1. Seizinger BR, Herz A (1981) Chronic haloperidol treatment increases the level of in vitro translatable messenger ribonucleic acid coding for the ß-endorphin/adrenocorticotropin precursor proopiomelanocortin in the pars intermedia of the rat pituitary. Endocrinology 110: 1885–1891

    Google Scholar 

  • Höllt V, Kley N, Haarmann I, Reimer S (1989) Regulation of proenkephalin gene expression in the adrenal medulla: in vitro and in vivo studies. In: 5th Int Symp Chromaffin cell biology, the adrenal cell as a neuroendocrine model: from basis to clinical aspects. Jerusalem, April 1989, p 86

    Google Scholar 

  • Huang FL, Yoshida Y, Cunha-Melo JR, Beaven MA, Huang K-P (1989) Differential down-regulation of protein kinase C isozymes. J Biol Chem 264,7: 4238–4243

    Google Scholar 

  • Hughes J. Smith TW, Kosterlitz HW. Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature (London) 258: 577–579

    Article  Google Scholar 

  • Hunt SP. Pini A. Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature (London) 328: 632–634

    Article  Google Scholar 

  • Jost JP, Moucharmont B. Jirincy J. Saluz H, Aertner T (1986) In vitro secondary activation (memory effect) of avian vitellogenin II gene in isolated liver nuclei. Proc Natl Acad Sci USA 83: 43

    Article  PubMed  CAS  Google Scholar 

  • Kakidani H, Furtani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of eDNA for porcine ß-neoendorphin precursor. Nature (London) 298: 245–249

    Article  CAS  Google Scholar 

  • Kazmarek LK (1987) The role of protein kinase C in the regulation of ion channels and neurotransmitter release. Trends Neurosci 10: 30–34

    Article  Google Scholar 

  • Kenigsberg RL, Trifaro JB (1985) Microinjection of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation. Neuroscience 14: 335–347

    Article  PubMed  CAS  Google Scholar 

  • Kley N (1988) Multiple regulation of proenkephalin gene expression by protein kinase C. J Biol Chem 263: 2003–2008

    PubMed  CAS  Google Scholar 

  • Kley N, Loeffler JP, Pittius CW, Höllt V (1986) Proenkephalin A gene expression in bovine adrenal chromaffin cells is regulated by changes in electrical activity. EMBO J 5: 967–970

    PubMed  CAS  Google Scholar 

  • Kley N, Loeffler JP, Pittius CW, Höllt V (1987a) Involvement of ion channels in the induction of proenkephalin A gene expression by nicotine and cAMP in bovine chromaffin cells. J Biol Chem 262: 4083–4089

    PubMed  CAS  Google Scholar 

  • Kley N, Loeffler JP, Höllt V (1987b) Ca’--dependent histaminergic regulation of proenkephalin mRNA levels in cultured adrenal chromaffin cells. Neuroendocrinology 46: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Knopf JL, Lee MH, Shultzman LA, Kriz RW, Loomis CR, Hewick RM, Belc RM (1987) Cloning and expression of multiple protein kinase C cDNAs. Cell 46: 491–502

    Article  Google Scholar 

  • Kurosawa A, Guidotti A, Costa E (1976) Induction of tyrosine 3-monooxygenase elicited by carbamycholin in intact and denervated adrenal medulla: role of protein kinase activation and translocation. Mol Pharmacol 15: 420–430

    Google Scholar 

  • La Gamma EF, White GD. Adler GE. Krause GE, McKelvy JF, Black IB (1985) Depolarization regulates adrenal preproenkephalin mRNA. Proc Natl Acad Sci USA 82: 8252–8255

    Article  Google Scholar 

  • La Gamma EF, White GD, McKelvy GF, Black IB (1988) Increased cAMP or Ca.“ second messenger reproduce effects of depolarization on adrenal enkephalin pathways. In: Johnson RG Jr (ed) The cellular and molecular biology of hormone and transmitter containing secretary vesicles. Ann NY Acad Sci, Washington DC, pp 26–32

    Google Scholar 

  • Loeffler JP, Kley N, Pittius CW, Höllt V (1985) Corticotropin releasing factor and forskolin increase proopiomelanocortin messenger RNA levels in rat anterior and intermediate cells in vitro. Neurosci Lett 62: 383–387

    Article  PubMed  CAS  Google Scholar 

  • Loeffler JP, Demeneix DA, Pittius CW, Kley N, Haegele KD, Höllt V (1986a) GABA differentially regulates the gene expression of proopiomelanocortin in rat intermediate and anterior pituitary. Peptides 7: 253–258

    Article  PubMed  CAS  Google Scholar 

  • Loeffler JP, Kley N, Pittius CW, Höllt V (1986b) Calcium ion and cyclic adenosine 3’5’-monophosphate regulate proopiomelanocortin messenger ribonucleic acid levels in rat intermediate and anterior pituitary lobes. Endocrinology 119: 2840–2847

    Article  PubMed  CAS  Google Scholar 

  • Loeffler JP, Demeneix BA, Kley N, Höllt V (1988) Dopamine inhibition of proopiomelanocortin gene expression in the intermediate lobe of the pituitary. Neuroendocrinology 47: 95–101

    Article  PubMed  CAS  Google Scholar 

  • Loeffler JP, Kley N, Louis JC, Demeneix BA (1989) Ca’ regulates hormone secretion and proopiomelanocortin gene expression in mealanotrope cells via the calmodulin and protein kinase C pathway. J Neurochem 152: 1279–1283

    Article  Google Scholar 

  • Miyazaki K, Reisine T, Kebabian JW (1984a) Adenosine 3’S’-monophosphate (cAMP)-dependent protein kinase activity in rodent pituitary tissue: possible role in cAMP-dependent hormone secretion. Endocrinology 115: 1933–1938

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K, Goldman MW, Kebabian JW (19846) Forskolin stimulates adenylate cyclase activity, adenosine 3’S’-monophosphate production and peptide release from the intermediate lobe of the rat pituitary gland. Endocrinology 114: 761

    Google Scholar 

  • Morgan JL, Curran T (1986) Role of ion flux in the control ofc-fos expression. Nature (London) 322:552 Morgan JL. Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192–197

    Article  Google Scholar 

  • Morita K, Dohi T, Kitayama S. Koyama Y, Tsajimoto A (1987) Stimulation-evoked Ca“ -fluxes in cultured bovine adrenal chromafin cells are enhanced by forskolin. J Neurochem 48: 248–252

    Article  PubMed  CAS  Google Scholar 

  • Munemura M, Eskay RL. Kebabian GW, Long RW (1980) Release of a-melanocyte-stimulating hormone from dispersed cells of the intermediate lobe of the rat pituitary gland: involvement of catecholamines and adenosine 3’5’-monophosphate. Endocrinology 106: 1795

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S, Inoue A, Kita T. Nakamura M. Chang ACY, Cohen SW. Numa S (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-ß-lipotropin precursor. Nature (London) 278: 423–427

    Article  CAS  Google Scholar 

  • Naranjo JR, Mochetti I, Schwartz JP, Costa E (1986) Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells. Proc Natl Acad Sci USA 83: 1513–1517

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA, Hilz H, Eppenberger HM, Dutly F (1985) Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO J 4: 2801–2806

    PubMed  CAS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature (London) 308: 693–699

    Article  CAS  Google Scholar 

  • Noble EP, Gommer M, Sincini E, Costa T, Herz A (1986) H,-histaminergic activation stimulates Inositol-l-phosphate accumulation in chromaffin cells. Biochem Biophys Res Commun 135: 566–573

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Furatani Y, Takahashi H, Toyosato M, Hirose T, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature (London) 295: 202–206

    Article  CAS  Google Scholar 

  • Oertel WH, Mugnani E, Tappaz ML, Weise VK, Dahl AL, Schmeckel DE, Kopin JJ (1982) Central GABAergic innervation of neurointermediate pituitary lobe: biochemical and immunocytochemical study in the rat. Proc Natl Acad Sci USA 79: 675–679

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Kawasaki H, Imajoh S, Suzuki K, Inagaki M, Yokokura H, Sakoh T, Hidaka H (1987) Tissue-specific expression of three distinct types of rabbit protein kinase C. Nature (London) 325: 161–166

    Article  CAS  Google Scholar 

  • Ohno S, Kawasaki H, Imajoh S, Suzuki K, Inagaki M, Yokokura H, Sakoh T, Hidaka H (1987) Tissue-specific expression of three distinct types of rabbit protein kinase C. Nature (London) 325: 161–166

    Article  CAS  Google Scholar 

  • Pittius CW, Kley N, Loeffler JP, Höllt V (1985) Quantification of proenkephalin A messenger RNA in bovine brain, pituitary and adrenal medulla: correlation between mRNA and peptide levels. EMBO J 4: 1257–1260

    PubMed  CAS  Google Scholar 

  • Pritchett DB, Roberts JL (1987) Dopamine regulates expression of the glandular-type kallikrein gene at the transcriptional level in the pituitary. Proc Natl Acad Sci USA 84: 5545–5549

    Article  PubMed  CAS  Google Scholar 

  • Pruss RM, Stauderman KA (1988) Voltage-regulated calcium channels involved in the regulation of enkephalin synthesis are blocked by phorbol ester treatment. J Biol Chem 263: 13173–13178

    PubMed  CAS  Google Scholar 

  • Quach TT, Tang F, Kageyama H, Mocchetti I, Guidotti A, Meek JL, Costa E, Schwartz JP (1984) Enkephalin biosynthesis in adrenal medulla: modulation of proenkephalin mRNA content of cultured chromaffin cells by 8-bromo-adenosine 3’S’-monophosphate. Mol Pharmacol 26: 255–260

    PubMed  CAS  Google Scholar 

  • Reisine T, Rongon G, Barbet J, Affolter HU (1985) Corticotropin releasing factor-induced adrenocorticotropin hormone secretion and synthesis is blocked by incorporation of the inhibitor of the cyclic AMP-dependent protein kinase into anterior pituitary cells by liposomes. Proc Natl Acad Sci USA 82: 8261–8265

    Article  PubMed  CAS  Google Scholar 

  • Riabowol KT, Fink JS, Gilman MZ, Walsh DA, Goodman RH, Feramisco JR (1988) The catalytic subunit ofcAM P-dependent protein kinase induces expression of genescontainingcAM P-responsive enhancer elements. Nature (London) 336: 83–86

    Article  CAS  Google Scholar 

  • Sassone-Corsi P, Sisson JC, Verma IM (1988) Transcriptional autoregulation of the proto-oncogene fos. Nature (London) 334: 314–319

    Article  CAS  Google Scholar 

  • Siegel RE, Eiden LE, Affolter HU (1985) Elevated potassium stimulates enkephalin biosynthesis in bovine chromaffin cells. Neuropeptides 6: 543–552

    Article  PubMed  CAS  Google Scholar 

  • Stoehr SJ, Smolen GE, Holz RW, Agranoff BW (1986) Inositol triphosphate mobilizes intracellular calcium in permeabilized adrenal chromaffin cells. J Neurochem 46: 637–640

    Article  PubMed  CAS  Google Scholar 

  • Taleb O, Loeffler JP, Trouslard J, Demeneix BA, Kley N, Höllt V, Feltz P (1986) Ionic conductances related to GABA action on secretory and biosynthetic activity of pars intermedia cells. Brain Res Bull 17: 725–730

    Article  PubMed  CAS  Google Scholar 

  • TerBush DR, Bittner MA, Holz RW (1988) Ca’ -influx causes rapid translocation of protein kinase C to membranes. J Biol Chem 263: 18873–18879

    PubMed  CAS  Google Scholar 

  • Tomiko SA, Tarakevich PS, Douglas WW (1983) GABA acts directly on cells of pituitary pars intermedia to alter hormone output. Nature (London) 301: 706–707

    Article  CAS  Google Scholar 

  • Tomiko SA, Tarakevich PS, Douglas WW (1984) Effect of veratridine, tetrodotoxin and other drugs that alter electrical behaviour and secretion ofinelanocyte-stimulating hormone from melanotrophsofthe pituitary pars intermedia. Neuroscience 12: 12–23

    Article  Google Scholar 

  • Tsuruta K, Grewe CW, Cote TE, Eshay RL, Kebabian JW (1982) Coordinate action of calcium ion and adenosine 3’S’-monophosphate upon the release of a-melanocyte-stimulating hormone from the intermediate lobe of the rat pituitary gland. Endocrinology 110: 11–33

    Article  Google Scholar 

  • Vallar L, Meldolesi J (1989) Mechanisms of signal transduction at the dopamine D2-receptor. Trends Pharmacol Sci 10: 74–77

    Article  PubMed  CAS  Google Scholar 

  • Viveros OH, Diliberto EJ, Hazum E, Chany KJ (1979) Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol Pharmacol 16: 1101–1108

    PubMed  CAS  Google Scholar 

  • Vuillez P, Perez SC, Stoeckel ME (1987) Colocalization of GABA and tyrosine hydroxylase immunoreactivities in the axons innervating the neurointermediate lobe of the rat pituitary: an ultrastructural immunogold study. Neurosci Lett 79: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Washek JA, Dave JR, Eskay RL, Eiden LE (1987) Barium distinguishes separate calcium targets for synthesis and secretion of peptides in neuroendocrine cells. Biochem Biophys Res Commun 146: 495–50I

    Article  Google Scholar 

  • Wilson SP (1987) Vasoactive intestinal peptide and substance P increase levels of enkephalin-containing peptides in adrenal chromaffin cells. Life Sci 40: 623–628

    Article  PubMed  CAS  Google Scholar 

  • Wilson SP (1988) Vasoactive intestinal peptide elevates cAMP levels and potentiates secretion in bovine adrenal chromaffin cells. Neuropeptides 11: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Wilson SP (1989) Chronic phorbol ester treatment inhibits secretion from bovine adrenal chromaffin cells. In: 5th Int Symp Chromaffin cell biology, the adrenal cell as a neuroendocrine model: from basic to clinical aspects. Jerusalem, April 1989, Abstr, p 84

    Google Scholar 

  • Yoshikawa K, Sabot SL (1986) Expression of the enkephalin precursor gene in C6 rat glioma cells: regulation by ß-adrenergic agonists and glucocorticoids. Mol Brain Res 1: 75–83

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kley, N.A., Farin, CJ., Loeffler, J.P. (1991). Cellular Signaling Mechanisms Regulating Opioid Peptide Gene Expression. In: Almeida, O.F.X., Shippenberg, T.S. (eds) Neurobiology of Opioids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46660-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46660-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46662-5

  • Online ISBN: 978-3-642-46660-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics