Carbohydrate-Binding Sites of Plant Lectins

  • G. N. ReekeJr.
  • J. W. Becker
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 139)


Lectins are a diverse group of proteins and glycoproteins that exhibit specific binding for certain carbohydrates. Proteins with this property have been described in a wide variety of taxa, ranging from bacteria (e.g. Neter 1956) to slime molds (Barondes and Haywood 1979) and lower vertebrates (Simpson et al. 1978), but the best characterized examples are from plants. These proteins were originally characterized as cell agglutinins, until the term lectin was introduced by Boyd (1954, 1963) to encompass a larger range of activities involving selectivity for specific saccharides. There is no universally accepted definition that specifies exactly the functional classes of proteins included in the lectins, but it is generally agreed that such well-known groups as antibodies, enzymes, and transport proteins are not included. These groups are covered separately in later chapters of this book.


Wheat Germ Agglutinin Plant Lectin Jack Bean Legume Lectin Cyanogen Bromide Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal BBL, Goldstein IJ (1968) Protein-carbohydrate interaction. XV. The role of bivalent metal ions in concanavalin A-polysaccharide interaction. Can J Biochem 46:1147–1150.PubMedCrossRefGoogle Scholar
  2. Albersheim P, Anderson AJ (1971) Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA 68:1815–1819.PubMedCrossRefGoogle Scholar
  3. Albertini DF, Clark JI (1976) Membrane-microtubule interactions: concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins. Proc Natl Acad Sci USA 72:4976–4980.CrossRefGoogle Scholar
  4. Allen AK, Neuberger A, Sharon N (1973) The purification, composition, and specificity of wheat-germ agglutinin. Biochem J 131:155–162.PubMedGoogle Scholar
  5. Allen AK, Desai NN, Neuberger A (1976) The purification of the glycoprotein lectin from the broad bean (Vicia faba) and a comparison of its properties with lectins of similar specificity. Biochem J 155:127–135.PubMedGoogle Scholar
  6. Alter GM, Magnuson JA (1974) Characterization of concanavalin A sugar binding site by 19F nuclear magnetic resonance. Biochemistry 13:4038–4045.PubMedCrossRefGoogle Scholar
  7. Anderson RA, Lovrien RE (1981) Erythrocyte membrane sidedness in lectin control of the Ca2+ — A23187-mediated diskocyte⇄echinocyte conversion. Nature 292:158–161.PubMedCrossRefGoogle Scholar
  8. Andersson J, Edelman GM, Möller G, Sjöberg O (1972) Activation of B lymphocytes by locally concentrated concanavalin A. Eur J Immunol 2:233–235.PubMedCrossRefGoogle Scholar
  9. Ash JF, Singer SJ (1976) Concanavalin A-induced transmembrane linkage of concanavalin A surface receptors to intracellular myosin-containing filaments. Proc Natl Acad Sci USA 73:4575–4579.PubMedCrossRefGoogle Scholar
  10. Aubin JE, Carlsen SA, Ling V (1975) Colchicine permeation is required for inhibition of concanavalin A capping in Chinese hamster ovary cells. Proc Natl Acad Sci USA 72:4516–4520.PubMedCrossRefGoogle Scholar
  11. Ballmer K, Burger MM (1980) Modulation of EGF binding and action by succinylated concanavalin A in fibroblast cell cultures. J Supramol Struct 14:209–214.PubMedCrossRefGoogle Scholar
  12. Barnett RE, Scott RE, Furcht LT, Kersey JH (1974) Evidence that mitogenic lectins induce changes in lymphocyte membrane fluidity. Nature 249:465–466.PubMedCrossRefGoogle Scholar
  13. Barondes S, Haywood P (1979) Comparison of developmentally regulated lectins from three species of cellular slime molds. Biochim Biophys Acta 550:297–308.CrossRefGoogle Scholar
  14. Baumann C, Rüdiger H, Strosberg AD (1979) A comparison of the two lectins from Vicia cracca. FEBS Lett 102:216–218.PubMedCrossRefGoogle Scholar
  15. Baumann CM, Strosberg AD, Rüdiger H (1982) Purification and characterization of a mannose/ glucose-specific lectin from Vicia cracca. Eur J Biochem 122:105–110.PubMedCrossRefGoogle Scholar
  16. Becker JW, Reeke GN, Wang JL, Cunningham BA, Edelman GM (1975) The covalent and three-dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides. J Biol Chem 250:1513–1524.PubMedGoogle Scholar
  17. Becker JW, Reeke GN, Cunningham BA, Edelman GM (1976) New evidence on the location of the saccharide binding site of concanavalin A. Nature 259:406–409.PubMedCrossRefGoogle Scholar
  18. Becker JW, Cunningham BA, Hemperly JJ (1983) Structural subclasses of lectins from leguminous plants. In: Etzler ME, Goldstein IJ (eds) Chemical taxonomy, molecular biology and function of plant lectins. Liss, New York, pp 31–45.Google Scholar
  19. Beckert WH, Sharkey MM (1970) Mitogenic activity of the jack bean (Canavalia ensiformis) with rabbit peripheral blood lymphocytes. Int Arch Allergy Appl Immunol 39:337–341.PubMedCrossRefGoogle Scholar
  20. Bhavanandan VP, Katlic AW (1979) The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem 254:4000–4008.PubMedGoogle Scholar
  21. Bird G (1959) Hemagglutinins in seeds. Br Med Bull 15:165–168.PubMedGoogle Scholar
  22. Bittiger H, Schnebli HP (eds) (1976) Concanavalin A as a tool. Wiley, London.Google Scholar
  23. Bowles DJ, Marcus SE, Pappin DJC, Findlay JBC, Eliopoulos E, Maycox PR, Burgess J (1986) Posttranslational processing of concanavalin A precursors in jackbean cotyledons. J Cell Biol 102:1284–1297.PubMedCrossRefGoogle Scholar
  24. Boyd WC (1954) The proteins of the immune system. In: Neurath H, Bailey K (eds) The proteins, vol 2, part B. Academic, New York.Google Scholar
  25. Boyd WC (1963) The lectins: their present status. Vox Sang 8:1–32.PubMedCrossRefGoogle Scholar
  26. Brewer CF, Sternlicht H, Marcus DM, Grollman AP (1973) Binding of 13C-enriched α-methyl-D-glucopyranoside to concanavalin A as studied by carbon magnetic resonance. Proc Natl Acad Sci USA 70:1007–1011.PubMedCrossRefGoogle Scholar
  27. Brewer CF, Brown RD, Koenig SH (1983) Metal ion binding and conformational transitions in concanavalin A: a structure-function study. J Biomol Struct Dynam 1:961–997.CrossRefGoogle Scholar
  28. Brown J, Hunt R (1978) Lectins. Int Rev Cytol 52:277–349.PubMedCrossRefGoogle Scholar
  29. Brown RD, Brewer CF, Koenig SH (1977) Conformation states of concanavalin A: kinetics of transitions induced by interaction with Mn2+ and Ca2+ ions. Biochemistry 16:3883–3896.PubMedCrossRefGoogle Scholar
  30. Carrington DM, Auffret A, Hanke DE (1985) Polypeptide ligation occurs during post-translational modification of concanavalin A. Nature 313:64–67.PubMedCrossRefGoogle Scholar
  31. Carver JP, Mackenzie AE, Hardman KD (1985) Molecular model for the complex between concanavalin A and a biantennary-complex class glycopeptide. Biopolymers 24:49–63.CrossRefGoogle Scholar
  32. Cuatrecasas P (1973 a) Interaction of concanavalin A and wheat germ agglutinin with the insulin receptor of fat cells and liver. J Biol Chem 248:3528–3534.PubMedGoogle Scholar
  33. Cuatrecasas P (1973 b) Interaction of wheat germ agglutinin and concanavalin A with isolated fat cells. Biochemistry 12:1312–1323.PubMedCrossRefGoogle Scholar
  34. Cuatrecasas P, Tell GPE (1973) Insulin-like activity of concanavalin A and wheat germ agglutinin — direct interactions with insulin receptors. Proc Natl Acad Sci USA 70:485–489.PubMedCrossRefGoogle Scholar
  35. Cunningham BA, Wang JL, Waxdal MJ, Edelman GM (1975) The covalent and three-dimensional structure of concanavalin A. II. Amino acid sequence of cyanogen bromide fragment F3. J Biol Chem 250:1503–1512.PubMedGoogle Scholar
  36. dePetris S, Raff MC, Mallucci L (1973) Ligand-induced redistribution of concanavalin A receptors on normal, trypsinized, and transformed fibroblasts. Nature [New Biol] 244:276–278.CrossRefGoogle Scholar
  37. Drenth J, Low BW, Richardson JS, Wright CS (1980) The toxin-agglutinin fold. A new group of small protein structures organized around a four-disulfide core. J Biol Chem 255:2652–2655.PubMedGoogle Scholar
  38. Edelman GM (1976) Surface modulation in cell recognition and cell growth. Science 192:218–226.PubMedCrossRefGoogle Scholar
  39. Edelman GM, Cunningham BA, Reeke GN, Becker JW, Waxdal MJ, Wang JL (1972) The covalent and three-dimensional structure of concanavalin A. Proc Natl Acad Sci USA 69:2580–2584.PubMedCrossRefGoogle Scholar
  40. Edelman GM, Yahara I, Wang JL (1973) Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci USA 70:1442–1446.PubMedCrossRefGoogle Scholar
  41. Einspahr H, Parks EH, Suguna K, Subramanian E, Suddath FL (1986) The crystal structure of pea lectin at 3.0 Å resolution. J Biol Chem 261:16518–16527.PubMedGoogle Scholar
  42. Ensgraber A (1958) Die Phytohämagglutinine und ihre Funktion in der Pflanze als Kohlenhydrat-Transportsubstanzen. Ber Dtsch Bot Ges 71:349–361.Google Scholar
  43. Etzler ME, Talbot CF, Ziaya PR (1977) NH2-terminal sequences of the subunits of Dolichos biflorus lectin. FEBS Lett 82:39–41.PubMedCrossRefGoogle Scholar
  44. Feldman EL, Heacock AM, Agranoff BW (1982) Lectin binding to neuntes of goldfish retinal explants. Brain Res 248:347–354.PubMedCrossRefGoogle Scholar
  45. Foriers A, Wuilmart C, Sharon N, Strosberg AD (1977) Extensive sequence homologies among lectins from leguminous plants. Biochem Biophys Res Commun 75:980–986.PubMedCrossRefGoogle Scholar
  46. Foriers A, de Neve R, Kanarek L, Strosberg AD (1978) Common ancestor for concanavalin A and lentil lectin? Proc Natl Acad Sci USA 75:1136–1139.PubMedCrossRefGoogle Scholar
  47. Foriers A, Lebrun E, Van Rapenbusch R, de Neve R, Strosberg AD (1981) The structure of the lentil (Lens culinaris) lectin. Amino acid sequence determination and prediction of the secondary structure. J Biol Chem 256:5550–5560.PubMedGoogle Scholar
  48. Ganguly P, Fossett NG (1979) Role of surface sialic acid in the interaction of wheat germ agglutinin with human platelets. Biochem Biophys Res Commun 89:1154–1160.PubMedCrossRefGoogle Scholar
  49. Gebauer G, Schütz E, Rüdiger H (1981) The amino-acid sequence of the α subunit of the mitogenic lectin from Vicia saliva. Eur J Biochem 113:319–325.PubMedCrossRefGoogle Scholar
  50. Glew RH, Kayman SC, Kuhlenschmidt MS (1973) Studies on the binding of concanavalin A to rat liver mitochondria. J Biol Chem 248:3137–3145.PubMedGoogle Scholar
  51. Goldstein I, Hayes J (1978) The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–340.PubMedCrossRefGoogle Scholar
  52. Goldstein IJ, Hollerman CE, Merrick JM (1965a) Protein-carbohydrate interaction. I. The interaction of polysaccharides with concanavalin A. Biochim Biophys Acta 97:68–76.PubMedCrossRefGoogle Scholar
  53. Goldstein IJ, Hollerman CE, Smith EE (1965 b) Protein-carbohydrate interaction. II. Inhibition studies on the interaction of concanavalin A with polysaccharides. Biochemistry 4:876–883.PubMedCrossRefGoogle Scholar
  54. Goldstein IJ, Reichert CM, Misaki A (1974) Interaction of concanavalin A with model substrates. Ann NY Acad Sci 234:283–295.PubMedCrossRefGoogle Scholar
  55. Günther GR, Wang JL, Yahara I, Cunningham BA, Edelman GM (1973) Concanavalin A derivatives with altered biological activities. Proc Natl Acad Sci USA 70:1012–1016.PubMedCrossRefGoogle Scholar
  56. Hadden JW, Hadden EM, Haddox MK, Goldberg ND (1972) Guanosine 3′:5′-cyclic monophosphate: a possible intracellular mediator of mitogenic influences in lymphocytes. Proc Natl Acad Sci USA 69:3024–3027.PubMedCrossRefGoogle Scholar
  57. Hamblin J, Kent SP (1973) Possible role of phytohemagglutinin in Phaseolus vulgaris L. Nature [New Biol] 245:28–30.CrossRefGoogle Scholar
  58. Hardman KD (1973) Crystallography of a metal-containing protein, concanavalin A. Adv Exp Med Biol 40:103–123.PubMedCrossRefGoogle Scholar
  59. Hardman KD, Ainsworth CF (1972) Structure of concanavalin A at 2.4 Å resolution. Biochemistry 11:4910–4919.PubMedCrossRefGoogle Scholar
  60. Hardman KD, Ainsworth CF (1973) Binding of nonpolar molecules by crystalline concanavalin A. Biochemistry 12:4442–4448.PubMedCrossRefGoogle Scholar
  61. Hardman KD, Ainsworth CF (1976) Structure of the concanavalin A-methyl-α-D-mannopyranoside complex at 6-Å resolution. Biochemistry 15:1120–1128.PubMedCrossRefGoogle Scholar
  62. Hardman KD, Agarwal RC, Freiser MJ (1982) Manganese and calcium binding sites of concanavalin A. J Mol Biol 157:69–86.PubMedCrossRefGoogle Scholar
  63. Hehre EJ (1960) Contribution of classical immunology to the development of knowledge of dextran structures. Bull Soc Chim Biol 42:1581–1590.PubMedGoogle Scholar
  64. Hemperly JJ, Mostov KE, Cunningham BA (1982) In vitro translation and processing of a precursor form of favin, a lectin from Vicia faba. J Biol Chem 257:7903–7909.PubMedGoogle Scholar
  65. Higgins TJV, Chandler PM, Zurawski G, Button SC, Spencer D (1983) The biosynthesis and primary structure of pea seed lectin. J Biol Chem 258:9544–9549.PubMedGoogle Scholar
  66. Hopp TP, Hemperly JJ, Cunningham BA (1982) Amino acid sequence and variant forms of favin, a lectin from Vicia faba. J Biol Chem 257:4473–4483.PubMedGoogle Scholar
  67. Howard GA, Schnebli HP (1977) Eukaryotic ribosomes possess a binding site for concanavalin A. Proc Natl Acad Sci USA 74:818–821.PubMedCrossRefGoogle Scholar
  68. Iyer RN, Goldstein IJ (1973) Quantitative studies on the interaction of concanavalin A, the carbohydrate binding protein of the jack bean, with model carbohydrate-protein conjugates. Immunochemistry 10:313–322.PubMedCrossRefGoogle Scholar
  69. Jack A, Weinzierl J, Kalb AJ (1971) An x-ray crystallographic study of demetallized concanavalin A. J Mol Biol 58:389–395.PubMedCrossRefGoogle Scholar
  70. Janzen DH, Juster HB, Liener IE (1976) Insecticidal action of the phytohemagglutinin in black beans on a brucid beetle. Science 192:795–796.PubMedCrossRefGoogle Scholar
  71. Kalb AJ, Levitzki A (1968) Metal-binding sites of concanavalin A and their role in the binding of α-methyl-D-glucopyranoside. Biochem J 109:669–672.PubMedGoogle Scholar
  72. Kauss H, Glaser C (1974) Carbohydrate-binding proteins from plant cell walls and their possible involvement in extension growth. FEBS Lett 45:304–307.PubMedCrossRefGoogle Scholar
  73. Kouchalakos RN, Bates OJ, Bradshaw RA, Hapner KD (1984) Lectin from sainfoin (Onobrychis viciifolia Scop.). Complete amino acid sequence. Biochemistry 23:1824–1830.PubMedCrossRefGoogle Scholar
  74. Kronis KA, Carver JP (1982) Specificity of isolectins of wheat-germ agglutinin for sialyloligosaccharides: a 360-MHz proton nuclear resonance binding study. Biochemistry 21:3050–3057.PubMedCrossRefGoogle Scholar
  75. Kubota J, Kanatani H (1975) Concanavalin A: its action in inducing oocyte maturation-inducing substance in starfish follicle cells. Science 187:654–655.PubMedCrossRefGoogle Scholar
  76. Leak LV, Sun DC (1984) Effect of concanavalin A on lymph node macrophages: stimulation of endocytic cysternae. J Ultrastruct Res 86:1–17.PubMedCrossRefGoogle Scholar
  77. Lebrun E, Rapenbusch RV, Foriers A, Hoebeke J (1983) Crystallization and preliminary x-ray diffraction studies of the mitogenic lentil (Lens culinaris) lectin. J Mol Biol 166:99–199.PubMedCrossRefGoogle Scholar
  78. Lee JKN, Pachtman EA, Frumin AM (1974) Structural configuration of sugars and their ability to inhibit fava bean hemagglutinin. Ann NY Acad Sci 234:161–168.PubMedCrossRefGoogle Scholar
  79. Lis H, Sharon M (1973) The biochemistry of plant lectins (phytohemagglutinins). Annu Rev Biochem 42:541–574.PubMedCrossRefGoogle Scholar
  80. Lis H, Sharon N (1977) Lectins: their chemistry and application to immunology. In: Sela M (ed) The antigens, vol 4. Academic, New York, pp 429–529.Google Scholar
  81. Lis H, Sharon N (1986) Lectins as molecules and as tools. Annu Rev Biochem 55:35–67.PubMedCrossRefGoogle Scholar
  82. Loontiens FG, Van Wauwe JP, DeGussem R, DeBruyne CK (1973) Binding of para-substituted phenyl glycosides to concanavalin A. Carbohydr Res 30:51–62.PubMedCrossRefGoogle Scholar
  83. Lutsik MD, Panasyuk EN, Lutsik AD (1981) Lektiny (in Russian). Lvov State University, Lvov.Google Scholar
  84. Mäkelä O (1957) Studies in hemagglutinins of Leguminosae seeds. Dissertation, University of Helsinki.Google Scholar
  85. March PE, Thornton ER (1983) Binding of concanavalin A to calf brain synaptic vesicles. Biochem Biophys Res Commun 110:804–810.PubMedCrossRefGoogle Scholar
  86. McClain D, Edelman GM (1976) Analysis of the stimulation-inhibition paradox exhibited by lymphocytes exposed to concanavalin A. J Exp Med 144:1494–1507.PubMedCrossRefGoogle Scholar
  87. McClain D, D’Eustachio P, Edelman GM (1977) The role of surface-modulating assemblies in growth control of normal and transformed fibroblasts. Proc Natl Acad Sci USA 74:666–670.PubMedCrossRefGoogle Scholar
  88. Mirelman D, Galun E, Sharon N, Lotan R (1975) Inhibition of fungal growth by wheat-germ agglutinin. Nature 256:414–416.PubMedCrossRefGoogle Scholar
  89. Montreuil J (1975) Recent data on structure of carbohydrate moiety of glycoproteins-metabolic and biological implications. Pure Appl Chem 42:431–477.CrossRefGoogle Scholar
  90. Neter E (1956) Bacterial hemagglutination and hemolysis. Bacteriol Rev 20:166–188.PubMedGoogle Scholar
  91. Nicolson GL (1974) The interactions of lectins with animal cell surfaces. Int Rev Cytol 39:89–190.PubMedCrossRefGoogle Scholar
  92. Pflumm MN, Wang JL, Edelman GM (1971) Conformational changes in concanavalin A. J Biol Chem 246:4369–4375.PubMedGoogle Scholar
  93. Reeke GN, Becker JW (1986) Three-dimensional structure of favin: saccharide binding and cyclic permutation in leguminous lectins. Science 234:1108–1111.PubMedCrossRefGoogle Scholar
  94. Reeke GN, Becker JW, Edelman GM (1975) The covalent and three-dimensional structure of concanavalin A. IV. Atomic coordinates, hydrogen bonding, and quaternary structure. J Biol Chem 250:1525–1547.PubMedGoogle Scholar
  95. Reeke GN, Becker JW, Edelman GM (1978) Changes in the three-dimensional structure of concanavalin A upon demetallization. Proc Natl Acad Sci USA 75:2286–2290.PubMedCrossRefGoogle Scholar
  96. Richardson M, Campos FDAP, Moreira RA, Ainouz IL, Begbie R, Watt WB, Pusztai A (1984). The complete amino acid sequence of the major α subunit of the lectin from the seeds of Dioclea grandiflora (Mart). Eur J Biochem 144:101–111.PubMedCrossRefGoogle Scholar
  97. Rini JM, Carver JP, Hardman KD (1986) Crystallization and preliminary x-ray diffraction studies of a pea lectin-methyl-3,6-di-O-(α-D-mannopyranosyl)-α-D-mannopyranoside complex. J Mol Biol 189:259–260.PubMedCrossRefGoogle Scholar
  98. Rizzo WB, Bustin M (1977) Lectins as probes of chromatin structure. J Biol Chem 252:7062–7067.PubMedGoogle Scholar
  99. Salunke DM, Swamy MJ, Khan MI, Mande SC, Surolia A, Vijayan M (1985) Arrangement of subunits in peanut lectin. Rotation function and chemical cross-linking studies. J Biol Chem 260:13576–13579.PubMedGoogle Scholar
  100. Santoro SA (1983) Differential effects of concanavalin A and succinyl concanavalin A on the macro-molecular events of platelet activation. Biochim Biophys Acta 757:101–110.PubMedCrossRefGoogle Scholar
  101. Schlessinger J, Koppel DE, Axelrod D, Jacobson K, Webb WW, Elson EL (1976) Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci USA 73:2409–2413.PubMedCrossRefGoogle Scholar
  102. Schlessinger J, Elson EL, Webb WW, Yahara I, Rutishauser U, Edelman GM (1977) Receptor diffusion on cell surfaces modulated by locally bound concanavalin A. Proc Natl Acad Sci USA 74:1110–1114.PubMedCrossRefGoogle Scholar
  103. Shaanan B, Shoham M, Yonath A, Lis H, Sharon N (1984) Crystallization and preliminary x-ray diffraction studies of soybean agglutinin. J Mol Biol 174:723–725.PubMedCrossRefGoogle Scholar
  104. Sharon N, Lis H (1972) Lectins: cell-agglutinating and sugar-specific proteins. Science 177:949–959.PubMedCrossRefGoogle Scholar
  105. Shoham M, Yonath A, Sussman JL, Moult J, Traub W, Kalb (Gilboa) AJ (1979) Crystal structure of demetallized concanavalin A: the metal-binding region. J Mol Biol 131:137–155.PubMedCrossRefGoogle Scholar
  106. Simpson DL, Thome DR, Loh HH (1978) Lectins: endogenous carbohydrate-binding proteins from vertebrate tissues. Functional role in recognition processes? Life Sci 22:727–748.PubMedCrossRefGoogle Scholar
  107. Sletten K, Kolberg J, Michaelson TE (1983) The amino acid sequence of the α-subunit of a mitogenic lectin from seeds of Lathyrus odoratus. FEBS Lett 156:253–256.CrossRefGoogle Scholar
  108. Smith CW, Goldman AS (1972) Effects of concanavalin A and pokeweed mitogen in vivo on mouse peritoneal macrophages. Exp Cell Res 73:394–398.PubMedCrossRefGoogle Scholar
  109. So LL, Goldstein IJ (1967) Protein-carbohydrate interaction. IX. Application of the quantitative hapten inhibition technique to polysaccharide-concanavalin A interaction. Some comments on the forces involved in concanavalin A—polysaccharide interaction. J Immunol 99:158–163.PubMedGoogle Scholar
  110. So LL, Goldstein IJ (1968) Protein-carbohydrate interaction. XIII. The interaction of concanavalin A with α-mannans from a variety of microorganisms. J Biol Chem 243:2003–2007.PubMedGoogle Scholar
  111. Stewart ML, Summers DF, Soeira R, Fields BN, Maizel JV (1973) Purification of oncornaviruses by agglutination with concanavalin A. Proc Natl Acad Sci USA 70:1308–1312.PubMedCrossRefGoogle Scholar
  112. Sumner JB (1919) The globulins of the jack bean, Canavalia ensiformis. J Biol Chem 37:137–142.Google Scholar
  113. Sumner JB, Howell SF (1936) The role of divalent metals in the reversible inactivation of jack bean hemagglutinin. J Biol Chem 115:583–588.Google Scholar
  114. Tanaka I, Abe Y, Hamada T, Yonemitsu O, Ishii S (1981) Monovalent monomer derivative of concanavalin A produced by photochemically-induced alkylation. J Biochem (Tokyo) 89:1643–1646.Google Scholar
  115. Unanue ER, Perkins WD, Karnovsky MJ (1972) Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radiography. J Exp Med 136:885–906.PubMedCrossRefGoogle Scholar
  116. Villafranca JE, Robertus JD (1981) Ricin B chain is a product of gene duplication. J Biol Chem 256:554–556.PubMedGoogle Scholar
  117. Villafranca JJ, Viola RE (1974) The use of 13C spin lattice relaxation times to study the interaction of α-methyl-D-glucopyranoside with concanavalin A. Arch Biochem Biophys 160:465–468.PubMedCrossRefGoogle Scholar
  118. Wang JL, Edelman GM (1978) Binding and functional properties of concanavalin A and its derivatives. I. Monovalent, divalent, and tetravalent derivatives stable at physiological pH. J. Biol Chem 253:3000–3007.PubMedGoogle Scholar
  119. Wang JL, Becker JW, Reeke GN, Edelman GM (1974) Favin, a crystalline lectin from Vicia faba. J Mol Biol 88:259–262.PubMedCrossRefGoogle Scholar
  120. Wang JL, Cunningham BA, Waxdal MJ, Edelman GM (1975 a) The covalent and three-dimensional structure of concanavalin A. I. Amino acid sequence of cyanogen bromide fragments F1 and F2. J Biol Chem 250:1490–1502.PubMedGoogle Scholar
  121. Wang JL, McClain DA, Edelman GM (1975 b) Modulation of lymphocyte mitogenesis. Proc Natl Acad Sci USA 72:1917–1921.PubMedCrossRefGoogle Scholar
  122. Wei CH, Einstein JR (1974) Preliminary crystallographic data for a new crystalline form of abrin. J Biol Chem 249:2985–2986.PubMedGoogle Scholar
  123. Wright CS (1977) The crystal structure of wheat germ agglutinin at 2.2 Å resolution. J Mol Biol 111:439–457.PubMedCrossRefGoogle Scholar
  124. Wright CS (1980) Crystallographic elucidation of the saccharide-binding mode in wheat germ agglutinin and its biological significance. J Mol Biol 141:267–291.PubMedCrossRefGoogle Scholar
  125. Wright CS (1984) Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J Mol Biol 178:91–104.PubMedCrossRefGoogle Scholar
  126. Wright CS (1987) Refinement of the crystal structure of wheat germ agglutinin isolectin 2 at 1.8 Å resolution. J Mol Biol 195:501–529.CrossRefGoogle Scholar
  127. Wright CS, Olafsdottir S (1986) Structural differences in the two major wheat germ agglutinin isolectins. J Biol Chem 261:7191–7195.PubMedGoogle Scholar
  128. Wright CS, Gavilanes F, Peterson DL (1984) Primary structure of wheat germ agglutinin isolectin 2. Peptide order deduced from x-ray structure. Biochemistry 23:280–287.PubMedCrossRefGoogle Scholar
  129. Wright HT, Brooks DM, Wright CS (1985) Evolution of the multidomain protein wheat germ agglutinin. J Mol Evol 21:133–138.CrossRefGoogle Scholar
  130. Yahara I, Edelman GM (1972) Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci USA 69:608–612.PubMedCrossRefGoogle Scholar
  131. Yahara I, Edelman GM (1973) The effects of concanavalin A on the mobility of lymphocyte surface receptors. Exp Cell Res 81:143–155.PubMedCrossRefGoogle Scholar
  132. Yariv J, Kalb AJ, Levitzki A (1968) The interaction of Con A with methyl-α-D-glucopyranoside. Biochem Biophys Acta 165:303–305.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1988

Authors and Affiliations

  • G. N. ReekeJr.
    • 1
  • J. W. Becker
    • 1
  1. 1.Rockefeller UniversityNew YorkUSA

Personalised recommendations