Skip to main content

The Transport of Amines Across the Axonal Membranes of Noradrenergic and Dopaminergic Neurones

  • Chapter
Catecholamines I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 90 / 1))

Abstract

In contrast to acetylcholine, which is removed at cholinergic junctions by enzymic degradation, the transmitter noradrenaline is primarily inactivated by membrane transport. Two membrane transport processes are capable of removing noradrenaline and other catecholamines from the extracellular fluid: neuronal and extraneuronal uptake. While the mechanisms related to the latter will be dealt with elsewhere in this volume by Trendelenburg (see Chap. 6), the present chapter is intended to cover mechanisms related to the neuronal fate of catecholamines. It will concentrate on recent results and consider aspects that have not been extensively treated in earlier reviews and books (e.g. Iversen 1967, 1975; von Euler 1972; Hertting and Suko 1972; Paton 1976a). The main emphasis is given to the amine carrier system associated with the axonal membrane of noradrenergic neurones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axelrod J, Whitby LG, Hertting G (1961) Effect of psychotropic drugs on the uptake of 3H-noropinephrine by tissues. Science 133: 383–384

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ, York C (1970) Effects of lithium and pH on synaptosomal metabolism of noradrenaline. Nature (London) 228: 1301–1303

    CAS  Google Scholar 

  • Berger P, Janowsky A, Vocci V, Skolnick P, Schweri MM, Paul SM (1985) (3H)GBR12935: A specific high affinity ligand for labeling the dopamine transport complex. Eur J Pharmacol 107: 289–290

    Google Scholar 

  • Berti F, Shore PA (1967) A kinetic analysis of drugs that inhibit the adrenergic neuronal membrane amine pump. Biochem Pharmacol 16: 2091–2094

    PubMed  CAS  Google Scholar 

  • Blaschko H (1972) Introduction. Catecholamines 1922–1971. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York, pp 1–15 (Handbook of Experimental Pharmacology, vol 33 )

    Google Scholar 

  • Blaustein MP, Goldring JM (1975) Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials. J Physiol (London) 247: 589–615

    CAS  Google Scholar 

  • Bönisch H (1980) The rate constants for the efflux of deaminated metabolites of 3H-dopamine from the perfused rat heart. Naunyn-Schmiedeberg’s Arch Pharmacol 314: 231–235

    PubMed  Google Scholar 

  • Bönisch H (1982) Mechanismus der Freisetzung von Noradrenalin durch indirekt wir-kende Sympathomimetika. Habilitationsschrift, Universität WĂĽrzburg.

    Google Scholar 

  • Bönisch H (1984) The transport of (+)amphetamine by the neuronal noradrenaline carrier. Naunyn-Schmiedeberg’s Arch Pharmacol 327: 267–272

    PubMed  Google Scholar 

  • Bönisch H, Graefe K-H (1976) Distribution kinetics of 3H-(—)-noradrenaline (NA) and 3H-(±)-metaraminol ( MA) in the perfused rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 293, R4

    Google Scholar 

  • Bönisch H, Harder R (1986) Binding of 3H-desipramine to the neuronal noradrenaline carrier of rat phaeochromocytoma cells (PC-12 cells). Naunyn-Schmiedeberg’s Arch Pharmacol 334: 403–411

    PubMed  Google Scholar 

  • Bönisch H, Langeloh A (1986) Neuronal efflux of noradrenaline induced by Tris or lithium as substitutes for extracellular sodium. Naunyn-Schmiedeberg’s Arch Pharmacol 333: 13–16

    PubMed  Google Scholar 

  • Bönisch H, Rodrigues-Pereira E (1983) Uptake of 14C-tyramine and release of extravesicular 3H-noradrenaline in isolated perfused rabbit hearts. Naunyn-Schmiedeberg’s Arch. Pharmacol 323: 233–244

    Google Scholar 

  • Bönisch H, Graefe K-H, Keller B (1983) Tetrodotoxin-sensitive and -resistant effects of veratridine on the noradrenergic neurone of the rat vas deferens. NaunynSchmiedeberg’s Arch Pharmacol 324: 264–270

    PubMed  Google Scholar 

  • Bönisch H, Friedrich U, Fritsch H, Harder R (1984) Transport of noradrenaline across the cell membrane of isolated neuronal cells with special reference to PC-12 cells.In: Fleming WW, Graefe K-H, Langer SZ, Weiner N (eds) Neuronal and Extra-neuronal Events in Autonomic Pharmacology. Raven Press, New York, pp 63–74

    Google Scholar 

  • Bönisch H, Fuchs G, Graefe K-H (1986) Sodium-dependence of the saturability of carrier-mediated noradrenaline efflux from noradrenergic neurones in the rat vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 332: 131–134

    PubMed  Google Scholar 

  • Bogdanski DF, Brodie BB (1966) Role of sodium and potassium ions in storage of nor-epinephrine by synaptic nerve endings. Life Sci 5: 1563–1569

    PubMed  CAS  Google Scholar 

  • Bogdanski DF, Brodie BB (1969) The effects of inorganic ions on the storage and uptake of 3H-norepinephrine by rat heart slices. J Pharmacol Exp Ther 165: 181–189

    PubMed  CAS  Google Scholar 

  • Bogdanski DF, Tissari AH, Brodie BB (1968) Role of sodium, potassium, ouabain, and reserpine in uptake, storage and metabolism of biogenic amines in synaptosomes. Life Sci 7: 419–428

    PubMed  CAS  Google Scholar 

  • Bogdanski DF, Blaszkowski TP, Tissari AH (1970a) Mechanisms of biogenic amine transport and storage. IV. Relationship between K+ and the Na+ requirement for transport and storage of 5-hydroxytryptamine and norepinephrine in synaptosomes. Biochim Biophys Acta 211: 521–532

    PubMed  CAS  Google Scholar 

  • Bogdanski DF, Tissari AH, Brodie BB (1970b) Mechanism of transport and storage of biogenic amines. III. Effects of sodium and potassium on kinetics of 5-hydroxytryptamine and norepinephrine transport by rabbit synaptosomes. Biochim Biophys Acta 219: 189–199

    PubMed  CAS  Google Scholar 

  • Bonnet J-J, Protais P, Chagraoui A, Costentin J (1986) High-affinity 3H-GBR 12783 binding to a specific site associated with the neuronal dopamine uptake complex in the central nervous system. Europ J Pharmacol 126: 211–222

    CAS  Google Scholar 

  • Branco D, Teixeira AA, Azevedo J, Osswald W (1984) Structural and functional alterations caused at the extraneuronal level by sympathetic denervation of blood vessels. Naunyn-Schmiedeberg’s Arch Pharmacol 326: 302–312

    PubMed  CAS  Google Scholar 

  • Burgen ASV, Iversen LL (1965) The inhibition of noradrenaline uptake by sympa-thomimetic amines in the rat isolated heart. Br J Pharmacol 25: 34–49

    CAS  Google Scholar 

  • Callingham BA, Burgen ASV (1966) The uptake of isoprenaline and noradrenaline by the perfused rat heart. Mol Pharmacol 2: 37–42

    PubMed  CAS  Google Scholar 

  • Carlsson A, Waldeck B (1968) Different mechanism of drug-induced release of nor-adrenaline and its congeners a-methylnoradrenaline and metaraminol. Europ J Pharmacol 3: 165–168

    Google Scholar 

  • Carlsson A, Lundborg P, Stitzel R, Waldeck B (1967) Uptake, storage and release of 3H-a-methylnorepinephrine. J Pharmacol Exp Ther 158: 175–182

    PubMed  CAS  Google Scholar 

  • Cho AK, Ransom RW, Fischer JB, Kammerer RC (1980) The effects of xylamine, a nitrogen mustard, on (3H)-norepinephrine accumulation in rabbit aorta. J Pharmacol Exp Ther 214: 324–327

    PubMed  CAS  Google Scholar 

  • Colburn RW, Goodwin FK, Murphy DL, Bunney WE, Davis JM (1968) Quantitative studies of norepinephrine uptake by synaptosomes. Biochem Pharmacol 17: 957–964

    PubMed  CAS  Google Scholar 

  • Coyle JT, Snyder SH (1969) Catecholamine uptake by synaptosomes in homogenates of rat brain: stereoselectivity in different areas. J Pharmacol Exp Ther 170: 221–231

    PubMed  CAS  Google Scholar 

  • Crane RK (1965) Nat-dependent transport in the intestine and other animal tissues. Fed Proc 24: 1000–1006

    PubMed  CAS  Google Scholar 

  • Cubeddu LX, Hoffmann IS, Ferrari GB (1979a) Metabolism and efflux of 3H-dopamine in rat striatum: presynaptic origin of 3,4–3H-dihydroxyphenylacetic acid. J Pharmacol Exp Ther 209: 165–175

    PubMed  CAS  Google Scholar 

  • Cubeddu LX, Hoffmann IS, Paris VB (1979b) Effects of papaverine on the release and metabolism of dopamine in rat striatum. J Pharmacol Exp Ther 209: 73–78

    PubMed  CAS  Google Scholar 

  • Dengler HJ, Michaelson IA, Spiegel HE, Titus EO (1962) The uptake of labeled nor-epinephrine by isolated brain and other tissues of the cat. Int J Neuropharmacol 1: 23–28

    CAS  Google Scholar 

  • Draskoczy PR, Trendelenburg U (1968) The uptake of 1- and d-norepinephrine by the isolated perfused rabbit heart in relation to the stereoselectivity of the sensitizing action of cocaine. J Pharmacol Exp Ther 159: 66–73

    PubMed  CAS  Google Scholar 

  • Enna SJ, Shore PA (1974) On the nature of the adrenergic neuron extragranular amine binding site. J Neural Transmission 35: 125–135

    CAS  Google Scholar 

  • Euler US von (1972) Synthesis, uptake and storage of catecholamines in adrenergic nerves, the effect of drugs. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York, pp 186–230 (Handbook of Experimental Pharmacology, vol 33 )

    Google Scholar 

  • Farah MB, Adler-Graschinsky E, Langer SZ (1977) Possible physiological significance of the initial step in the catabolism of noradrenaline in the central nervous system of the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 297: 119–131

    PubMed  CAS  Google Scholar 

  • Farnebo LO (1971) Effects of reserpine on release of 3H-noradrenaline, 3H-dopamine, and 3H-metaraminol from field stimulated rat iris. Biochem Pharmacol 20: 2715–2726

    PubMed  CAS  Google Scholar 

  • Ferris RM, Stocks BD (1972) Kinetic analysis of 3H-dl-norepinephrine and 3H-dopamine uptake into homogenates of rat striatum and hypothalamus and purified synaptosomes of rat whole brain. Abstracts, 5th Intern. Congress on Pharmacol, San Francisco, p 68

    Google Scholar 

  • Ferris RM, Tang FLM, Maxwell RA (1972) A comparison of the capacities of isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit the uptake of tritiated catecholamines into rat cerebral cortex slices, synaptosomal preparations of rat cerebral cortex, hypothalamus and striatum and into adrenergic nerves of rabbit aorta. J Pharmacol Exp Ther 181: 407–416

    PubMed  CAS  Google Scholar 

  • Fiebig ER, Trendelenburg U (1978) The neuronal and extraneuronal uptake and metabolism of 3H-(—)-noradrenaline in the perfused rat heart. Naunyn-Schmiedeberg’s Arch Pharmacol 303: 21–35

    PubMed  CAS  Google Scholar 

  • Fischer JF, Cho AK (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther 208: 203–209

    PubMed  CAS  Google Scholar 

  • Fischer J, Waggaman LA, Ransom RW, Cho AK (1983) Xylamine, an irreversible inhibitor of norepinephrine uptake, is transported by this same uptake mechanism in cultured rat superior cervical ganglia. J Pharmacol Exp Ther 226: 650–655

    PubMed  CAS  Google Scholar 

  • Friedrich U, Bönisch H (1986) The neuronal noradrenaline transport system of PC-12 cells: kinetic analysis of the interaction between noradrenaline, Na+ and Cl-in transport. Naunyn-Schmiedeberg’s Arch Pharmacol 333: 246–252

    Google Scholar 

  • Garcia AG, Kirpekar SM (1973) Release of noradrenaline from the cat spleen by sodium deprivation. Br J Pharmacol 47: 729–747

    PubMed  CAS  Google Scholar 

  • Giachetti A, Hollenbeck RA (1976) Extra-vesicular binding of noradrenaline and guanethidine in the adrenergic neurones of the rat heart: a proposed site of action of adrenergic neurone blocking agents. Br J Pharmacol 58: 497–504

    PubMed  CAS  Google Scholar 

  • Giachetti A, Shore PA (1966) Studies in vitro of amine uptake mechanisms in heart. Biochem Pharmacol 15: 607–614

    PubMed  CAS  Google Scholar 

  • Gillespie JS, Kirpekar SM (1965) The inactivation of infused noradrenaline by the cat spleen. J Physiol (London) 176: 205–227

    CAS  Google Scholar 

  • Gillis CN, Paton DM (1966) Effects of hypothermia and anoxia on retention of nor-adrenaline by the cat perfused heart. Br J Pharmacol 26: 426–434

    CAS  Google Scholar 

  • Gillis CN, Paton DM (1967) Cation dependence of sympathetic transmitter retention by slices of rat ventricles. Br J Pharmacol 29: 309–318

    CAS  Google Scholar 

  • Golko DS, Paton DM (1976) Characteristics of accumulation of ephedrine in rabbit atria. Can J Physiol Pharmacol 54: 93–100

    PubMed  CAS  Google Scholar 

  • Graefe K-H (1976) Methodology of catecholamine transport studies: definitions of terms. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven Press, New York, pp 7–35

    Google Scholar 

  • Graefe K-H (1981) The disposition of 3H-(—)-noradrenaline in the perfused cat and rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 318: 71–82

    PubMed  CAS  Google Scholar 

  • Graefe K-H, Bönisch H (1978) The influence of the rate of perfusion on the kinetics of neuronal uptake in the rabbit isolated heart. Naunyn-Schmiedeberg’s Arch Pharmacol 302: 275–283

    PubMed  CAS  Google Scholar 

  • Graefe K-H, Fuchs G (1979) On the mechanism of neuronal efflux of axoplasmic 3H(—)-noradrenaline. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines• basic and clinical frontiers, vol 1. Pergamon Press, New York Oxford Toronto Sydney Frankfurt Paris, pp 268–270

    Google Scholar 

  • Graefe K-H, Henseling M (1983) Neuronal and extraneuronal uptake and metabolism of catecholamines. Gen Pharmacol 14: 27–33

    PubMed  CAS  Google Scholar 

  • Graefe K-H, Bönisch H, Trendelenburg U (1971) Time-dependent changes in neuronal net uptake of noradrenaline after pretreatment with pargyline and/or reserpine. Naunyn-Schmiedeberg’s Arch Pharmacol 271: 1–28

    PubMed  CAS  Google Scholar 

  • Graefe K-H, Stefano FJE, Langer SZ (1973) Preferential metabolism of 3H-(—)-norepinephrine through the deaminated glycol in the rat vas deferens. Biochem Pharmacol 22: 1147–1160

    CAS  Google Scholar 

  • Graefe K-H, Stefano FJE, Langer SZ (1977) Stereoselectivity in the metabolism of 3Hnoradrenaline during uptake into and efflux from the isolated rat vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 299: 225–238

    PubMed  CAS  Google Scholar 

  • Graefe K-H, Bönisch H, Keller B (1978) Saturation kinetics of the adrenergic neurone uptake system in the perfused rabbit heart. A new method for determination of initial rates of amine uptake. Naunyn-Schmiedeberg’s Arch Pharmacol 302: 263–273

    Google Scholar 

  • Graefe K-H, Zeitner C-J, Fuchs G, Keller B (1984) Role played by sodium in the membrane transport of 3H-noradrenaline across the axonal membrane of noradrenergic neurones. In: Fleming WW, Graefe K-H, Langer SZ, Weiner N (eds) Neuronal and Extraneuronal Events in Autonomic Pharmacology. Raven Press, New York, pp 51–62

    Google Scholar 

  • Green AL (1976) The kinetics of enzyme action and inhibition in intact tissues and tissue slices, with special reference to cholinesterase. J Pharm Pharmacol 28: 265–274

    PubMed  CAS  Google Scholar 

  • Green RD, Miller JW (1966) Evidence for the active transport of epinephrine and nor-epinephrine by the uterus of the rat. J Pharmacol Exp Ther 152: 42–50

    PubMed  CAS  Google Scholar 

  • Greene LA, Tischler AS (1982) PC-12 pheochromocytoma cultures in neurobiological research. Adv Cell Neurobiol 3: 373–414

    CAS  Google Scholar 

  • Hamberger B (1967) Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. Acta physiol scand 71, Suppl 295: 1–56

    CAS  Google Scholar 

  • Hamberger B, Malmfors T, Norberg K-A, Sachs C (1964) Uptake and accumulation of catecholamines in peripheral adrenergic neurons of reserpinized animals, studied with a histochemical method. Biochem Pharmacol 13: 841–844

    PubMed  CAS  Google Scholar 

  • Harder R, Bönisch H (1984) Large-scale preparation of plasma membrane vesicles from PC-12 pheochromocytoma cells and their use in noradrenaline transport studies. Biochim Biophys Acta 775: 95–104

    PubMed  CAS  Google Scholar 

  • Harder R, Bönisch H (1985) Effects of monovalent ions on the transport of noradrenaline across the plasma membrane of neuronal cells (PC-12 cells). J Neurochem 45: 1154–1162

    PubMed  CAS  Google Scholar 

  • Harris JE, Baldessarini RJ (1973) The uptake of 3H-dopamine by homogenates of rat corpus striatum: effects of cations. Life Sci 13: 303–312

    PubMed  CAS  Google Scholar 

  • Hellmann G, Hertting G, Peskar B (1971) Uptake kinetics and metabolism of 7–3H-dopamine in the isolated perfused rat heart. Br J Pharmacol 41: 256–269

    PubMed  CAS  Google Scholar 

  • Hendley ED (1976) The mechanism of extraneuronal transport of catecholamines in the central nervous system. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines Raven Press, New York, pp 313–324

    Google Scholar 

  • Hendley ED, Taylor KM, Snyder SH (1970) 3H-Normetanephrine uptake in rat brain slices. Relationship to extraneuronal accumulation of norepinephrine. Europ J Pharmacol 12: 167–179

    Google Scholar 

  • Hendley ED, Snyder SH, Fauley JJ, La Pidus JB (1972) Stereoselectivity of catecholamine uptake by brain synaptosomes: studies with ephedrine, methylphenidate and phenyl-2-piperidyl carbinol. J Pharmacol Exp Ther 183: 103–116

    PubMed  CAS  Google Scholar 

  • Henseling M (1983) Kinetic constants for uptake and metabolism of 3H-(—)-noradrenaline in rabbit aorta. Naunyn-Schmiedeberg’s Arch Pharmacol 323: 12–23

    PubMed  CAS  Google Scholar 

  • Henseling M, Trendelenburg U (1978) Stereoselectivity of the accumulation and metabolism of noradrenaline in rabbit aortic strips. Naunyn-Schmiedeberg’s Arch Pharmacol 302: 195–206

    PubMed  CAS  Google Scholar 

  • Henseling M, Eckert E, Trendelenburg U (1976) The distribution of 3H-(±)-noradrenaline in rabbit aortic strips after inhibition of the noradrenaline-metabolizing enzymes. Naunyn-Schmiedeberg’s Arch Pharmacol 292: 205–217

    PubMed  CAS  Google Scholar 

  • Hermann W, Graefe K-H (1977) Relationship between the uptake of 3H-(±)-metaraminol and the density of adrenergic innervation in isolated rat tissues. NaunynSchmiedeberg’s Arch Pharmacol 296: 99–110

    PubMed  CAS  Google Scholar 

  • Hertting G (1964) The fate of 3H-isoproterenol in the rat. Biochem Pharmacol 13: 1119–1128

    PubMed  CAS  Google Scholar 

  • Hertting G, Suko J (1972) Influence of neuronal and extraneuronal uptake on disposition, metabolism and potency of catecholamines. In: Snyder SH (ed) Perspectives in neuropharmacology. Oxford University Press, New York London Toronto, pp 267–300

    Google Scholar 

  • Holbach H-J, Löffelholz K (1975) Differences between noradrenaline release and enhancement of noradrenaline efflux evoked by DMPP in the rabbit heart. NaunynSchmiedeberg’s Arch Pharmacol 287: R6

    PubMed  Google Scholar 

  • Holmes JC, Rutledge CO (1976) Effects of the d-and 1-isomers of amphetamine on uptake, release and catabolism of norepinephrine, dopamine and 5-hydroxytryptamine in several regions of rat brain. Biochem Pharmacol 25: 447–451

    PubMed  CAS  Google Scholar 

  • Holz RW (1978) Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Proc Natl Acad Sci USA 75: 5190–5194

    PubMed  CAS  Google Scholar 

  • Holz RW, Coyle JT (1974) The effects of various salts, temperature, and the alkaloids veratridine and batrachotoxin on the uptake of 3H-dopamine into synaptosomes from rat striatum. Mol Pharmacol 10: 746–758

    CAS  Google Scholar 

  • Horn AS (1973) Structure-activity relations for the inhibition of catecholamine uptake into synaptosomes from noradrenergic and dopaminergic neurones in rat brain homogenates. Br J Pharmacol 47: 332–338

    PubMed  CAS  Google Scholar 

  • Horn AS, Snyder SH (1972) Steric requirements for catecholamine uptake by rat brain synaptosomes: studies with rigid analogues of amphetamine. J Pharmacol Exp Ther 180: 523–530

    PubMed  CAS  Google Scholar 

  • Horn AS, Coyle JT, Snyder SH (1971) Catecholamine uptake by synaptosomes from rat brain: structure-activity relationships of drugs with differential effects on dopamine and norepinephrine neurons. Mol Pharmacol 7: 66–80

    PubMed  CAS  Google Scholar 

  • Horst WD, Kopin IJ, Ramey ER (1968) Influence of sodium and calcium on norepi- nephrine uptake by isolated perfused rat hearts. Am J Physiol 215: 817–822

    PubMed  CAS  Google Scholar 

  • Hrdina PD (1981) Pharmacological characterization of 3H-desipramine binding in rat cerebral cortex. Prog Neuro-Psychopharmacol 5: 553–557

    CAS  Google Scholar 

  • Hunt P, Raynaud J-P, Leven M, Schacht U (1979) Dopamine uptake inhibitors and releasing agents differentiated by the use of synaptosomes and field-stimulated brain slices in vitro. Biochem Pharmacol 28: 2011–2016

    PubMed  CAS  Google Scholar 

  • Iversen LL (1963) The uptake of noradrenaline by the isolated perfused rat heart. Br J Pharmacol 21: 523–537

    CAS  Google Scholar 

  • Iversen LL (1965) The uptake of adrenaline by the rat isolated heart. Br J Pharmacol 24: 387–394

    CAS  Google Scholar 

  • Iversen LL (1966) Accumulation of a-methyltyramine by the noradrenaline uptake process in the isolated rat heart. J Pharm Pharmacol 18: 481–484

    PubMed  CAS  Google Scholar 

  • Iversen LL (1967) The uptake and storage of noradrenaline in sympathetic nerves. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Iversen LL (1975) Uptake mechanisms for biogenic amines. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of Psychopharmacology, vol 3. Plenum Press, New York London, pp 381–442

    Google Scholar 

  • Iversen LL, Kravitz EA (1966) Sodium dependence of transmitter uptake at adrenergic nerve terminals. Mol Pharmacol 2: 360–362

    PubMed  CAS  Google Scholar 

  • Iversen LL, Langer SZ (1969) Effects of phenoxybenzamine on the uptake and metabolism of noradrenaline in the rat heart and vas deferens. Br J Pharmacol 37: 627–637

    PubMed  CAS  Google Scholar 

  • Iversen LL, MacKay AVP (1979) Pharmacodynamics of antidepressants and antimanic drugs. In: Paykel ES, Coppen A (eds) Psychopharmacology of affective disorders. Oxford University Press, Oxford New York Toronto, pp 60–90

    Google Scholar 

  • Iversen LL, Schon FE (1973) The use of autoradiographic techniques for the identification and mapping of transmitter-specific neurones in CNS. In: Mandel AJ (ed) New concepts in neurotransmitter regulation. Plenum Press, London New York, pp 153–193

    Google Scholar 

  • Iversen LL, Glowinski J, Axelrod J (1965) The uptake and storage of norepinephrine in the reserpine-pretreated rat heart. J Pharmacol Exp Ther 150: 173–183

    PubMed  CAS  Google Scholar 

  • Iversen LL, Jarrott B, Simmonds MA (1971) Differences in the uptake, storage and metabolism of (+)- and (—)-noradrenaline. Br J Pharmacol 43: 845–855

    PubMed  CAS  Google Scholar 

  • Janowsky A, Berger P, Vocci F, Labarca R, Skolnick P, Paul SM (1986) Characterization of sodium-dependent 3H-GBR-12935 binding in brain: a radioligand for selective labelling of the dopamine transport complex. J Neurochem 46: 1272–1276

    PubMed  CAS  Google Scholar 

  • Jarrott B (1970) Uptake and metabolism of 3H-noradrenaline by the perfused hearts of various species. Br J Pharmacol 38: 810–821

    PubMed  CAS  Google Scholar 

  • Jarrott B, Iversen LL (1971) Noradrenaline metabolizing enzymes in normal and sympathetically denervated vas deferens. J Neurochem 18: 1–6

    PubMed  CAS  Google Scholar 

  • Jarrott B, Langer SZ (1971) Changes in monoamine oxidase and catechol-O-methyl transferase activities after denervation of the nictitating membrane of the cat. J Physiol (London) 212: 549–559

    CAS  Google Scholar 

  • Javitch JA, Snyder S (1985) Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. Europ J Pharmacol 106: 455–456

    Google Scholar 

  • Johnson RG, Scarpa A (1976) Internal pH of isolated chromaffin vesicles. J Biol Chem 251: 2189–2191

    PubMed  CAS  Google Scholar 

  • Johnson RG, Sally EC, Hayflick S, Scarpa A (1982) Mechanismus of accumulation of tyramine, metaraminol, and isoproterenol in isolated chromaffin granules and ghosts. Biochem Pharmacol 31: 815–823

    PubMed  CAS  Google Scholar 

  • Jonsson G, Hamberger B, Malmfors T, Sachs C (1969) Uptake and accumulation of 3H-noradrenaline in adrenergic nerves of rat iris. Effect of reserpine, monoamine oxidase and tyrosine hydroxylase inhibition. Europ J Pharmacol 8: 58–72

    Google Scholar 

  • Keller B, Graefe K-H (1979) The inhibitory effect of some monovalent cations on the stimulation by Na+ of the neuronal uptake of noradrenaline. Naunyn-Schmiedeberg’s Arch Pharmacol 309: 89–97

    PubMed  CAS  Google Scholar 

  • Kimelberg HK (1986) Occurrence and functional significance of serotonin and catecholamine uptake by astrocytes. Biochem Pharmacol 35: 2273–2281

    PubMed  CAS  Google Scholar 

  • Knoth J, Peabody JO, Huettl P, Njus D (1984) Kinetics of tyramine transport and permeation across chromaffin-vesicle membranes. Biochem 23: 2011–2016

    CAS  Google Scholar 

  • Koe BK (1976) Molecular geometry of inhibitors of the uptake of catecholamines and serotonin in synaptosomal preparations of rat brain. J Pharmacol Exp Ther 199: 649–661

    PubMed  CAS  Google Scholar 

  • Kopin IJ (1972) Metabolic degradation of catecholamines. The relative importance of different pathways under physiological conditions and after administration of drugs. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York Tokio, pp 270–282 (Handbook of Experimental Pharmacology, vol 33 )

    Google Scholar 

  • Kopin IJ, Hertting G, Gordon EK (1962) Fate of norepinephrine-3H in the isolated perfused rat heart. J Pharmacol Exp Ther 138: 34–40

    PubMed  CAS  Google Scholar 

  • Krell RD, Patil PN (1972) Steric aspects of adrenergic drugs. XX. Accumulation of (—)- and (+)-norepinephrine-14C by peripheral tissues of the rat. J Pharmacol Exp Ther 182: 273–283

    PubMed  CAS  Google Scholar 

  • Kuhar MJ (1973) Neurotransmitter uptake: a tool in identifying neurotransmitter-specific pathways. Life Sci 13: 1623–1634

    PubMed  CAS  Google Scholar 

  • Langeloh A, Bönisch H, Trendelenburg U (1987) The mechanism of the 3H-noradrenaline-releasing effect of various substrates of uptake,: multifactorial induction of outward transport. Naunyn-Schmiedeberg’s Arch Pharmacol 336: 602–610

    PubMed  CAS  Google Scholar 

  • Langer SZ (1974) Selective metabolic pathways for noradrenaline in the peripheral and in the central nervous system. Med Biol 52: 372–383

    PubMed  CAS  Google Scholar 

  • Langer SZ (1984) 3H-Imipramine and 3H-desipramine binding: non-specific displaceable sites or physiologically relevant sites associated with the uptake of serotonin and noradrenaline? Trends Pharmacol Sci 5:51–52

    Google Scholar 

  • Langer SZ, Briley M (1981) High-affinity 3H-imipramine binding: a new biological tool for studies in depression. Trends Neurosci 4: 28–31

    Google Scholar 

  • Langer SZ, Stefano FJE, Enero MA (1972) Pre-and postsynaptic origin of the norepinephrine metabolites formed during transmitter release elicited by nerve stimulation. J Pharmacol Exp Ther 183: 90–102

    PubMed  CAS  Google Scholar 

  • Langer SZ, Farah MB, Luchelli-Fortis MA, Adler-Graschinsky E, Filinger EJ (1975) Metabolism of endogenous noradrenaline. In: Tuomisto J, Paasonen MK (eds) Proc. of the 6th International Congress of Pharmacology, vol 2. Helsinki, pp 17–31

    Google Scholar 

  • Langer SZ, Raisman R, Briley M (1981) High-affinity 3H-DMI binding is associated with neuronal noradrenaline uptake in the periphery and the central nervous system. Europ J Pharmacol 72: 423–424

    CAS  Google Scholar 

  • Langer SZ, Tahraoui L, Raisman R, Arbilla S, Najar M, Dedek J (1984) 3H-Desipramine labels a site associated with the neuronal uptake of noradrenaline in the peripheral and central nervous system. In: Fleming WW, Graefe K-H, Langer SZ, Weiner N (eds) Neuronal and Extraneuronal Events in Autonomic Pharmacology. Raven Press, New York, pp 37–49

    Google Scholar 

  • Lee C-M, Snyder SH (1981) Norepinephrine neuronal uptake binding sites in rat brain membranes labeled with 3H-desipramine Proc Natl Acad Sci USA 78: 5250–5254

    CAS  Google Scholar 

  • Lee C-M, Javitch JA, Snyder SH (1982) Characterization of 3H-desipramine binding associated with neuronal norepinephrine uptake sites in rat brain membranes. J Neurosci 2: 1515–1525

    PubMed  CAS  Google Scholar 

  • Levin JA (1973) Paper chromatographic assay of 3H-norepinephrine and its five major metabolites. Anal Biochem 51: 42–60

    PubMed  CAS  Google Scholar 

  • Levin JA (1974) The uptake and metabolism of 3H-1- and 3H-dl-norepinephrine by intact rabbit aorta and by isolated adventitia and media. J Pharmacol Exp Ther 190: 210–226

    PubMed  CAS  Google Scholar 

  • Lightman S, Iversen LL (1969) Role of uptake2 in the extraneuronal uptake and meta- bolism of catecholamines in the isolated rat heart. Br J Pharmacol 37: 638–649

    PubMed  CAS  Google Scholar 

  • Lindmar R, Löffelholz K (1972) Differential effects of hypothermia on neuronal efflux, release and uptake of noradrenaline. Naunyn-Schmiedeberg’s Arch Pharmacol 274: 410–414

    PubMed  CAS  Google Scholar 

  • Lindmar R, Löffelholz K (1974a) Neuronal and extraneuronal uptake and efflux of catecholamines in the isolated rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 284: 63–92

    PubMed  CAS  Google Scholar 

  • Lindmar R, Löffelholz K (1974b) The neuronal efflux of noradrenaline: dependency on sodium and facilitation by ouabain. Naunyn-Schmiedeberg’s Arch Pharmacol 284: 93–100

    PubMed  CAS  Google Scholar 

  • Lindmar R, Muscholl E (1964) Die Wirkung von Pharmaka auf die Elimination von Noradrenalin aus der PerfusionsflĂĽssigkeit and die Noradrenalinaufnahme in das isolierte Herz. Naunyn-Schmiedeberg’s Arch Pharmacol 247: 469–492

    CAS  Google Scholar 

  • Lindmar R, Muscholl E (1965) Die Aufnahme von a-Methylnoradrenalin in das isolierte Kaninchenherz and seine Freisetzung durch Reserpin and Guanethidin in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 249: 529–548

    CAS  Google Scholar 

  • Lowe MC, Horita A (1970) Cardiac monoamine oxidase: stability of activity after chemical sympathectomy with 6-hydroxydopamine. Nature (London) 228: 175–176

    CAS  Google Scholar 

  • Luchelli-Fortis MA, Langer SZ (1975) Selective inhibition by hydrocortisone of 3Hnormetanephrine formation during 3H-transmitter release elicited by nerve stimulation in the isolated nerve-muscle preparation of the cat nictitating membrane. Naunyn-Schmiedeberg’s Arch Pharmacol 287: 261–275

    PubMed  CAS  Google Scholar 

  • Mack F, Bönisch H (1979) Dissociation constants and lipophilicity of catecholamines and related compounds. Naunyn-Schmiedeberg’s Arch Pharmacol 310: 1–9

    PubMed  CAS  Google Scholar 

  • Majewski H, Hedler L, Steppeler A, Starke K (1982) Metabolism of endogenous and exogenous noradrenaline in the rabbit perfused heart. Naunyn-Schmiedeberg’s Arch Pharmacol 319: 125–129

    PubMed  CAS  Google Scholar 

  • Maxwell RA, White HL (1978) Tricyclic and monoamine oxidase inhibitor antidepressants: structure-activity relationships. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of Psychopharmacolgy, vol 14. Plenum Press, New York London, pp 85–155

    Google Scholar 

  • Maxwell RA, Keenan DP, Chaplin E, Roth B, Eckhardt SB (1969) Molecular features affecting the potency of tricyclic antidepressants and structurally related corn-pounds as inhibitors of the uptake of tritiated norepinephrine by rabbit aortic strips. J Pharmacol Exp Ther 166: 320–329

    PubMed  CAS  Google Scholar 

  • Maxwell RA, Chaplin E, Eckhardt SB, Soares JR, Hite G (1970) Conformational similarities between molecular models of phenethylamine and of potent inhibitors of the uptake of tritiated norepinephrine by adrenergic nerves in rabbit aorta. J Pharmacol Exp Ther 173: 158–165

    PubMed  CAS  Google Scholar 

  • Mekanontchai R, Trendelenburg U (1979) The neuronal and extraneuronal distribution of 3H-(—)-noradrenaline in the perfused rat heart. Naunyn-Schmiedeberg’s Arch Pharmacol 308: 199–210

    PubMed  CAS  Google Scholar 

  • Muscholl E (1960) Die Hemmung der Noradrenalin-Aufnahme des Herzen durch Reserpin und die Wirkung von Tyramin Naunyn-Schmiedeberg’s Arch Pharmacol 240: 234–241

    CAS  Google Scholar 

  • Muscholl E (1961) Effect of cocaine and related drugs on the uptake of noradrenaline by heart and spleen. Br J Pharmacol 16: 352–359

    CAS  Google Scholar 

  • Muscholl E (1972) Adrenergic false transmitters. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York Tokio, pp 618–660 (Handbook of Experimental Pharmacology, vol 33 )

    Google Scholar 

  • Muscholl E, Weber E (1965) Die Hemmung der Aufnahme von a-Methylnoradrenalin in das Herz durch sympathomimetische Amine Naunyn-Schmiedeberg’s Arch Pharmacol 252: 134–143

    CAS  Google Scholar 

  • Orlansky H, Heikkila E (1974) An evaluation of various antiparkinsonian agents as releasing agents and uptake inhibitiors for 3H-dopamine in slices of rat neostriatum. Europ J Pharmacol 29: 284–291

    CAS  Google Scholar 

  • Paiva MQ, Guimaraes S (1978) A comparative study of the uptake and metabolism of noradrenaline and adrenaline by the isolated saphenous vein of the dog. NaunynSchmiedeberg’s Arch Pharmacol 303: 221–228

    PubMed  CAS  Google Scholar 

  • Paton DM (1968) Cation and metabolic requirements for retention of metaraminol by rat uterine horns. Br J Pharmacol 33: 277–286

    CAS  Google Scholar 

  • Paton DM (1971) The effects of Na+ and K+ on the uptake of metaraminol by rabbit ventricular slices. Br J Pharmacol 41: 65–75

    PubMed  CAS  Google Scholar 

  • Paton DM (1973) Mechanism of efflux of noradrenaline from adrenergic nerves in rabbit atria. Br J Pharmacol 49: 614–627

    PubMed  CAS  Google Scholar 

  • Paton DM (1976a) Characteristics of uptake of noradrenaline by adrenergic neurons. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catechoamines. Raven Press, New York, pp 49–66

    Google Scholar 

  • Paton DM (1976b) Characteristics of efflux of noradrenaline from adrenergic neurons. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven Press, New York, pp 155–174

    Google Scholar 

  • Paton DM (1981) Effect of cocaine on the efflux of noradrenaline, octopamine and metaraminol in rabbit atria. IRCS Med Sci 9: 128

    CAS  Google Scholar 

  • De Paulis T, Kelder D, Ross SB, Stjernström NE (1978) On the topology of the norepi- nephrine transport carrier in rat hypothalamus. Mol Pharmacol 14: 596–606

    PubMed  Google Scholar 

  • Philippu A (1976) Transport in intraneuronal storage vesicles. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven Press, New York, pp 215–246

    Google Scholar 

  • Raisman R, Sette M, Pimoule C, Briley M, Langer SZ (1982) High-affinity 3H-desipramine binding in the peripheral and central nervous system: a specific site associated with the neuronal uptake of noradrenaline. Europ J Pharmacol 78: 345–352

    CAS  Google Scholar 

  • Raiteri M, Levi G, Federico R (1974) d-Amphetamine and the release of 3H-norepinephrine from synaptosomes. Europ J Pharmacol 28: 237–240

    Google Scholar 

  • Raiteri M, Del Carmine R, Bertollini A, Levi G (1977a) Effect of sympathomimetic amines on the synaptosomal transport of noradrenaline, dopamine and 5-hydroxytryptamine. Europ J Pharmacol 41: 133–143

    CAS  Google Scholar 

  • Raiteri M, Del Carmine R, Bertollini A, Levi G (1977b) Effect of desmethylimipramine on the release of 3H-norepinephrine induced by various agents in hypothalamic synaptosomes. Mol Pharmacol 13: 746–758

    PubMed  CAS  Google Scholar 

  • Raiteri M, Cerrito F, Cervoni AM, Levi G (1979) Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. J Pharmacol Exp Ther 208: 195–202

    PubMed  CAS  Google Scholar 

  • Ransom RW, Kammerer RC, Cho AK (1982) Chemical transformations of xylamine (N-2’-chloroethyl-N-ethyl-2-methylbenzylamine) in solution. Mol Pharmacol 21: 380–386

    PubMed  CAS  Google Scholar 

  • Rawlow A, Fleig H, Kurahashi K, Trendelenburg U (1980) The neuronal and extraneuronal uptake and deamination of 3H-(—)-phenylephrine in the perfused rat heart. Naunyn-Schmiedeberg’s Arch Pharmacol 314: 237–247

    PubMed  CAS  Google Scholar 

  • Rehavi M, Skolnick P, Hulihan B, Paul SM (1981) “High affinity” binding of (3H)-desipramine to rat cerebral cortex: relationship to tricyclic antidepressant-induced inhibition of norepinephrine uptake. Europ J Pharmacol 70:597–599

    Google Scholar 

  • Ross SB (1976a) Structural requirements for uptake into catecholamine neurons. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven Press, New York, pp 67–93

    Google Scholar 

  • Ross SB (1976b) Long-term effects of N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride on noradrenergic neurones in the rat brain and heart. Br J Pharmacol 58: 521–527

    PubMed  CAS  Google Scholar 

  • Ross SB, Gosztonyi T (1975) On the mechanism of the accumulation of 3H-bretylium in peripheral sympathetic nerves. Naunyn-Schmiedeberg’s Arch Pharmacol 288: 283–293

    PubMed  CAS  Google Scholar 

  • Ross SB, Kelder D (1976) Effect of veratridine on the fluxes of 3H-noradrenaline and 3H-bretylium in the rat vas deferens in vitro. Naunyn-Schmiedeberg’s Arch Pharmacol 295: 183–189

    PubMed  CAS  Google Scholar 

  • Ross SB, Kelder D (1979) Release of 3H-noradrenaline from the rat vas deferens under various in vitro conditions. Acta physiol scand 105: 338–349

    PubMed  CAS  Google Scholar 

  • Ross SB, Renyi AL (1964) Blocking action of sympathomimetic amines on the uptake of tritiated noradrenaline by mouse cerebral cortex tissue in vitro. Acta pharmacol toxicol 21: 226–239

    CAS  Google Scholar 

  • Ross SB, Renyi AL (1966 a) Uptake of tritiated tyramine and (+)-amphetamine by mouse heart slices. J Pharm Pharmacol 18: 756–757

    Google Scholar 

  • Ross SB, Renyi AL (1966 b) Uptake of some tritiated sympathomimetic amines by mouse brain cortex slices in vitro. Acta pharmacol toxicol 24: 297–309

    Google Scholar 

  • Ross SB, Renyi AL (1976) On the long-lasting inhibitory effect of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP 4) on the active uptake of noradrenaline. J Pharm Pharmacol 28: 458–459

    PubMed  CAS  Google Scholar 

  • Ross SB, Renyi AL (1978) Effect of (+)-amphetamine on the retention of 3H-catecholamines in slices of normal and reserpinized rat brain and heart. Acta pharmacol toxicol 42: 328–336

    CAS  Google Scholar 

  • Ross SB, Renyi AL, Brunfelter B (1968) Cocaine-sensitive uptake of sympathomimetic amines in nerve tissue. J Pharm Pharmacol 20: 282–288

    Google Scholar 

  • Rutledge CO, Vollmer S (1979) Evidence for carrier mediated efflux of norepinephrine displaced by amphetamine. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines• basic and clinical frontiers, vol 1. Pergamon Press, New York Oxford Toronto Sydney Frankfurt Paris, pp 304–306

    Google Scholar 

  • Sachs C (1970) Noradrenaline uptake mechanisms in the mouse atrium. Acta physiol scand 79, Suppl 341: 1–67

    CAS  Google Scholar 

  • Salama AI, Insalaco JR, Maxwell RA (1971) Concerning the molecular requirements for the inhibition of the uptake of racemic 3H-norepinephrine into rat cerebral cortex slices by tricyclic antidepressants and related compounds. J Pharmacol Exp Ther 178: 474–481

    PubMed  CAS  Google Scholar 

  • Sammet S, Graefe K-H (1979) Kinetic analysis of the interaction between noradrenaline and Na’ in neuronal uptake: kinetic evidence for co-transport. NaunynSchmiedeberg’s Arch Pharmacol 309: 99–107

    PubMed  CAS  Google Scholar 

  • Sanchez-Armass S, Orrego F (1977) A major role for chloride in 3H-noradrenaline transport by rat heart adrenergic nerves. Life Sci 20: 1829–1838

    PubMed  CAS  Google Scholar 

  • Sanchez-Armass S, Orrego F (1978) Noradrenaline transport by rat heart sympathetic nerves: a re-examination of the role of sodium ions. Naunyn-Schmiedeberg’s Arch Pharmacol 302: 355–261

    Google Scholar 

  • Sanchez-Armass S, Orrego F (1979) Plasma membrane noradrenaline transport: a rotary liquid pore model. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines: basic and clinial frontiers, vol 1. Pergamon Press, New York Oxford Toronto Sydney Frankfurt Paris, pp 307–309

    Google Scholar 

  • Sanchez-Garcia P, Garcia AG, Matinez-Sierra R, Velasco-Martin A (1977) Inhibition of norepinephrine uptake by phenoxybenzamine and desmethylimipramine in the isolated guinea-pig atrium. J Pharmacol Exp Ther 201: 192–198

    PubMed  CAS  Google Scholar 

  • Schacht U, Heptner W (1974) Effect of nomifensine (HOE 984), a new antidepressant, on uptake of noradrenaline and serotonin and on release of noradrenaline in rat brain synaptosomes. Biochem Pharmacol 23: 3413–3422

    PubMed  CAS  Google Scholar 

  • Schömig E, Bönisch H (1986) Solubilization and characterization of the 3H-desipramine binding site of rat phaeochromocytoma cells (PC-12 cells). NaunynSchmiedeberg’s Arch Pharmacol 334: 412–417

    PubMed  Google Scholar 

  • Schömig E, Körber M, Bönisch H (1988) Kinetic evidence for a common binding site for substrate and inhibitors of the neuronal noradrenaline carrier. NaunynSchmiedeberg’s Arch Pharmacol (in press)

    Google Scholar 

  • Schulz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50: 637–718

    Google Scholar 

  • Segel IH (1975) Enzyme kinetics. Behaviour and analysis of rapid equilibrium and steady-state enzyme systems. Wiley and Sons, New York London Sydney Toronto

    Google Scholar 

  • Shaskan EG, Snyder SH (1970) Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Ther 175: 404–418

    PubMed  CAS  Google Scholar 

  • Simmonds MA, Gillis CN (1968) Uptake of normetanephrine and norepinephrine by cocaine-treated rat hearts. J Pharmacol Exp Ther 159: 283–289

    PubMed  CAS  Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in 3H-norepinephrine and 3H-dop- amine uptake into rat brain homogenates. J Pharmacol Exp Ther 165: 78–86

    PubMed  CAS  Google Scholar 

  • Snyder SH, Green AI, Hendley ED (1968) Kinetics of 3H-norepinephrine accumulation into slices from different regions of the rat brain. J Pharmacol Exp Ther 164: 90–102

    PubMed  CAS  Google Scholar 

  • Snyder SH, Kuhar MJ, Green AI, Coyle JT, Shaskan EG (1970) Uptake and subcellu- lar localisation of neurotransmitters in brain. Int Rev Neurobiol 13: 127–158

    CAS  Google Scholar 

  • Starke K, Steppeler A, Zumstein A, Henseling M, Trendelenburg U (1980) False labelling of commercially available 3H-catecholamines. Naunyn-Schmiedeberg’s Arch Pharmacol 311: 109–112

    PubMed  CAS  Google Scholar 

  • Starke K, Hedler L, Steppeler A (1981) Metabolism of endogenous and exogenous noradrenaline in guinea-pig atria. Naunyn-Schmiedeberg’s Arch Pharmacol 317: 193–198

    PubMed  CAS  Google Scholar 

  • Stefanini E, Argiolas A, Gessa GL (1976) Effect of lithium on dopamine uptake by brain synaptosomes. J Neurochem 27: 1237–1239

    PubMed  CAS  Google Scholar 

  • Stefano FJE, Trendelenburg U (1984) Saturation of monoamine oxidase by intraneuronal noradrenaline accumulation. Naunyn-Schmiedeberg’s Arch Pharmacol 328: 135–141

    PubMed  CAS  Google Scholar 

  • Stein WD (1967) The movement of molecules across cell membranes. Acacemic Press, New York, London

    Google Scholar 

  • Steppeler A, Starke K (1982) Fate of (3H)-amezinium in sympathetically innervated rabbit tissues. Biochem Pharmacol 31: 1075–1080

    PubMed  CAS  Google Scholar 

  • Stjärne L (1972) The synthesis, uptake and storage of catecholamines in the adrenal medulla. The effect of drugs. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York, pp 231–269 (Handbook of Experimental Pharmacology, vol 33 )

    Google Scholar 

  • Stute N, Trendelenburg U (1984) The outward transport of axoplasmic noradrenaline induced by a rise of the sodium concentration in the adrenergic nerve endings of the rat vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 327: 124–132

    PubMed  CAS  Google Scholar 

  • Sugrue MF, Shore PA ( 1969 a) The mode of sodium dependency of the adrenergic neuron amine carrier. Evidence for a second, sodium-dependent, optically specific and reserpine-sensitive system. J Pharmacol Exp Ther 170: 239–245

    Google Scholar 

  • Sugrue MF, Shore PA (1969 b) The mode of potassium action on the adrenergic neuron amine transport system. Life Sci 8: 1337–1341

    Google Scholar 

  • Thoa NB, Wooten GF, Axelrod J, Kopin IJ (1975) On the mechanism of release of norephinephrine from sympathetic nerves induced by depolarizing agents and sympathomimetic drugs. Mol Pharmacol 11: 10–18

    PubMed  CAS  Google Scholar 

  • Thoenen H, HĂĽrlimann A, Haefely W (1968) Mechanism of amphetamine accumulation in the isolated perfused heart of the rat. J Pharm Pharmacol 20: 1–11

    PubMed  CAS  Google Scholar 

  • Tissari AH, Schönhöfer PS, Bogdanski DF, Brodie BB (1969) Mechanism of biogenic amine transport. II. Relationship between sodium and the mechanism of ouabain blockade of the accumulation of serotonin and norepinephrine by synaptosomes. Mol Pharmacol 5: 593–604

    Google Scholar 

  • Trendelenburg U (1972) Factors influencing the concentration of catecholamines at the receptors. In: Blaschko H, Muscholl E (eds) Catecholamines. Springer, Berlin Heidelberg New York Tokyo, pp 726–761 (Handbook of Experimental Pharmacology, vol 33 )

    Google Scholar 

  • Trendelenburg U, Bönisch H, Graefe K-H, Henseling M (1979) The rate constants for the efflux of metabolites of catecholamines and phenethylamines. Pharmacol Rev 31: 179–203

    PubMed  CAS  Google Scholar 

  • Trendelenburg U, Stefano FJE, Grohmann M (1983) The isotope effect of tritium in 3H-noradrenaline. Naunyn-Schmiedeberg’s Arch Pharmacol 323: 128–140

    PubMed  CAS  Google Scholar 

  • Tuomisto J (1977) Nomifensine and its derivatives as possible tools for studying amine uptake. Europ J Pharmacol 42: 101–106

    CAS  Google Scholar 

  • Ungell A-L, Graefe K-H (1987) Failure of K+ to affect the potency of inhibitors of the neuronal noradrenaline carrier in the rat vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 335: 250–254

    PubMed  CAS  Google Scholar 

  • Ungell A-L, Bönisch H, Graefe K-H (1986) Choline’: a substrate of the neuronal nor-adrenaline carrier in the rat vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 334: 223–227

    PubMed  CAS  Google Scholar 

  • Van der Zee P, Koger HS, Gootjes J, Hespe W (1980) Aryl-1,4-di-alk(en)ylpiperazines as selective and very potent inhibitors of dopamine uptake. Eur J Med Chem 15: 363–370

    Google Scholar 

  • Wakade AR, Furchgott RF (1968) Metabolic requirements for the uptake and storage of norepinephrine by the isolated left atrium of the guinea pig. J Pharmacol Exp Ther 163: 123–135

    PubMed  CAS  Google Scholar 

  • Wakade AR, Kirpekar SM (1974) Calcium-independent release of 3H-norepinephrine from reserpine-pretreated guinea-pig vas deferens and seminal vesicles. J Pharmacol Exp Ther 190: 451–458

    PubMed  CAS  Google Scholar 

  • Waldmeier PC, Baumann PA, Hauser K, Maitre L, Storni A (1982) Oxaprotiline, a noradrenaline uptake inhibitor with an active and an inactive enantiomer. Biochem Pharmacol 31: 2169–2176

    PubMed  CAS  Google Scholar 

  • Wetzel HW, Briley MS, Langer SZ (1981) 3H-WB 4101 binding in the rat vas deferens: effects of chronic treatment with desipramine and prazosin. Naunyn-Schmiedeberg’s Arch Pharmacol 317: 187–192

    Google Scholar 

  • White TD (1976) Models for neuronal noradrenaline uptake. In: Paton DM (ed) The mechanism of neuronal and extraneuronal transport of catecholamines. Raven Press, New York, pp 175–193

    Google Scholar 

  • White TD, Paton DM (1972) Effects of external Na+ and K+ on the initial rates of nor-adrenaline uptake by synaptosomes prepared from rat brain. Biochim Biophys Acta 266: 116–127

    PubMed  CAS  Google Scholar 

  • Wilbrandt W, Rosenberg T (1961) The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev 13: 109–183

    PubMed  CAS  Google Scholar 

  • Wilkinson GN (1961) Statistical estimation in enzyme kinetics. Biochem J 80: 324–332

    PubMed  CAS  Google Scholar 

  • Wong DT, Bymaster FP (1976) Effect of nisoxetine on uptake of catecholamines in synaptosomes isolated from discrete regions of rat brain. Biochem Pharmacol 25: 1979–1983

    PubMed  CAS  Google Scholar 

  • Zeitner C-J, Graefe K-H (1986) Sodium-dependence of the potency of inhibitors of the neuronal noradrenaline carrier in the rat vas deferens. Naunyn-Schmiedeberg’s Arch Pharmacol 334: 397–402

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graefe, KH., Bönisch, H. (1988). The Transport of Amines Across the Axonal Membranes of Noradrenergic and Dopaminergic Neurones. In: Trendelenburg, U., Weiner, N. (eds) Catecholamines I. Handbook of Experimental Pharmacology, vol 90 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46625-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46625-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46627-4

  • Online ISBN: 978-3-642-46625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics