Skip to main content

Molecular Approaches to Isolating Opioid Receptors

  • Chapter
Neurobiology of Opioids
  • 92 Accesses

Abstract

Opioid receptors were first identified in mammalian brain in the early 1970s (Pert and Snyder 1973; Simon et al. 1973; Terenius 1973), and their pharmacological properties have since been extensively characterized (for reviews, see Iwamoto and Martin 1981; Smith and Loh 1981; Wood 1982). However, full structural and functional characterization of a receptor requires its purification and reconstitution in membrane preparations; for several reasons, progress in this area of opioid receptor research has been relatively slow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bero LA, Roy S. Lee NM (1988) Identification of endogenous opioid receptor components in rat brain using a monoclonal antibody. Mol Pharmacol 34: 614–620

    PubMed  CAS  Google Scholar 

  • Bidlack JM, Denton RR (1985) A monoclonal antibody capable of inhibiting opioid binding to rat neural membranes. J Biol Chem 260: 15655–15661

    PubMed  CAS  Google Scholar 

  • Bidlack JM, O’Malley WE (1986) Inhibition of p. and S but not K opioid binding to membranes by Fab fragments from a monoclonal antibody directed against the opioid receptor. J Biol Chem 261: 15844–15849

    PubMed  CAS  Google Scholar 

  • Bidlack JM, Abood LG, Osei-Gyimah P, Archer S (1981) Purification of the opiate receptor from rat brain. Proc Natl Acad Sci USA 78: 636–639

    Article  PubMed  CAS  Google Scholar 

  • Bidlack JM, Abood LG, Munemitsu SM, Archer S, Gala D, Kreilick RW (1982) Affinity labeling and purification of the opiate receptor from rat brain. In: Costa E. Trabucchi M (eds) Regulatory peptides: from molecular biology to function. Raven, New York, pp 301–309

    Google Scholar 

  • Bochet P, Icard-Liepkalns C, Pasquini F, Garbay-Jaureguiberry C, Beaudet A, Roques B, RossierJ (1988) Photoaffinity labeling of opioid S receptors with an iodinated azido-ligand: [’2’I] [D-The, pN3Phe’, Leu’]enkephalyl-Thr“. Mol Pharmacol 34: 436–443

    PubMed  CAS  Google Scholar 

  • Caruso TP, Larson DL. Portoghese PS, Takemori AE (1980) Isolation of selective H-chlornaltrexamine-bound complexes, possible opioid receptor components in brains of mice. Life Sci 27: 2063–2069

    Article  PubMed  CAS  Google Scholar 

  • Cavinato AG, MacLeod RM, Ahmed MS (1988) A non-denaturing gel electrophoresis system for the purification of membrane-bound proteins. Prep Biochem 18: 205–216

    Article  PubMed  CAS  Google Scholar 

  • Cho TM, Hasegawa J, Ge BL, Loh HH (1986) Purification to apparent homogeneity of a µ-specific opioid receptor from rat brain. Proc Natl Acad Sci USA 83: 4138–4142

    Article  PubMed  CAS  Google Scholar 

  • Chow T, Zukin RS (1983) Solubilization and preliminary characterization of mu and kappa opiate receptor subtypes from rat brain. Mol Pharmacol 24: 203–212

    PubMed  CAS  Google Scholar 

  • DeMoliou-Mason Cd, Barnard EA (1984) Solubilization in high yield of opioid receptors retaining high affinity delta, mu and kappa binding sites. FEBS Lett 170: 378–382

    Article  PubMed  CAS  Google Scholar 

  • DeMoliou-Mason CD, Barnard EA (1986) Characterization of opioid receptor subtypes in solution. J Neurochem 46: 1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Dixon RAF, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986) Cloning of the gene and cDNA for mammalian ß-adrenergic receptor and homology with rhodopsin. Nature (London) 321: 75–79

    Article  CAS  Google Scholar 

  • Gioannini TL, Howard AD, Hiller JM, Simon EJ (1985) Purification of an active opioid-binding protein from bovine striatum. J Biol Chem 260: 15117–15121

    PubMed  CAS  Google Scholar 

  • Grevel JT, Sadee W (1983) An opiate binding site in the rat brain is highly selective for 4,5-epoxymorphinans. Science 221: 1198–1201

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa J, Loh HH, Lee NM (1987) Lipid requirement for µ opioid receptor binding. J Neurochem 49: 1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Howard AD, de Le Baume S, Gioannini TL, Hiller JM, Simon EJ (1985) Covalent labeling of opioid receptors with radioiodinated human ß-endorphin: identification of binding site subunits. J Biol Chem 260: 10833–10839

    PubMed  CAS  Google Scholar 

  • Howard AD, Same Y, Gioannini TL, Hiller JM, Simon EJ (1986) Identification of distinct binding site subunits ofµ and S opioid receptors. Biochemistry 25: 357–360

    Article  PubMed  CAS  Google Scholar 

  • Howells RD, Gioannini TL, Hiller JM, Simon EJ (1982) Solubilization and characterization of active opiate binding sites from mammalian brain. J Pharmacol Exp Ther 222: 629–634

    PubMed  CAS  Google Scholar 

  • Itzhak Y, Pasternak GW (1986) K-Opiate binding to rat brain and guinea-pig cerebellum: sensitivity towards ions and nucleotides. Neurosci Lett 64: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Itzhak Y, Hiller JM, Simon EJ (1984a) Solubilization and characterization of K opioid binding sites from guinea-pig cerebellum. Neuropeptides 5: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Itzhak Y, Hiller JM, Simon EJ (1984b) Solubilization and characterization ofµ, S and K opioid binding sites from guinea-pig brain: physical separation of K receptors. Proc Natl Acad Sci USA 81: 4217–4222

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto ET, Martin WR (1981) Multiple opioid receptors. Med Res Rev 1: 411–440

    Article  PubMed  CAS  Google Scholar 

  • Iyengar S, Kim HS, Wood PL (1986) Effects of kappa opiate agonists on neurochemical and neuroendocrine indices: evidence for kappa receptor subtypes. J Pharmacol Exp Ther 238: 429–436

    PubMed  CAS  Google Scholar 

  • Julius D, MacDermott AB, Axel R, Jessell TM (1988) Molecular characterization of a functional cDNA encoding to serotonin lc receptor. Science 241: 558–564

    Article  PubMed  CAS  Google Scholar 

  • Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW (1987) Cloning, sequencing and expression of the gene coding for the human platelet a-adrenergic receptor. Science 238: 650–656

    Article  PubMed  CAS  Google Scholar 

  • Koski G, Streaty RA, Klee WA (1982) Modulation of sodium-sensitive GTPase by partial opiate agonist: an explanation for the dual requirement for Na + and GTP in inhibitory regulation of adenylate cyclase. J Biol Chem 257: 14035–14040

    PubMed  CAS  Google Scholar 

  • Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, Haga K, Ichiyama A, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature (London) 323: 411–416

    Article  CAS  Google Scholar 

  • Law PY, Wu J, Koehler JE, Loh HH (1981) Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase. J Neurochem 36: 1834–1846

    Article  PubMed  CAS  Google Scholar 

  • Law PY, Horn DS, Loh HH (1983) Opiate receptor down-regulation and desensitization in neuroblastorna x glioma NG 108–15 hybrid cells are two separate cellular adaptation processes. Mol Pharmacol 25: 413–424

    Google Scholar 

  • Loew G, Keys C, Luke B, Polgar W, Toll L (1986) Structure-activity relationships of morphiceptin analogs: receptor binding and molecular determinants of µ-affinity and selectivity. Mol Pharmacol 29: 546–553

    PubMed  CAS  Google Scholar 

  • Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature (London) 267: 495–499

    Article  CAS  Google Scholar 

  • Maneckjee R, Zukin RS, Archer S, Michael J, Osei-Gyimah P (1985) Purification and characterization of the p. opioid receptor from rat brain using affinity chromatography. Proc Natl Acad Sci USA 82: 594–598

    Article  PubMed  CAS  Google Scholar 

  • Maneckjee R, Archer S, Zukin RS (1987) Characterization of a polyclonal antibody to the opioid receptor. J Neuroimmunol 17: 199–208

    Article  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197: 517–532

    PubMed  CAS  Google Scholar 

  • Newman PL, Barnard EA (1984) Identification of an opioid receptor subunit carrying the binding site. Biochemistry 23: 5385–5389

    Article  PubMed  CAS  Google Scholar 

  • Nishimura SC, Recht LD, Pasternak GW (1984) Biochemical characterization of high-affinity; H-opioid binding. Further evidence for mu, sites. Mol Pharmacol 25: 29–37

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurons. J Physiol 364: 265–280

    PubMed  CAS  Google Scholar 

  • Peralta EG, Winslow JW, Peterson GL, Smith DH, Ashkenazi A, Ramachandran J, Schimerlik MI, Capon DJ (1987) Primary structure and biochemical properties of an M, muscarinic receptor. Science 236: 600–605

    Article  PubMed  CAS  Google Scholar 

  • Pert CB, Snyder SH (1973) Opiate receptor: its demonstration in nervous tissue. Science 179:1011–1014 Rice KC, Jacobson AE, Burke TR Jr, Bajwa BS, Streaty RW, Klee WA (1983) Irreversible ligands with high selectivity toward µ or S opiate receptors. Science 220: 314–316

    Google Scholar 

  • Rothman RB. Bykov V, Reid A, DeCosta BR, Newman AH, Jacobson AE, Rice KC (1988a) A brief study of the selectivity of norbinaltorphimine, (—)-cycloFOXY, and (+)-cycloFOXY among opioid receptor subtypes in vitro. Neuropeptides 12: 181–187

    Article  PubMed  Google Scholar 

  • Rothman RB, Bykov V, Rice KC, Jacobson AE, Kooper JN, Bowen WD (1988b) Tritiated 6-ß-fluoro6-desoxy-oxymorphone (3H-FOXY): a new ligand and affinity probe for the opioid receptors. Neuropeptides 11: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Roy BF, Bowen WD. Frazier JS, Rose JW, McFarland HF, McFarlin DE. Murphy DL, Morihasa JM (1988) Human antiidiotypic antibody against opiate receptors. Ann Neurol 24: 57–63

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Zhu YX, Lee NM, Loh HH (1988a) Different molecular weight forms of opioid receptors revealed by polyclonal antibodies. Biochem Biophys Res Commun 150: 237–244

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Zhu YX, Lee NM, Loh HH (1988a) Different molecular weight forms of opioid receptors revealed by polyclonal antibodies. Biochem Biophys Res Commun 150: 237–244

    Article  PubMed  CAS  Google Scholar 

  • Schofield PR, McFarland KC, Hayflick JS, Wilcox JN, Cho TM, Roy S, Lee NM, Loh HH, Seeburg PH (1989) Molecular characterization of a new immunoglobulin superfamily protein with potential roles in opioid binding and cell contact. EMBO J 8: 489–495

    PubMed  CAS  Google Scholar 

  • Schulz R, Wüster M, Herz A (1981) Pharmacological characterization of the e-opiate receptor. J Pharmacol Exp Ther 216: 604–606

    PubMed  CAS  Google Scholar 

  • Sharma S, Nirenberg M, Klee W (1975) Morphine receptors are regulators of adenylate cyclase activity. Proc Natl Acad Sci USA 72: 590–594

    Article  PubMed  CAS  Google Scholar 

  • Simon EJ. Hiller JM, Edelman J (1973) Stereospecific binding of the potent narcotic analgesic [3H]Etorphine to rat brain homogenate. Proc Natl Acad Sci USA 70: 1947–1949

    Article  PubMed  Google Scholar 

  • Simon J, Benyhe S, Hepp J, Khan A, Borsodi A, Szucs M, Medzihradsky K, Wolleman M (1987) Purification of a ic-opioid receptor subtype from frog brain. Neuropeptides 10:19–28

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Benyhe S, Hepp J, Khan A, Borsodi A, Szucs M, Medzihradsky K, Wolleman M (1987) Purification of a ic-opioid receptor subtype from frog brain. Neuropeptides 10:19–28

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF, Burke TR, Rice KC, Jacobson AE, Klee WA (1985) Purification of the opioid receptor of NG108–15 neuroblastoma X glioma hybrid cells. Proc Natl Acad Sci USA 82: 4774–4778

    Article  Google Scholar 

  • Smith AP, Loh HH (1979) Multiple molecular forms of stereospecific opiate binding. Mol Pharmacol 16: 757–766

    PubMed  CAS  Google Scholar 

  • Smith AP, Loh HH (1981) The opiate receptor. In: Li CH (ed) Hormonal proteins and peptides. Academic Press, New York, pp 89–170

    Google Scholar 

  • Stefano GB, Leung MK, Zhao X, Scharrer B (1989) Evidence for the involvement of opioid neuropeptides in the adherence and migration of immunocompetent invertebrate hemocytes. Proc Natl Acad Sci USA 86: 626–630

    Article  PubMed  CAS  Google Scholar 

  • Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol 32: 317–320

    Article  CAS  Google Scholar 

  • Ueda H, Harada H, Misawa H, Nozaki M, Takagi H (1987) Purified opioid p-receptor is of a different molecular size than S- and k-receptors. Neurosci Lett 75: 339–344

    Article  PubMed  CAS  Google Scholar 

  • Ueda H. Harada H. Nozaki M. Katada T. Ui M. Satoh M. Takagi H (1988) Reconstitution of rat brain p-opioid receptors with purified guanine nucleotide-binding regulatory proteins. G, and Go. Proc Natl Acad Sci USA 85: 7013–7017

    Article  Google Scholar 

  • Werz MA, MacDonald RL (1984) Dynorphin reduces voltage-dependent calcium conductance of mouse dorsal root ganglion neurons. Neuropeptides 5: 253–256

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, MacDonald RL (1985) Dynorphin and neoendorphin peptides decrease dorsal root ganglion neuron calcium-dependent action potential duration. J Pharmacol Exp Ther 234: 49–56

    PubMed  CAS  Google Scholar 

  • Williams AF (1987) A year in the life of the immunoglobulin superfamily. Immunol Today 8: 298–303

    Article  CAS  Google Scholar 

  • Williams LT (1989) Signal transduction by the platelet-derived growth factor receptor. Science 243: 1560–1564

    Article  Google Scholar 

  • Wood PL (1982) Multiple opiate receptors: support for unique mu, delta and kappa sites. Neuropharmacology 21: 487–497

    Article  PubMed  CAS  Google Scholar 

  • Yeung CW (1987) Photoaffinity labelling of opioid receptor of rat brain membranes with’2’I(D-Ala2. p-N3-Phe-Met’) enkephalin. Arch Biochem Biophys 254: 81–91

    Article  PubMed  CAS  Google Scholar 

  • Zukin RS, Kream R (1979) Chemical crosslinking of a solubilized enkephalin macromolecular complex. Proc Natl Acad Sci USA 76: 1593–1597

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, A.P., Loh, H.H. (1991). Molecular Approaches to Isolating Opioid Receptors. In: Almeida, O.F.X., Shippenberg, T.S. (eds) Neurobiology of Opioids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46660-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46660-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46662-5

  • Online ISBN: 978-3-642-46660-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics