Skip to main content

Occurrence and Mechanism of Exocytosis in Adrenal Medulla and Sympathetic Nerve

  • Chapter
Catecholamines I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 90 / 1))

Abstract

Secretion by exocytosis—a term introduced by de Duve (1963)—involves the fusion of the membrane of the catecholamine-storing vesicles with that of the cell, followed by the discharge of the soluble contents of this organelle directly into the extracellular space. When the first Handbook on Catecholamines (Blaschko and Muscholl 1972) was published, the chapter on the secretion of catecholamines (Smith and Winkler 1972) already presented exocytosis as the well established secretion mechanism for adrenal medulla and more tentatively also for sympathetic nerves. In the meantime many additional papers have been published, which have confirmed and extended this concept (550 of the 622 publications cited in this review appeared after 1972). On the other hand, the molecular mechanisms involved in exocytosis are still a matter of speculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbs MT, Phillips JH (1980) Organisation of the proteins of the chromaffm granule membranes. Biochim Biophys Acta 595: 200–201

    PubMed  CAS  Google Scholar 

  • Aberer W, Stitzel R, Winkler H, Huber E (1979) Accumulation of 3 H-ATP in small dense core vesicles of superfused vasa deferentia. J Neurochem 33: 797–801

    PubMed  CAS  Google Scholar 

  • Abrahams SJ, Holtzman E (1973) Secretion and endocytosis in insulin-stimulated medulla cells. J Cell Biol 56: 540–558

    PubMed  CAS  Google Scholar 

  • Ackerly JA, Blumberg AL, Brooker G, Peach JM (1978) Angiotensin II on the release of dopamine ß-hydroxylase and arterial cyclic AMP concentrations. Am J Physiol 235: H281–H288

    PubMed  CAS  Google Scholar 

  • Aguirre J, Pinto JEB, Trifaro JM (1977) Calcium movements during the release of catecholamines from the adrenal medulla: effects of methoxyverapamil and external cations. J Physiol (Lond) 269: 371–394

    CAS  Google Scholar 

  • Aguirre J, Falutz J, Pinto JEB, Trifaro JM (1979) Effects of methoxyverapamil on the stimulation by Ca2+, Sr2+ and Na2+ and on the inhibition by Mg2+ of catecholamine release from the adrenal medulla. Br J Pharmacol 66: 591–600

    PubMed  CAS  Google Scholar 

  • Ahnert-Hilger G, Gratzl M (1987) Further characterization of dopamine release by permeabilized PC12 cells. J Neurochem 49: 764–770

    PubMed  CAS  Google Scholar 

  • Ahnert-Hilger G, Bhakdi S, Gratzl M (1985) Minimal requirements for exocytosis. J Biol Chem 260: 12730–12734

    PubMed  CAS  Google Scholar 

  • Algate DR, Leach GDH (1978) Dopamine ß-hydroxylase release following acute selective sympathetic nerve stimulation of the heart, spleen and mesentery. J Pharm Pharmacol 30: 162–166

    PubMed  CAS  Google Scholar 

  • Amy CM, Kirshner N (1981) Phosphorylation of adrenal medulla cell proteins in con- junction with stimulation of catecholamine secretion. J Neurochem 36: 847–854

    PubMed  CAS  Google Scholar 

  • Apps DK, Pryde JG, Phillips JH (1980) Cytochrome b-561 is identical with chromomembrin B1 a major polypeptide of chromaffin granule membranes. Neuroscience 5: 2279–2287

    PubMed  CAS  Google Scholar 

  • Arnaiz JM, Garcia AG, Horga JF, Kirpekar SM (1978) Tissue and plasma catecholamines and dopamine ß-hydroxylase activity of various animal species after neuro-genic sympathetic stimulation. J Physiol (Lond) 285: 515–529

    CAS  Google Scholar 

  • Arnatz JM, Garcia AG, Horga JF, Pascual R, Sanchez-Garcia P (1980) Origin of guinea-pig plasma dopamine ß-hydroxylase. Br J Pharmacol 69: 41–48

    Google Scholar 

  • Arqueros L, Daniels AJ (1978) Analysis of the inhibitory effect of verapamil on adrenal medullary secretion. Life Sci 23: 2415–2422

    PubMed  CAS  Google Scholar 

  • Artalejo CR, Garcia AG, Aunis D (1987) Chromaffin cell calcium channel kinetics measured isotopically through fast calcium, strontium, and barium fluxes. J Biol Chem 262: 915–926

    PubMed  CAS  Google Scholar 

  • Ashino N, Sobue K, Seino Y, Yabuuchi H (1987) Purification of an 80 kDa Cat+-dependent actin-modulating protein, which severs actin filaments, from bovine adrenal medulla. J Biochem. 101: 609–617

    PubMed  CAS  Google Scholar 

  • Augustine GJ, Charlton MP, Smith SJ (1987) Calcium action in synaptic transmitter release. Ann Rev Neurosci 10: 633–693

    PubMed  CAS  Google Scholar 

  • Aunis D, Perrin D (1984) Chromaffin granule membrane F-actin interactions and spectrin-like protein of subcellular organelles: a possible relationship. J Neurochem 42: 1558–1569

    PubMed  CAS  Google Scholar 

  • Aunis D, Serck-Hanssen G, Helle KB (1978) Dopamine ß-hydroxylase in perfusates of stimulated bovine adrenals. Isolation and characterization of the released enzyme. Gen Pharmacol 9: 37–43

    Google Scholar 

  • Aunis D, Hesketh JE, Devilliers G (1979) Freeze-fracture study of the chromaffin cell during exocytosis: evidence for connections between the plasma membrane and secretory granules and for movements of plasma membrane-associated particles. Cell Tiss Res 197: 433–441

    CAS  Google Scholar 

  • Aunis D, Guerold B, Bader MF, Cieselski-Treska J (1980) Immunocytochemical and biochemical demonstration of contractile proteins in chromaffin cells in culture. Neuroscience 5: 2261–2277

    PubMed  CAS  Google Scholar 

  • Bader MF, Aunis D (1983) The 97-kD-a-actinin-like protein in chromaffin granule membranes from adrenal medulla: evidence for localization on the cytoplasmic surface and for binding to actin filaments. Neuroscience 8: 165–182

    PubMed  CAS  Google Scholar 

  • Bader MF, Ciesielski-Treska J, Thierse D, Hesketh JE, Aunis D (1981) Immunocytochemical study of microtubules in chromaffin cells in culture and evidence that tubulin is not an integral protein of the chromaffin granule membrane. J Neurochem 37: 917–933

    PubMed  CAS  Google Scholar 

  • Bader MF, Hikita T, Trifaro JM (1985) Calcium-dependent calmodulin binding to chromaffin granule membranes: presence of a 65-Kilodalton calmodulin-binding protein. J Neurochem 44: 526–539

    PubMed  CAS  Google Scholar 

  • Bader MF, Thierse D, Aunis D (1986 a) Characterization of hormone and protein release from a-toxin-permeabilized chromaffin cells in primary culture. J Biol Chem 261: 5777–5783

    Google Scholar 

  • Bader MF, Trifaro JM, Langley OK, Thierse D, Aunis D (1986 b) Secretory cell actin-binding proteins: identification of a gelsolin-like protein in chromaffin cells. J Cell Biol 102: 636–646

    Google Scholar 

  • Bähler M, Greengard P (1987) Synpasin I bundles F-actin in a phosphorylation-dependent manner. Nature 326: 704–707

    PubMed  Google Scholar 

  • Baines AJ (1987) Synapsin I and the cytoskeleton. Nature 326: 646

    PubMed  CAS  Google Scholar 

  • Baker PF, Knight DE (1978) Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature 276: 620–622

    PubMed  CAS  Google Scholar 

  • Baker PF, Knight DE (1981) Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Phil Trans R Soc Lond B 296: 83–103

    CAS  Google Scholar 

  • Baker PF, Knight DE (1982) Is the chromaffin granule membrane potential essential for Ca-dependent exocytosis? J Physiol 326: 10 P

    Google Scholar 

  • Baker PF, Knight DE (1986) Exocytosis: control by calcium and other factors. Brit Med Bull 42: 399–404

    PubMed  CAS  Google Scholar 

  • Baker PF, Rink TJ (1975) Catecholamine release from bovine adrenal medulla in response to maintained depolarization. J Physiol 253: 593–620

    PubMed  CAS  Google Scholar 

  • Baker RR, Dowdall MJ, Whittaker VP (1975) The involvement of lysophosphoglycerides in neurotransmitter release, the composition and turnover of phospholipids of synaptic vesicles of guinea-pig cerebral cortex and torpedo electric organ and the effect of stimulation. Brain Res 100: 629–644

    PubMed  CAS  Google Scholar 

  • Baker PF, Knight DE, Niggli V (1982) Protein phosphorylation accompanies calcium-dependent exocytosis in “leaky” bovine adrenal medullary cells. J Physiol 332: 118 P

    Google Scholar 

  • Banks P (1966 a) The release of adenosine triphosphate catabolites during the secretion of catecholamines by bovine adrenal medulla. Biochem J 101:536–541

    PubMed  CAS  Google Scholar 

  • Banks P (1966 b) An interaction between chromaffin granules and calcium ions. Biochem J 101:18C–20C

    PubMed  CAS  Google Scholar 

  • Banks P, Helle K (1965) The release of protein from the stimulated adrenal medulla. Biochem J 97: 40C–41C

    PubMed  CAS  Google Scholar 

  • Bareis DL, Slotkin TA (1979) Synaptic vesicles isolated from rat heart: 3H-norepinephrine uptake properties. J Neurochem 32: 345–351

    PubMed  CAS  Google Scholar 

  • Barron BA, Hexum TD (1984) Release of catecholamines and ( Met’) enkephalin immunoreactive material from perfused bovine adrenal glands. Eur J Pharmacol 106: 593–599

    Google Scholar 

  • Barrowman MM, Cockcroft S, Gomperts BD (1986) Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature 319: 504–507

    PubMed  CAS  Google Scholar 

  • Bartlett SF, Lagercrantz H, Smith AD (1976) Gel electrophoresis of soluble and insoluble proteins of noradrenergic vesicles from ox splenic nerve: a comparison with proteins of adrenal chromaffin granules. Neuroscience 1: 339–344

    PubMed  CAS  Google Scholar 

  • Basbaum CB, Heuser JE (1979) Morphological studies of stimulated adrenergic axon varicosities in the mouse vas deferens. J Cell Biol 80: 310–325

    PubMed  CAS  Google Scholar 

  • Benedeczky I, Smith AD (1972) Ultrastructural studies on the adrenal medulla of golden hamster: origin and fate of secretory granules. Z Zellforsch 124: 367–386

    PubMed  CAS  Google Scholar 

  • Benedeczky I, Somogyi P (1975) Ultrastructure of the adrenal medulla of normal and insulin-treated hamsters. Cell Tiss Res 162: 541–550

    CAS  Google Scholar 

  • Benedeczky I, Somogyi P (1978) Cytochemical localization of exogenous peroxidase in adrenal medullary cells of hamster Acta Biol Acad Sci Hung 29: 155–163

    CAS  Google Scholar 

  • Bernier-Valentin F, Aunis D, Rousset B (1983) Evidence for tubulin-binding sites on cellular membranes: Plasma membranes, mitochondrial membranes and secretory granule membranes. J Cell Biol 97: 209–216

    Google Scholar 

  • Bevington A, Briggs RW, Radda GK, Thulborn KR (1984) Phosphorus-31 nuclear magnetic resonance studies of pig adrenal gland. Neuroscience 11: 281–286

    PubMed  CAS  Google Scholar 

  • Biales B, Dichter M, Tischler A (1976) Electrical excitability of cultured adrenal chromaffin cells. J Physiol 262: 743–753

    PubMed  CAS  Google Scholar 

  • Bisby MA, Fillenz M (1971) The storage of endogenous noradrenaline in sympathetic nerve terminals J Physiol 215: 163–179

    CAS  Google Scholar 

  • Bisby M, Fillenz M, Smith AD (1973) Evidence for the presence of dopamine ß-hydroxylase in both populations of noradrenaline storage vesicles in sympathetic nerve terminals of the rat vas deferens. J Neurochem 20: 245–248

    PubMed  CAS  Google Scholar 

  • Bittner MA, Holz RW, Neubig RR (1986) Guanine nucleotide effects of catecholamine secretion from digitonin-permeabilized adrenal chromaffin cells. J Biol Chem 261:10 182–10 188

    Google Scholar 

  • Bjerrum OJ, Helle KB, Bock E (1979) Immunochemically identical hydrophilic and amphiphilic forms of the bovine adrenomedullary dopamine ß-hydroxylase. Biochem J 181: 231–237

    PubMed  CAS  Google Scholar 

  • Blakeley AGH, Cunnane TC (1979) The packeted release of transmitter from the sympathetic nerves of the guinea-pig vas deferens: an electrophysiological study. J Physiol (Lond.) 296: 85–96

    CAS  Google Scholar 

  • Blaschke E, Uvnäs B (1979) Effect of splenic nerve stimulation on the contents of nor-adrenaline, ATP and sulphomucopolysaccharides in noradrenergic vesicle fractions from the cat spleen. Acta Physiol Scand 105: 496–507

    Google Scholar 

  • Blaschko H, Muscholl E (1972) Catecholamines, Handbook of Experimental Pharmacology, vol 33. Springer Berlin Heidelberg New York

    Google Scholar 

  • Blaschko H, Comline RS, Schneider FH, Silver M, Smith AD (1967a) Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after spanchnic stimulation. Nature 215: 58–59

    PubMed  CAS  Google Scholar 

  • Blaschko H, Firemark H, Smith AD, Winkler H (1967 b) Lipids of the adrenal medulla: lysolecithin, a characteristic constituent of chromaffin granules. Biochem J 104: 545–549

    Google Scholar 

  • Blaustein MP (1979) The role of calcium in catecholamine release from adrenergic nerve terminals. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon Press Oxford pp 39–58

    Google Scholar 

  • Bock E, Helle KB (1977) Localization of synaptin on synaptic vesicle membranes, synaptosomal plasma membranes and chromaffin granule membranes. Febs letters 82: 175–178

    PubMed  CAS  Google Scholar 

  • Bohner K, Boons J, Gheuens J, Konings F, de Potter WP (1985) The use of monoclonal antibodies in the study of the interaction between adrenal medullary cell membranes and chromaffin granules. Biochem Biophys Res Comm 133: 1006–1012

    PubMed  CAS  Google Scholar 

  • Boonyaviroj P, Seiden A, Gutman Y (1977) PGE2, phenylephrine and dopamine ß-hydroxylase release from rat adrenal in vitro. Biochem Pharmacol 26: 351–352

    PubMed  CAS  Google Scholar 

  • Borchardt RT, Olsen J, Eiden L, Schowen RL, Rutledge CO (1978) The isolation and characterization of the methyl acceptor protein from adrenal chromaffin granules. Biochem Biophys Res Commun 83: 970–976

    PubMed  CAS  Google Scholar 

  • Borowitz JL, Leslie SW, Baugh L (1975) Adrenal catecholamine release: possible termination mechanism. In: Carofoli E, Clementi F, Drabikovski W (eds) North Holland Amsterdam, Oxford pp 227–242

    Google Scholar 

  • Bourne GW, Trifaro JM (1982) The gadolinium ion: a potent blocker of calcium channels and catecholamine release from cultured chromaffin cells. Neuroscience 7: 1615–1622

    PubMed  CAS  Google Scholar 

  • Brandt BL, Hagiwara S, Kidokoro Y, Miyazaki S (1976) Action potentials in the rat chromaffin cell and effects of acetylcholine. J Physiol (Lond) 263: 417–439

    CAS  Google Scholar 

  • Breckenridge LJ, Almers W (1987) Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sci USA 84: 1945–1949

    PubMed  CAS  Google Scholar 

  • Brimijoin S (1982) Microtubules and the capacity of the system for rapid axonal transport. Fed Proc 41: 2312–2316

    PubMed  CAS  Google Scholar 

  • Brimijoin S, Heilland L (1976) Rapid retrograde transport of dopamine ß-hydroxylase as examined by the stop flow technique. Brain Res 102: 217–228

    PubMed  CAS  Google Scholar 

  • Brocklehurst KW, Pollard HB (1985) Enhancement of Ca’-induced catecholamine release by the phorbol ester TPA in digitonin-permeabilized cultured bovine adrenal chromaffin cells. FEBS 183: 107–110

    CAS  Google Scholar 

  • Brocklehurst KW, Pollard HB (1986) Synergistic actions of Ca’ and the phorbol ester TPA on K+-induced catecholamine release from bovine adrenal chromaffin cells. Biochem Biophys Res Comm 140: 990–998

    PubMed  CAS  Google Scholar 

  • Brocklehurst KW, Morita K, Pollard HB (1985) Characterization of protein kinase C and its role in catecholamine secretion from bovine adrenal-medullary cells. Biochem J 228: 35–42

    PubMed  CAS  Google Scholar 

  • Brooks JC, Brooks M (1985) Protein thiophosphorylation associated with secretory inhibition in permeabilized chromaffin cells. Life Sci 37: 1869–1875

    PubMed  CAS  Google Scholar 

  • Brooks JC, Brooks MH (1987) Thiophosphorylation and phosphorylation of saponinpermeabilized cultured chromaffin cells Neurochem Int 1: 31–38

    Google Scholar 

  • Brooks JC, Carmichael SW (1987) Ultrastructural demonstration of exocytosis in intact and saponin-permeabilized cultured bovine chromaffin cells. Am J Anat 178: 85–89

    PubMed  CAS  Google Scholar 

  • Brooks JC, Treml S (1983 a) Effect of trifluoperazine on catecholamine secretion by isolated bovine adrenal medullary chromaffin cells. Biochem Pharmacol 32: 371–373

    Google Scholar 

  • Brooks JC, Treml S (1983 b) Catecholamine secretion by chemically skinned cultured chromaffin cells. J Neurochem 40: 468–473

    Google Scholar 

  • Brooks JC, Treml S (1984) Effect of trifluoperazine and calmodulin on catecholamine secretion by saponin-skinned cultured chromaffin cells. Life Sciences 34: 669–674

    PubMed  CAS  Google Scholar 

  • Brooks JC, Treml S, Brooks M (1984) Thiophosphorylation prevents catecholamine secretion by chemically skinned chromaffin cells. Life Sci 35: 569–574

    PubMed  CAS  Google Scholar 

  • Brown EM, Pazoles CJ, Creutz CE, Aurbach GD, Pollard HB (1978) Role of anions in parathyroid hormone release from dispersed bovine parathyroid cells. Proc Natl Acad Sci USA 75: 876–880

    PubMed  CAS  Google Scholar 

  • Burgoyne, RD (1984a) Mechanism of secretion from adrenal chromaffin cells. Biochim Biophys Acta 779: 201–216

    PubMed  CAS  Google Scholar 

  • Burgoyne RD (1984 b) The relationship between secretion and intracellular free calcium in bovine adrenal chromaffin cells. Biosci Rep 4:605–611

    PubMed  CAS  Google Scholar 

  • Burgoyne RD (1987) Control of exocytosis. Nature 328: 112–113

    PubMed  CAS  Google Scholar 

  • Burgoyne RD, Cheek TR (1987) Role of fodrin in secretion. Nature 326: 448

    PubMed  CAS  Google Scholar 

  • Burgoyne RD, Geisow MJ (1981) Specific binding of 125I-calmodulin to and protein phosphorylation in adrenal chromaffin granule membranes. FEBS Lett 131: 127–131

    PubMed  CAS  Google Scholar 

  • Burgoyne RD, Geisow MJ (1982) Phosphoproteins of the adrenal chromaffin granule membrane. J Neurochem 39: 1387–1396

    PubMed  CAS  Google Scholar 

  • Burgoyne RD, Norman KM (1984) Effect of calmidazolium and phorbol ester on catecholamine secretion from adrenal chromaffin cells. Biochim Biophys Acta 805: 37–43

    PubMed  CAS  Google Scholar 

  • Burgoyne RD, Norman KM (1985) Presence of microtubule-associated protein 2 in chromaffin cells. Neuroscience 14: 955–962

    PubMed  CAS  Google Scholar 

  • Burgoyne RD, Geisow MJ, Barron J (1982) Dissection of stages in exocytosis in the adrenal chromaffin cell with use of trifluoperazine. Proc R Soc Lond B 216: 111–115

    PubMed  CAS  Google Scholar 

  • Burgoyne RD, Cheek TR, Norman KM (1986) Identification of a secretory granule-binding protein as caldesmon. Nature 319: 68–70

    PubMed  CAS  Google Scholar 

  • Burgun C, Martinez de Munoz D, Aunis D (1985) Osmotic fragility of chromaffin granules prepared under isoosmotic or hyperosmotic conditions and localization of acetylcholinesterase. Biochim Biophys Acta 839: 219–227

    PubMed  CAS  Google Scholar 

  • Burke BE, de Lorenzo RJ (1982) Ca“ and calmodulin-dependent phosphorylation of endogenous synaptic vesicle tubulin by a vesicle-bound calmodulin kinase system. J Neurochem 38: 1205–1218

    PubMed  CAS  Google Scholar 

  • Carmichael S, Ulrich RG (1983) Scanning electron microscopy of the mammalian adrenal medulla. Mikroskopie 40: 53–64

    PubMed  CAS  Google Scholar 

  • Carvalho MH, Prat JC, Garcia AG, Kirpekar SM (1982) Ionomycin stimulates secretion of catecholamines from cat adrenal gland and spleen. Am J Physiol 242: E137–E145

    PubMed  CAS  Google Scholar 

  • Casey RP, Njus D, Radda GK, Sehr PA (1976) Adenosine triphosphate-evoked catecholamine release in chromaffin granules. Osmotic lysis as a consequence of proton translocation. Biochem J 158: 583–588

    Google Scholar 

  • Cena V, Nicolas GP, Sanchez-Garcia P, Kirpekar SM, Garcia AG (1983) Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience 10: 1455–1462

    PubMed  CAS  Google Scholar 

  • Chaminade M, Foutz AS, Rossier J (1983) Co-release of enkephalins and precursors with catecholamines by the perfused cat adrenal in-situ. Life Sciences 33: 21–24

    PubMed  CAS  Google Scholar 

  • Chandler DE, Heuser JE (1980) Arrest of membrane fusion events in mast cells by quick freezing. J Cell Biol 86: 666–674

    PubMed  CAS  Google Scholar 

  • Cheek TR, Burgoyne RD (1985) Effect of activation of muscarinic receptors on intracellular free calcium and secretion in bovine adrenal chromaffin cells. Biochim Biophys Acta 846: 167–173

    PubMed  CAS  Google Scholar 

  • Cheek TR, Burgoyne RD (1986) Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS 207: 110–114

    CAS  Google Scholar 

  • Cheek TR, Hesketh JE, Richards RC, Burgoyne RD (1986) Assembly and characterization of a multi-component cytoskeletal gel from adrenal medulla. Biochim Biophys Acta 887: 164–172

    PubMed  CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27

    PubMed  CAS  Google Scholar 

  • Chi EY, Lagunoff D, Koehler JK (1976) Freeze-fracture study of mast cell secretion. Proc Natl Acad Sci USA 73: 2823–2827

    PubMed  CAS  Google Scholar 

  • Chubb IW, Smith AD (1975) Release of acectylcholinesterase into the perfusate from the ox adrenal gland. Proc R Soc Lond B 191: 263–269

    PubMed  CAS  Google Scholar 

  • Chubb IW, de Potter WP, de Schaepdryver AF (1972) Tyramine does not release nor-adrenaline from splenic nerve by exocytosis. Naunyn Schmiedeberg’s Arch Pharmacol 274: 281–286

    PubMed  CAS  Google Scholar 

  • Clapham DE, Neher E (1984) Trifluoperazine reduces inward ionic currents and secretion by separate mechanism in bovine chromaffin cells J Physiol (Lond) 353: 541–564

    CAS  Google Scholar 

  • Cobbold PH, Cheek TR, Cuthbertson KSR, Burgoyne RD (1987) Calcium transients in single adrenal chromaffin cells detected with aequorin. FEBS Lett 211: 44–48

    PubMed  CAS  Google Scholar 

  • Cochrane DE, Douglas WW, Mouri T, Nakazato Y (1975) Calcium and stimulus-secretion coupling in the adrenal medulla: contrasting stimulating effects of the ionophores X-537A and A23187 on catecholamine output. J Physiol 252: 363–378

    PubMed  CAS  Google Scholar 

  • Cohen J, Gutman Y (1979) Effects of verapamil, dantrolene and lanthanum on catecholamine release from rat adrenal medulla. Br J Pharmacol 65: 641–645

    PubMed  CAS  Google Scholar 

  • Cooke P, Poisner AM (1976) Microfilaments in bovine adrenal cells. Cytobiologie 13: 442–450

    Google Scholar 

  • Corcoran JJ, Kirshner N (1983) Inhibition of calcium uptake, sodium uptake and catecholamine secretion by methoxyverapamil (D600) in primary cultures of adrenal medulla cells. J Neurochem 40: 1106–1109

    PubMed  CAS  Google Scholar 

  • Costa M, Rush RA, Furness JB, Geffen LB (1976) Histochemical evidence for the degeneration of peripheral noradrenergic axons following intravenous injection of antibodies to dopamine ß-hydroxylase. Neuroscience Lett 3: 201–207

    CAS  Google Scholar 

  • Cote A, Doucet JP, Trifaro JM (1986 a) Adrenal medullary tropomyosins: purification and biochemical characterization. J Neurochem 46: 1771–1782

    Google Scholar 

  • Cote A, Doucet JP, Trifaro JM (1986b) Phosphorylation and dephosphorylation of chromaffin cell proteins in response to stimulation. Neurosciene 19: 629–645

    CAS  Google Scholar 

  • Coupland RE (1965) Electron microscopic observations on the structure of the rat adrenal medulla. 1. The ultrastructure and organisation of chromaffin cells in the normal adrenal medulla. J Anat (Lond.) 99: 231–254

    CAS  Google Scholar 

  • Creutz CE (1977) Isolation, characterization and Localization of bovine adrenal medullary myosin. Cell Tiss Res 178: 17–38

    CAS  Google Scholar 

  • Creutz CE (1981a) Secretory vesicle—cytosol interactions in exocytosis: Isolation by Ca’-dependent affinity chromatography of proteins that bind to the chromaffin granule membrane. Biochem Biophys Res Commun 103: 1395–1400

    PubMed  CAS  Google Scholar 

  • Creutz CE (1981 b) Cis-Unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin. J Cell Biol 91:247–256

    PubMed  CAS  Google Scholar 

  • Creutz CE, Rauch-Harrison J (1984) Clathrin light chains and secretory vesicle binding proteins are distinct. Nature 308: 208–210

    PubMed  CAS  Google Scholar 

  • Creutz CE, Sterner DC (1983) Calcium dependence of the binding of synexin to isolated chromaffin granules. Biochem Biophys Res Comm 114: 355–364

    PubMed  CAS  Google Scholar 

  • Creutz CE, Pazoles CJ, Pollard HP (1978) Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromaffin granules. J Biol Chem 253: 2858–2866

    PubMed  CAS  Google Scholar 

  • Creutz CE, Pazoles CJ, Pollard HP (1979) Self-association of synexin in the presence of calcium. J Biol Chem 254: 553–558

    PubMed  CAS  Google Scholar 

  • Creutz CE, Scott JH, Pazoles CJ, Pollard HB (1982) Further characterization and fusion of chromaffin granules by synexin as a model for compound exocytosis. J Cell Biochem 18: 87–97

    PubMed  CAS  Google Scholar 

  • Creutz CE, Dowling LG, Sando JJ, Villar-Palasi C, Whipple JH, Zaks WJ (1983) Characterization of the chromobindins J Biol Chem 258: 14664–14674

    CAS  Google Scholar 

  • Creutz CE, Dowling LG, Kyger EM, Franson RC (1985) Phosphatidylinositol-specific phospholipase C activity of chromaffin granule-binding proteins. J Biol Chem 260: 7171–7173

    PubMed  CAS  Google Scholar 

  • Creutz CE, Zaks WJ, Hamman HC, Crane S, Martin WH, Gould KL, Oddie KM, Parsons SJ (1987) Identification of chromaffin granule-binding proteins. J Biol Chem 262: 1860–1868

    PubMed  CAS  Google Scholar 

  • Crews FT, Morita Y, Hirata F, Axelrod J, Siraganian RP (1980) Phospholipid methylation affects immunoglobulin E-mediated histamine and arachidonic acid release in rat leukemic basophils. Biochem Biophys Res Commun 93: 42–49

    PubMed  CAS  Google Scholar 

  • Cubeddu LX, Weiner N (1975) Nerve stimulation-mediated overflow of norepinephrine and dopamine ß-hydroxylase. III. Effects of norepinephrine depletion on the alpha presynaptic regulation of release. J Pharmacol Exp Ther 192: 1–14

    Google Scholar 

  • Cubeddu LX, Barnes EM, Langer SZ, Weiner N ( 1974 a) Release of norepinephrine and dopamine ß-hydroxylase by nerve stimulation. I. Role of neuronal and extraneuronal uptake and of alpha presynaptic receptors. J Pharmacol Exp Ther 190: 431–450

    Google Scholar 

  • Cubeddu LX, Barnes E, Weiner N ( 1974 b) Release of norepinephrine and dopamine ß-hydroxylase by nerve stimulation. II. Effects of papaverine. J Pharmacol Exp Ther 191: 444–457

    Google Scholar 

  • Cubeddu LX, Barnes E, Weiner N (1975) Release of norepinephrine and dopamine ß-hydroxylase by nerve stimulation. J Pharmacol Exp Ther 193: 105–127

    PubMed  CAS  Google Scholar 

  • Cubeddu LX, Santiago E, Talmaciu R, Pinardi G (1977) Adrenal origin of the increase in plasma dopamine ß-hydroxylase and catecholamines induced by hemorrhagic hypotension in dogs. J Pharmacol Exp Ther 203: 587–597

    PubMed  CAS  Google Scholar 

  • Cubeddu LX, Barbella YR, Marrero A, Trifaro J, Israel AS (1979) Circulating pool and adrenal soluble content of dopamine ß-hydroxylase (DBH), in rats, guina pigs, dogs and humans: their role in determining acute stress-induced changes and plasma enzyme levels. J Pharmacol Exp Ther 211: 271–279

    PubMed  CAS  Google Scholar 

  • Dabrow M, Zaremba S, Hogue-Angeletti R (1980) Specificity of synexin-induced chromaffin granule aggregation. Biochem Biophys Res Commun 96: 1164–1171

    PubMed  CAS  Google Scholar 

  • Dahl G, Ekerdt R, Gratzl M (1979) Models for exocytotic membrane fusion. In: Secretory Mechanisms (Eds Hopkins CR, Duncan CJ), Soc for Exp Biol Symp vol XXXIII, pp 349–368, Cambridge: Univ.-Press.

    Google Scholar 

  • Dahlström A (1971) Axoplasmic transport (with particular respect to adrenergic neurons). Phil Trans Roy Soc Lond B 261: 325–358

    Google Scholar 

  • Dahlström A (1973) Aminergic transmission. Introduction and short review. Brain Res 62: 441–460

    PubMed  Google Scholar 

  • Daniels AJ, Dean G, Viveros OH, Diliberto EJ (1983) Secretion of newly taken up ascorbic acid by adrenomedullary chromaffin cells originates from a compartment different from the catecholamine storage vesicles. Molec Pharm 23: 437–444

    PubMed  CAS  Google Scholar 

  • Davis B, Lazarus NR (1976) An in vitro system for studying insulin release caused by secretory granules—plasma membrane interaction: definition of the system. J Physiol (Lond) 256: 709–729

    CAS  Google Scholar 

  • Dean PM (1975) Exocytosis modelling: an electrostatic function for calcium in stimulus-secretion coupling. J theor Biol 54: 289–308

    PubMed  CAS  Google Scholar 

  • Dean PM, Matthews EK (1974) Calcium-ion binding to the chromaffin granule surface. Biochem J 142: 637–640

    PubMed  CAS  Google Scholar 

  • De Block J, De Potter W (1987) The cell-free interaction between chromaffin granules and plasma membranes: An in vitro model for exocytosis? FEBS 222: 358–359

    Google Scholar 

  • De Camilli P, Cameron R, Greengard P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic-section. J Cell Biol 96: 1337–1354

    Google Scholar 

  • De Duve C, Cameron MP (1963) Endocytosis. In: De Reuck AVS, (eds) Lysosomes. Ciba Foundation Symposium Churchill London pp 126

    Google Scholar 

  • De Lorenzo RJ (1981) The calmodulin hypothesis of neurotransmission. Cell Calcium 2: 365–385

    Google Scholar 

  • De Lorenzo RJ, Freedman SD, Yohe WB, Maurer SC (1979) Stimulation of Cat+ dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc Natl Acad Sci USA 76: 1838–1842

    Google Scholar 

  • De Oliveira-Filgueiras OM, van den Besselar AMHP, van den Bosch H (1979) Localization of lysophosphatidylcholine in bovine chromaffin granules. Biochem Biophys Acta 558: 73–84

    PubMed  Google Scholar 

  • De Potter WP, Chubb IW (1977) Biochemical observations on the formation of small noradrenergic vesicles in the splenic nerve of the dog. Neuroscience 2: 167–174

    PubMed  Google Scholar 

  • De Potter WP, Moerman EJ, de Schaepdryver AF, Smith AD (1969a) Release of noradrenaline and dopamine ß-hydroxylase upon splenic nerve stimulation. Proc 4th int Congr Pharmac Abstracts. Schwabe & Co, Basel p 146

    Google Scholar 

  • De Potter WP, de Schaepdryver AF, Moerman EJ, Smith AD (1969 b) Evidence for the release of vesicle proteins together with noradrenaline upon stimulation of the splenic nerve. J Physiol (Lond) 204: 102P–104 P

    Google Scholar 

  • De Potter WP, Chubb IW, de Schaepdryver AF (1971a) Pharmacological aspects of peripheral noradrenergic transmission. Arch Int Pharmacol 196: 258–287

    Google Scholar 

  • De Potter WP, Chubb IW, Put A, de Schaepdryver AF (1971 b) Facilitation of the release of noradrenaline and dopamine ß-hydroxylase at low stimulation frequencies by a-blocking agents. Arch Int Pharmacol 193: 191–197

    Google Scholar 

  • De Potter WP, Coen EP, de Potter RW (1987) Evidence for the coexistence and co-release of (met)enkephalin and noradrenaline from sympathetic nerves of the bovine vas deferens. Neuroscience 20: 855–866

    PubMed  Google Scholar 

  • De Robertis EDP, Sabatini DD (1960) Submicroscopic analysis of the secretory process in the adrenal medulla. Fed Proc 19: 70–78

    Google Scholar 

  • De Robertis EDP, vaz Ferreira A (1957) Electron microscope study of the excretion of catechol-containing droplets in the adrenal medulla. Exp Cell Res 12: 568–547

    Google Scholar 

  • Diliberto EJ (1982) Protein carboxyl methylation: putative role in exocytosis and in the cellular regulation of secretion and chemotaxis. In: Cohn PM (ed) Cellular Regulation of Secretion and Release. Cell Biology: A comprehensive treatise. Academic Press New York pp 147–192

    Google Scholar 

  • Diliberto EJ, Viveros OH, Axelrod J (1976) Subcellular distribution of protein carboxymethylase and its endogenous substrates in the adrenal medulla: possible role in excitation-secretion coupling. Proc Natl Acad Sci USA 73: 4050–4054

    PubMed  CAS  Google Scholar 

  • Diner, 0 (1967) L’expulsion des granules de la médullosurrénale chez le hamster. C R Acad Sci (Paris) 265: 616–619

    Google Scholar 

  • Dixon WR, Garcia AG, Kirpekar SM (1975) Release of catecholamines and dopamine ß-hydroxylase from the perfused adrenal gland of the cat. J Physiol (Lond) 244: 805–824

    CAS  Google Scholar 

  • Dixon JS, Fozard JR, Gosling JA, Muscholl E, Ritzel H (1978) Atrial sympathetic nerves after perfusion of the rabbit heart with low sodium solutions containing potassium chloride or urea—a biochemical, histochemical and fine structural study. Neuroscience 3, 1157–2267

    PubMed  CAS  Google Scholar 

  • Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Brit J Pharmacol 34: 451–474

    CAS  Google Scholar 

  • Douglas WW (1974 a) Involvement of calcium in exocytosis and the exocytosis vesiculation sequence. Biochem Soc Symp 39:1–28

    PubMed  CAS  Google Scholar 

  • Douglas WW (1974b) Exocytosis and the exocytosis-vesiculation sequence: with special reference to neurohypophysis, chromaffin and mast cells, calcium and calcium ionophores. In: Thorn NA, Petersen OH (eds) Secretory mechanisms of exocrine glands. Munksgaard Copenhagen pp 116–136

    Google Scholar 

  • Douglas WW, Nemeth EF (1982) On the calcium receptor activating exocytosis: inhibitory effects of calmodulin-interacting drugs on rat mast cells. J Physiol 323: 229–244

    PubMed  CAS  Google Scholar 

  • Douglas WW, Poisner AM (1966) On the relation between ATP splitting and secretion in the adrenal chromaffin cell: extrusion of ATP (unhydrolysed) during release of catecholamines. J Physiol (Lond) 183: 249–256

    CAS  Google Scholar 

  • Douglas WW, Sorimachi M (1972 a) Colchicine inhibits adrenal medullary secretion evoked by acetylcholine without affecting that evoked by potassium. Br J Pharmacol 45: 129–132

    Google Scholar 

  • Douglas WW, Sorimachi M (1972 b) Effects of cytochalasin B and colchicine on secretion of posterior pituitary and adrenal medullary hormones. Br J Pharmacol 45: 143–144 P

    Google Scholar 

  • Douglas WW, Poisner AM, Rubin RP (1965) Efflux of adenine nucleotides from per-fused adrenal glands exposed to nicotine and other chromaffin cell stimulants. J Physiol (Lond) 179: 130–137

    CAS  Google Scholar 

  • Douglas WW, Kanno T, Sampson SR (1967) Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizating effect of acetylcholine. J Physiol (Lond) 191: 107–121

    CAS  Google Scholar 

  • Dowd DJ, Edwards C, Englert D, Mazurkiewicz JE, YE, HZ (1983) Immunofluorescent evidence for exocytosis and internalization of secretory granule membrane in isolated chromaffin cells. Neuroscience 10: 1025–1033

    PubMed  CAS  Google Scholar 

  • Droz B, Rambourg A, Koenig HL (1975) The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport. Brain Res 93: 1–13

    PubMed  CAS  Google Scholar 

  • Dunn LA, Holz RW (1983) Catecholamine secretion from digitonin-treated adrenal medullary chromaffin cells. J Biol Chem 258: 4989–4993

    PubMed  CAS  Google Scholar 

  • Eagles PAM, Johnson LN, van Horn C (1975) The distribution of concanavalin A receptor sites on the membrane of chromaffin granules. J Cell Sci 19: 33–54

    PubMed  CAS  Google Scholar 

  • Echeverría OM, Vazquez-Nin GH, Chavez B (1977) Correlated ultrastructural and biochemical studies on the mechanisms of secretion of catecholamines Acta anat 98: 313–324

    Google Scholar 

  • Edwards AV, Furness PN, Helle KB (1979) Adrenal medullary responses to stimulation of the peripheral end of the splanchnic nerve in conscious calves. J Physiol (Lond) 300: 51 P

    Google Scholar 

  • Edwards W, Phillips SJH, Morris SJ (1974) Structural changes in chromaffin granules induced by divalent cations. Biochim Biophys Acta 356: 164–173

    PubMed  CAS  Google Scholar 

  • Eiden LE, Huttner WB, Mallet J, O’Conner DT, Winkler H, Zanini A (1987) A nomenclature proposal for the chromogranin/secretogranin proteins. Neuroscience 21: 1019–1021

    PubMed  CAS  Google Scholar 

  • Ekerdt R, Dahl G, Gratzl M (1981) Membrane fusion of secretory vesicles and liposomes. Two different types of fusion. Biochem Biophys Acta 646: 10–22

    Google Scholar 

  • Elfvin LG (1965) The ultrastructure of the capillary fenestrae in the adrenal medulla of the rat. J Ultrastruct Res 12: 687–704

    PubMed  CAS  Google Scholar 

  • Englert DF (1980) An optical study of isolated rat adrenal chromaffin cells. Exp Cell Res 125: 369–376

    PubMed  CAS  Google Scholar 

  • Englert DF, Perlman RL (1981) Permeant anions are not required for norepinephrine secretion from phaeochromocytoma cells. Biochem Biophys Acta 674: 136–143

    PubMed  CAS  Google Scholar 

  • Farquhar MG (1978) Recovery of surface membrane in anterior pituitary cells. Varia- tions in traffic detected with anionic and cationic ferritin. J Cell Biol R35–R42

    Google Scholar 

  • Farquhar MG (1982) Membrane recycling in secretory cells: pathway to Golgi complex. In: Evered D, Collins GM (eds) Membrane Recycling, Ciba Foundation Symposium, vol 92. Pittman Bath Press pp 157–183

    Google Scholar 

  • Farquhar MG (1983) Multiple pathways of exocytosis, endocytosis and membrane recycling: validation of a Golgi route. Fed Proc 42: 2407–2413

    PubMed  CAS  Google Scholar 

  • Farrell KE (1968) Fine structure of nerve fibres in smooth muscle of the vas deferens in normal and reserpinized rats. Nature 217: 279–281

    PubMed  CAS  Google Scholar 

  • Fenwick EM, Livett BG (1976) Antigens of adrenal medullary vesicles and their fate following exocytosis. Proc Australian Biochem Soc 9: 63

    Google Scholar 

  • Fenwick EM, Fajdiga PB, Howe NBS, Livett BG (1978) Functional and morphological characterization of isolated bovine adrenal medullary cells. J Cell Biol 76: 12–30

    PubMed  CAS  Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982 a) Sodium and calcium channels in bovine chromaffin cells. J Physiol (Lond) 331: 599–635

    Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982 b) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol (Lond) 331: 577–597

    Google Scholar 

  • Ferris RM, Viveros OH, Kirshner N (1970) Effects of various agents on the Mg2+-ATP stimulated incorporation and release of catecholamines by isolated bovine adren omedullary storage vesicles and on secretion from the adrenal medulla. Biochem Pharmacol 19: 505–514

    PubMed  CAS  Google Scholar 

  • Fillenz M (1971) Fine structure of noradrenaline storage vesicles in nerve terminals of the rat vas deferens. Phil Trans Roy Soc Lond B 261: 319–323

    CAS  Google Scholar 

  • Fillenz M (1977) The factors which provide short-term and long-term control of transmitter release. Prog Neurobiol 8: 251–278

    Google Scholar 

  • Fillenz M (1979) Ultrastructural studies of the mechanism of release. In: ( Paton DM ) (ed) The release of catecholamines from adrenergic neurons. Pergamon Press Oxford, pp 17–37

    Google Scholar 

  • Fillenz M, Howe PRC (1975) Depletion of noradrenaline stores in sympathetic nerve terminals. J Neurochem 24: 683–688

    PubMed  CAS  Google Scholar 

  • Fillenz M, West DP (1974) Changes in vesicular dopamine ß-hydroxylase resulting from transmitter release. J Neurochem. 23: 411–416

    PubMed  CAS  Google Scholar 

  • Fillenz M, West DP (1976) Fate of noradrenaline storage vesicles after release. Neurosc Lett 2: 285–287

    CAS  Google Scholar 

  • Fillenz M, Gagnon C, Stoeckel K, Thoenen H (1976) Selective uptake and retrograde axonal transport of dopamine ß-hydroxylase antibodies in peripheral adrenergic neurons. Brain Res 114: 293–303

    PubMed  CAS  Google Scholar 

  • Fischer-Colbrie R, Frischenschlager I (1985) Immunological characterization of secretory proteins of chromaffin granules: chromogranins A, chromogranins B and enkephalin-containing peptides. J Neurochem 44: 1854–1861

    PubMed  CAS  Google Scholar 

  • Fischer-Colbrie R, Schachinger M, Zangerle R, Winkler H (1982) Dopamine ß-hydroxylase and other glycoproteins from the soluble content and the membranes of adrenal chromaffin granules: Isolation and carbohydrate analysis. J Neurochem 38: 725–732

    Google Scholar 

  • Fischer-Colbrie R, Zangerle R, Frischenschlager I, Weber A, Winkler H (1984) Isolation and immunological characterization of a glycoprotein from adrenal chromaffin granules. J Neurochem 42: 1008–1016

    PubMed  CAS  Google Scholar 

  • Fischer-Colbrie R, Lassmann H, Hagn C, Winkler H (1985) Immunological studies on the distribution of chromogranin A and B in endocrine and nervous tissues. Neuroscience 16: 547–555

    PubMed  CAS  Google Scholar 

  • Fischer-Colbrie R, Guerra DJ, Emson PC, Winkler H (1986) Bovine chromaffin granules immunological studies with antisera against neuropeptide Y, Met-enkephalin and bombesin. Neuroscience 18: 167–174

    Google Scholar 

  • Forsberg EJ, Rojas E, Pollard HB (1986) Muscarinic receptor enhancement of nicotine-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J Biol Chem 261: 4915–4920

    PubMed  CAS  Google Scholar 

  • Fowler VM, Pollard HB (1982a) In vitro reconstitution of chromaffin granule—cytoskeleton interactions: ionic factors influencing the association of F-actin with purified chromaffin granule membranes. J Cell Biochem 18: 295–311

    PubMed  CAS  Google Scholar 

  • Fowler VM, Pollard HB (1982 b) Chromaffin granule membrane F-actin interactions are calcium sensitive. Nature 5847: 336–339

    Google Scholar 

  • Fredholm BB, Fried G, Hedqvist P (1982) Origin of adenosine released from rat vas deferens by nerve stimulation. Eur J Pharmacol 79: 233–243

    PubMed  CAS  Google Scholar 

  • French AM, Scott NC (1983) Evidence to support the hypothesis that ATP is a co-transmitter in rat vas deferens. Experientia 39: 264–266

    PubMed  CAS  Google Scholar 

  • Fried G (1978) Cytochrome b-561 in sympathetic nerve terminal vesicles from rat vas deferens. Biochim Biophys Acta 507: 175–177

    PubMed  CAS  Google Scholar 

  • Fried G (1980) Small noradrenergic storage vesicles isolated from rat vas deferensbiochemical and morphological characterization. Acta Physiol Scand, Suppl 493: 1–28

    CAS  Google Scholar 

  • Fried G (1981) Noradrenaline release and uptake in isolated small dense cored vesicles from rat seminal ducts. Acat Physiol Scand 112: 41–46

    CAS  Google Scholar 

  • Fried G, Lagercrantz H, Hökfelt T (1978) Improved isolation of small noradrenergic vesicles from rat seminal ducts following castration. A density gradient centrifugation and morphological study. Neuroscience 3: 1271–1291

    Google Scholar 

  • Fried G, Thureson-Klein A, Lagercrantz H (1981) Noradrenaline content correlated to matrix density in small noradrenergic vesicles from rat seminal ducts. Neuroscience 6: 787–800

    PubMed  CAS  Google Scholar 

  • Fried G, Nestler EJ, de Camilli P, Stjärne L, Olson L, Lundberg JM, Hökfelt T, Qui-met CC, Greengard P (1982) Cellular and subcellular localization of protein I in the peripheral nervous system. Proc Natl Acad Sci USA 79: 2717–2721

    PubMed  CAS  Google Scholar 

  • Fried G, Terenius L, Hökfelt T, Goldstein M (1985) Evidence for differential localization of noradrenaline and neuropeptide Y in neuronal storage vesicles isolated from rat vas deferens. J Neuroscience 5: 450–458

    CAS  Google Scholar 

  • Frischenschlager I (1985) Lysolecithin and Phospholipase A2 in den chromaffinen Granula des Nebennierenmarks and Stimulus-Secretion-Coupling. Ph D Thesis, Innsbruck

    Google Scholar 

  • Frischenschlager I, Schmidt W, Winkler H (1983) Is lysolecithin an in vivo constituent of chromaffin granules? J Neurochem 41: 1480–1483

    PubMed  CAS  Google Scholar 

  • Frydman R, Geffen LB (1973) Depletion and repletion of adrenal dopamine ß-hydroxylase after reserpine Immunohistochemical and fine structural correlates. J Histochem Cytochem 21: 166–174

    PubMed  CAS  Google Scholar 

  • Frye RA, Holz RW (1983) Phospholipase A2 inhibitors block catecholamine secretion and calcium uptake in cultured bovine adrenal medullary cells. Mol Pharmacol 23: 547–550

    PubMed  CAS  Google Scholar 

  • Freye RA, Holz RW (1984) The relationship between arachidonic acid release and catecholamine secretion from cultured bovine adrenal chromaffin cells. J Neurochem 43: 146–150

    Google Scholar 

  • Frye RA, Holz RW (1985) Arachidonic acid release and catecholamine secretion from digitonin-treated chromaffin cells: effects of micromolar calcium, phorbol ester and protein alkylating agents. J Neurochem 44: 265–273

    PubMed  CAS  Google Scholar 

  • Furness JB, Lewis SY, Rush R, Costa M, Geffen LB (1977) Involvement of complement in degeneration of sympathetic nerves after administration of antiserum to dopamine ß-hydroxylase. Brain Res 136: 67–75

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M, Rush RA, Geffen LB (1979) Noradrenergic transmission in isolated guinea-pig intestine following in vivo administration of antibodies to dopamine ß-hydroxylase. Aust J Exp Biol Med Sci 57: 203–209

    PubMed  CAS  Google Scholar 

  • Gabbiani G, da Prada M, Richards G, Pletscher A (1976) Actin associated with mem- branes of monoamine storage organelles. Proc Soc Expl Biol Med 152: 135–138

    Google Scholar 

  • Gagliardino JJ, Harrison DE, Christie MR, Gagliardino EE, Ashcroft SJH (1980) Evidence for the participation of calmodulin in stimulus—secretion coupling in the pancreatic ß-cell. Biochem J 192: 919–927

    PubMed  CAS  Google Scholar 

  • Gagnon C, Heisler S (1979) Protein carboxyl-methylation: role in exocytosis and chemotaxis. Life Sci 25: 993–1000

    PubMed  CAS  Google Scholar 

  • Gagnon C, Viveros OH, Diliberto EJ, Axelrod J (1978) Enzymatic methylation of carboxyl groups of chromaffin granule membrane proteins. J Biol Chem 253: 3778–3781

    PubMed  CAS  Google Scholar 

  • Garcia AG, Kirpekar SM (1973) Release of noradrenaline from the cat spleen by sodium deprivation. Br J Pharmc 47: 729–747

    CAS  Google Scholar 

  • Garcia AG, Kirpekar SM, Prat JC (1975) A calcium ionophore stimulating the secretion of catecholamines from the cat adrenal. J Physiol 244: 253–262

    PubMed  CAS  Google Scholar 

  • Geffen LB, Jarrott B (1977) Cellular aspects of catecholamine neurons. In: Blaschko H, Sayers G, Smith A.D. (eds) The nervous system I. American Physiological Society Baltimore, pp 521–571 Handbook of Physiology, vol 15

    Google Scholar 

  • Geffen LB, Livett BG (1971) Synaptic vesicles in sympathetic neurons. Physiol Rev 51: 98–157

    PubMed  CAS  Google Scholar 

  • Geffen LB, Livett BG, Rush RA (1969) Immunological localization of chromogranins in sheep sympathetic neurons and their release by nerve impulses. J Physiol 204: 58–59 P

    Google Scholar 

  • Geffen LB, Livett BG, Rush RA (1970) Immunohistochemical localization of chromogranins in sheep sympathetic neurones and their release by nerve impulses. In: Schuhmann HJ, Kronenberg G (eds) New aspects of storage and release mechanism of catecholamines ( Bayer Symposium II ). Springer Berlin Heidelberg New York, pp 58–72

    Google Scholar 

  • Geisow MJ, Burgoyne RD (1982) Calcium-dependent binding of cytosolic proteins by chromaffin granules from adrenal medulla. J Neurochem 39: 1735–1741

    Google Scholar 

  • Geisow MJ, Burgoyne RD (1983) Recruitment of cytosolic proteins to a secretory granule membrane depends on Ca“-calmodulin. Nature 301: 432–435

    PubMed  CAS  Google Scholar 

  • Geisow MJ, Burgoyne RD (1987) An integrated approach to secretion. Ann N Y Acad Sci 493: 563–576

    PubMed  CAS  Google Scholar 

  • Geisow MJ, Burgoyne RD, Harris A (1982) Interaction of calmodulin with adrenal chromaffin granule membranes. FEBS Lett 143: 69–72

    PubMed  CAS  Google Scholar 

  • Geisow MJ, Fritsche U, Hexham JM, Dash B, Johnson T (1986) A consensus amino-acid sequence repeat in torpedo and mammalian Ca“-dependent membrane-binding proteins. Nature 320: 636–638

    PubMed  CAS  Google Scholar 

  • Gewirtz GP, Kopin IJ (1970) Release of dopamine ß-hydroxylase with norepinephrine during cat splenic nerve stimulation. Nature 227: 406–407

    PubMed  CAS  Google Scholar 

  • Gomperts BD, Barrowman MM, Cockcroft S (1986) Dual role for guanine nucleotides in stimulus-secretion coupling. Fed Proc 45: 2156–2161

    PubMed  CAS  Google Scholar 

  • Gratzl M, Dahl G (1978) Fusion of secretory vesicles isolated from rat liver. J Membr Biol 40: 343–364

    PubMed  CAS  Google Scholar 

  • Gratzl M, Dahl G, Russell JT, Thorn NA (1977) Fusion of neurohypophyseal membranes in vitro. Biochim Biophys Acta 470: 45–57

    PubMed  CAS  Google Scholar 

  • Gratzl M, Krieger-Brauer H, Ekerdt R (1981) Latent acetylcholinesterase in secretory vesicles isolated from adrenal medulla. Biochim Biophys Acta 649: 355–366

    PubMed  CAS  Google Scholar 

  • Green DJ, Westhead EW, Langley KH, Sattelle DB (1978) Aggregation and dispersity of isolated chromaffin granules studied by intensity fluctuation spectroscopy. Biochim Biophys Acta 539: 364–371

    PubMed  CAS  Google Scholar 

  • Grumet M, Lin S (1981) Purification and characterization of an inhibitor protein with cytochalasin-like activity from bovine adrenal medulla Biochim Biophys Acta 678: 381–387

    CAS  Google Scholar 

  • Grynszpan-Winograd 0 (1971) Morphological aspects of exocytosis in the adrenal medulla. Phil Trans Roy Soc Lond B 261: 291–292

    Google Scholar 

  • Guidotti A, Costa E (1973) Involvement of adenosine 3’-5’-monophosphate in the activation of tyrosine hydroxylase elicited by drugs. Science 179: 902–904

    PubMed  CAS  Google Scholar 

  • Gumbiner B, Kelly RB (1982) Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells. Cell 28: 51–59

    PubMed  CAS  Google Scholar 

  • Gutman, Y, Boonyaviroj P (1979 a) Mechanism of PGE inhibition of catecholamine release from adrenal medulla. Eur J Pharmcol 55: 129–136

    Google Scholar 

  • Gutman Y, Boonyaviroj P (1979 b) Activation of adrenal medulla adenylate cyclase and catecholamine secretion. Naunyn-Schmiedebergs Arch Pharmacol 307: 39–44

    Google Scholar 

  • Gutman Y, Lichtenberg D, Cohen J, Boonyaviroj P (1979) Increased catecholamine release from adrenal medulla by liposomes loaded with sodium or calcium ions. Biochem Pharmacol 28: 1209–1211

    PubMed  CAS  Google Scholar 

  • Häggendal J (1982) Noradrenaline and dopamine-beta-hydroxylase levels in rat salivary glands after preganglionic nerve stimulation: Evidence for re-use of amine storage granules in transmitter release. J Neural Transmission 53: 147–158

    Google Scholar 

  • Häggendal J, Malmfords T (1969) The effect of nerve stimulation on catecholamines taken up in adrenergic nerves after reserpine pretreatment. Acta Physiol Scand 75: 33–38

    PubMed  Google Scholar 

  • Hagn C, Klein RL, Fischer-Colbrie R, Douglas BH, Winkler H (1986) An immunological characterization of five common antigens of chromaffin granules and of large dense-cored vesicles of sympathetic nerve. Neurosci Lett 67: 295–300

    PubMed  CAS  Google Scholar 

  • Hampton RY, Holz RW (1983) Effects of changes in osmolatity on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis. J Cell Biol 96: 1082–1088

    PubMed  CAS  Google Scholar 

  • Harish 0E, Kao LS, Raffaniallo R, Wakade AR, Schneider AS (1987) Calcium dependence of muscarinic receptormediated catecholamine secretion from the perfused rat adrenal medulla. J Neurochem 48: 1730–1735

    Google Scholar 

  • Harris B, Cheek TR, Burgoyne RD (1986) Effects of metalloendoproteinase inhibitors on secretion and intracellular free calcium in bovine adrenal chromaffin cells. Biochim Biophys Acta 889: 1–5

    PubMed  CAS  Google Scholar 

  • Haycock JW, Bennett WF, George RJ, Waymire JC (1982) Multiple site phosphorylation of tyrosine hydroxylase. J Biol Chem 257:13 699–13 703

    Google Scholar 

  • Heisler S, Chauvelot L, Desjardins D, Noel Ch, Lambert H, Desy-Audet L (1981) Stimulus-secretion coupling in exocrine pancreas: possible role of calmodulin. Can J Physiol Pharmacol 59: 994–1001

    PubMed  CAS  Google Scholar 

  • Helle KB, Serck-Hanssen G (1975) The adrenal medulla: a model for studies of hormonal and neuronal storage and release mechanism. Molec Cell Biochem 6: 127–146

    PubMed  CAS  Google Scholar 

  • Helle KB, Serck-Hanssen G, Bock E (1978) Complexes of chromogranin A and dopamine ß-hydroxylase among the chromogranins of the bovine adrenal medulla. Biochim Biophys Acta 533: 396–407

    PubMed  CAS  Google Scholar 

  • Herzog V, Farquhar MG (1977) Luminal membrane retrieved after exocytosis reaches most Golgi cisternae in secretory cells. Proc Natl Acad Sci USA 74: 5073–5077

    PubMed  CAS  Google Scholar 

  • Herzog V, Miller F (1979) Route of luminal plasma membrane retrieved by endocytosis in thyroid follicle cells. Biol Cell 36: 163–166

    Google Scholar 

  • Hesketh JE, Aunis D, Mandel P, Devilliers G (1978) Biochemical and morphological studies of bovine adrenal medullary myosin. Biol Cell 33: 199–208

    CAS  Google Scholar 

  • Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81: 275–300

    PubMed  CAS  Google Scholar 

  • Hirata F, Axelrod J, Crews FT (1979) Concanavalin A stimulates phospholipid methylation and phosphatidylserine decarboxylation in rat mast cells. Proc Natl Acad Sci USA 76: 4813–4816

    PubMed  CAS  Google Scholar 

  • Hirst GDS, Neild TO (1980) Some properties of spontaneous excitatory junction potentials recorded from arterioles of guinea pigs. J Physiol (Lond) 303: 43–60

    CAS  Google Scholar 

  • Hiwatari M, Taira N (1978) Differential effects of D600 on release of catecholamines by acetylcholine, histamine, tyramine and by cyclic AMP from canine adrenal medulla. Jap J Pharmacol 28: 671–680

    PubMed  CAS  Google Scholar 

  • Hoffman PG, Zinder O, Bonner WM, Pollard HB (1976) Role of ATP and ß-y-iminoadenosinetriphosphate in the stimulation of epinephrine and protein release from isolated adrenal secretory vesicles. Arch Biochem Biophys 176: 375–388

    PubMed  CAS  Google Scholar 

  • Hökfelt T (1966) The effect of reserpine on the intraneuronal vesicles of rat vas defer-ens. Experientia 22: 56

    PubMed  Google Scholar 

  • Holman M (1970) Junction potentials in smooth muscle. In: Bülbring E, Brading A, Jones A, Tornita T, (eds) Smooth Muscle Arnold Ltd. London pp 244–288

    Google Scholar 

  • Holtzman E (1977) The origin and fate of secretory packages especially synpatic vesicles. Neuroscience 2: 327–355

    PubMed  CAS  Google Scholar 

  • Holtzman E, Dominitz R (1968) Cytochemical studies of lysosomes, Golgi apparatus and endoplasmic reticulum in secretion and protein uptake by adrenal medulla cells of the rat. J Histochem Cytochem 16: 320–336

    Google Scholar 

  • Holtzman E, Teichberg S, Abrahams SJ, Citkowitz E, Crain SM, Kawai N, Peterson ER (1973) Notes on synaptic vesicles and releated structures, endoplasmic reticulum, lysosomes and peroxisomes in nervous tissue and the adrenal medulla. J Histochem Cytochem 21: 349–385

    PubMed  CAS  Google Scholar 

  • Holz RW (1986) The role of osmotic forces in exocytosis from adrenal chromaffin cells. Ann Rev Physiol 48: 175–189

    CAS  Google Scholar 

  • Holz RW, Senter RA (1985) Plasma membrane and chromaffin granule characteristics in digitonin-treated chromaffin cells. J Neurochem 45: 1548–1557

    PubMed  CAS  Google Scholar 

  • Holz RW, Senter RA (1986) Effects of osmolality and ionic strength on secretion from adrenal chromaffin cells permeabilized with digitonin. J Neurochem 46: 1835–1842

    PubMed  CAS  Google Scholar 

  • Holz RW, Senter RA, Sharp RR (1983) Evidence that the H electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis. J Biol Chem 258: 7506–7513

    PubMed  CAS  Google Scholar 

  • Hong K, Düzgünes N, Papahadjopoulos D (1981) Role of synexin in membrane fusion. J Biol Chem 256: 3641–3644

    PubMed  CAS  Google Scholar 

  • Hong K, Düzgünes N, Ekerdt R, Papahadjopoulos D (1982) Synexin facilitates fusion of specific phospholipid membranes at divalent cation concentration found intracellulary. Proc Natl Acad Sci USA 79: 4642–4644

    PubMed  CAS  Google Scholar 

  • Hook YHV, Eiden LE (1985) (MET) enkephalin and carboxypeptidase processing enzyme are co-released from chromaffin cells by cholinergic stimulation. Biochem Biophysic Res Comm 128: 563–570

    Google Scholar 

  • Hoshi T, Smith SJ (1987) Large depolarization induces long openings of voltage-de- pendent calcium channels in adrenal chromaffin cells. J Neurosci 7: 571–580

    PubMed  CAS  Google Scholar 

  • Huber E, König P, Schuler G, Aberer W, Plattner H, Winkler H (1979) Characterization and topography of the glycoproteins of adrenal chromaffin granules. J Neurochem 32: 35–47

    PubMed  CAS  Google Scholar 

  • Husebye ES, Flatmark T (1987) Characterization of phosholipase activities in chromaffin granule ghosts isolated from the bovine adrenal medulla. Biochim Biophys Acta 920: 120–130

    PubMed  CAS  Google Scholar 

  • Ishikawa K, Kanno T (1978) Influences of extracellular calcium and potassium concentrations on adrenaline release and membrane potential in the perfused adrenal medulla of the rat. Jap J Physiol 28: 275–289

    CAS  Google Scholar 

  • Ito S (1983) Time course of release of catecholamine and other granular contents from perifused adrenal chromaffin cells of guinea pig. J Physiol 341: 153–167

    PubMed  CAS  Google Scholar 

  • Izumi F, Oka M, Kashimoto T (1971) Role of calcium for magnesium-activated adenosinetriphosphatase activity and adenosinetriphosphatemagnesium stimulated catecholamine release from adrenal medullary granules. Jap J Pharmacol 21: 739–746

    PubMed  CAS  Google Scholar 

  • Izumi F, Oka M, Morita K, Azuma H (1975) Catecholamine releasing factor in bovine adrenal medulla. FEBS Lett 56: 73–76

    PubMed  CAS  Google Scholar 

  • Izumi F, Kashimoto T, Miyashita T, Wada A, Oka M (1977) Involvement of membrane associated protein in ADP-induced lysis of chromaffin granules. FEBS Lett 76: 177–180

    Google Scholar 

  • Izumi F, Yanagihara N, Wada A, Toyohira Y, Kobayashi H (1986) Lysis of chromaffin granules by phospholipase A2-treated plasma membranes. FEBS Lett 196: 349–352

    PubMed  CAS  Google Scholar 

  • Jaanus SD, Rubin RP (1974) Analysis of the role of cyclic adenosine 3’-5-monophosphate in catecholamine release. J Physiol (Lond) 237: 465–476

    CAS  Google Scholar 

  • Jacobowitz DM, Ziegler MG, Thomas JA (1975) In vivo uptake of antibody to dopamine ß-hydroxylase into sympathetic elements. Brain Res 91: 165–170

    PubMed  CAS  Google Scholar 

  • Jacobs TP, Henry DP, Johnson DG, Williams RH (1978) Epinephrine and dopamine ß-hydroxylase secretion from bovine adrenal. Am J Physiol E600–E605

    Google Scholar 

  • Jaim-Etcheverry G, Zieher LM (1969) Selective demonstration of a type of synaptic vesicles by phosphotungstic acid staining. J Cell Biol 42: 855–860

    PubMed  CAS  Google Scholar 

  • Jaim-Etcheverry G, Zieher LM (1983) Ultrastructural evidence for monoamine uptake by vesicles of pineal sympathetic nerves immediately after their stimulation. Cell Tiss Res 233: 463–469

    CAS  Google Scholar 

  • Johnson DG, Thoa NB, Weinhilboum R, Axelrod J, Kopin IJ (1971) Enhanced release of dopamine ß-hydroxylase from sympathetic nerves by calcium and phenoxybenzamine and its reversal by prostaglandins Proc Natl Acad Sci USA 68: 2227–2230

    CAS  Google Scholar 

  • Johnson DH, McCubbin WD, Kay CM (1977) Isolation and characterization of a myosin-like protein from bovine adrenal medulla. FEBS Lett 77: 69–74

    PubMed  CAS  Google Scholar 

  • Kachi T, Banerji TK, Quay WB (1985) Quantitative ultrastructural analysis of differences in exocytosis number in adrenomedullary adrenaline cells of golden hamsters related to time of day, pinealectomy, and intracellular region. J Pin Res 2: 253–269

    CAS  Google Scholar 

  • Kajihara H, Hirata S, Miyoshi N (1977) Changes in blood catecholamine levels and ultrastructure of dog adrenal medullary cells during hemorrhagic shock. Virchows Arch B Cell Path 23: 1–16

    CAS  Google Scholar 

  • Kao LS, Schneider AS (1985) Muscarinic receptors on bovine chromaffin cells mediate a rise in cytosolic calcium that is independent of extracellular calcium. J Biol Chem 260: 2019–2022

    PubMed  CAS  Google Scholar 

  • Kao LS, Schneider AS (1986) Calcium mobilization and catecholamine secretion in adrenal chromaffin cells. J Biol Chem 261: 4881–4888

    PubMed  CAS  Google Scholar 

  • Kao LS, Westhead EW (1984) Binding of action to chromaffin granules and mitochondria) fractions of adrenal medulla. FEBS Lett 173: 119–123

    PubMed  CAS  Google Scholar 

  • Kataoka Y, Majane EA, Yang HYT (1985) Release of NPY-like immunoreactive material from primary cultures of chromaffin cells prepared from bovine adrenal medulla. Neuropharmacol 24: 693–700

    CAS  Google Scholar 

  • Keen JH, Willingham MC, Pastan IH (1979) Clathrin-coated vesicles: isolation, disso- ciation and factor-dependent reassociation of clathrin baskets. Cell 16: 303–312

    PubMed  CAS  Google Scholar 

  • Kenigsberg RL, Trifaro JM (1985) Microinjection of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation. Neuroscience 14: 335–347

    PubMed  CAS  Google Scholar 

  • Kenigsberg RL, Côte A, Trifaró JM (1982) Trifluoperazine, a calmodulin inhibitor blocks secretion in cultured chromaffin cells at a step distal from calcium entry. Neuroscience 7: 2277–2286

    PubMed  CAS  Google Scholar 

  • Kidokoro Y, Ritchie AK (1980) Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J Physiol (Lond) 307: 199–216

    CAS  Google Scholar 

  • Kidokoro Y, Ritchie AK, Hagiwara S (1979) Effect of tetrodotoxin on adrenaline secretion in the perfused rat adrenal medulla. Nature 278: 63–65

    PubMed  CAS  Google Scholar 

  • Kidokoro Y, Miyazaki S, Ozawa S (1982) Acetylcholine-induced membrane depolarization and potential fluctuations in the rat adrenal chromaffin cell. J Physiol (Lond) 324: 203–220

    CAS  Google Scholar 

  • Kilpatrick DL, Lewis RV, Stein S, Udenfriend S (1980) Release of enkephalins and ekephalin-containing polypeptides from perfused beef adrenal glands. Proc Nat Acad Sci USA 77: 7473–7475

    PubMed  CAS  Google Scholar 

  • Kilpatrick DL, Slepetis RJ, Corcoran JJ, Kirshner N (1982) Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J Neurochem 38: 427–435

    PubMed  CAS  Google Scholar 

  • Kirksey DF, Klein RL, Bagget JMcC, Gasparis MS (1978) Evidence that most of the dopamine ß-hydroxylase is not membrane bound in purified large dense cored noradrenergic vesicles. Neuroscience 3: 71–81

    CAS  Google Scholar 

  • Kirshner N, Smith WJ (1969) Metabolic requirements for secretion from the adrenal medulla. Life Sci 8: 799–803

    PubMed  CAS  Google Scholar 

  • Kirshner N, Viveros OH (1972) The secretory cycle in the adrenal medulla. Pharmacol Rev 24: 385–398

    PubMed  CAS  Google Scholar 

  • Kirshner N, Sage HJ, Smith WJ, Kirshner AG (1966) Release of catecholamines and specific protein from adrenal glands. Science 154: 529–531

    PubMed  CAS  Google Scholar 

  • Kirshner N, Sage HJ, Smith WJ, Kirshner Ag (1967) Mechanism of secretion from the adrenal medulla. 2. Release of catecholamines and storage vesicle protein in response to chemical stimulation. Molec Pharmacol 3: 254–265

    Google Scholar 

  • Klein RL (1982) Chemical composition of the large noradrenergic vesicles. In: ( Klein RL, Lagercrantz H, Zimmermann H ), (eds) Neurotransmitter Vesicles: Composition, Structure and Function, Academic Press New York, pp 133–173

    Google Scholar 

  • Klein RL, Thureson-Klein AK (1984) Noradrenergic vesicles: Molecular organization and function. In: ( Laitha A ) (ed) Handbook Neurochemistry Series, Plenum Press New York pp 71–109

    Google Scholar 

  • Klein RL, Wilson SP, Dzielak DJ, Yang WH, Viveros OH (1982) Opioid peptides and noradrenaline co-exist in large dense cored vesicles from sympathetic nerve. Neuroscience 7: 2255–2261

    PubMed  CAS  Google Scholar 

  • Knight DE (1986) Botulinum toxin types A, B and D inhibit catecholamine secretion from bovine adrenal medullary cells. FEBS 207: 222–226

    CAS  Google Scholar 

  • Knight DE, Baker PF (1982) Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membrane Biol 68: 107–140

    CAS  Google Scholar 

  • Knight DE, Baker PF (1983) The phorbol ester TPA increases the affinity of exocytosis for calcium in “leaky” adrenal medullary cells. FEBS Lett 160: 98–100

    PubMed  CAS  Google Scholar 

  • Knight DE, Baker PF (1985 a) The chromaffin granule proton pump and calcium-dependent exocytosis in bovine adrenal medullary cells. J Membrane Biol 83: 147–156

    Google Scholar 

  • Knight DE, Baker PF (19851x) Guanine nucleotides and Ca-dependent exocytosis. FEBS 189: 345–349

    Google Scholar 

  • Knight DE, Kesteven NT (1983) Evoked transient intracellular free Cat+ changes and secretion in isolated bovine adrenal medullary cells. Proc R Soc Lond B 218: 177–199

    PubMed  CAS  Google Scholar 

  • Knight DE, Scrutton CS (1986) Gaining access to the cytosol: the technique and some applications of electropermeabilization. Biochem J 234: 497–506

    PubMed  CAS  Google Scholar 

  • Knight DE, Tonge DA, Baker PF (1985) Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317: 719–721

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Serizawa Y (1979) Stress-induced degranulation accompanied by vesicle formation in the adrenal chromaffin cells of the mouse. Arch Histol Jap 42: 375–388

    PubMed  CAS  Google Scholar 

  • Koerker RL, Hahn WE, Schneider FH (1974) Electron translucent vesicles in adrenal medulla following catecholamine depletion. Eur J Pharmacol 28: 350–359

    PubMed  CAS  Google Scholar 

  • König P, Hörtnagl H, Kostron H, Sapinsky H, Winkler H (1976) The arrangement of dopamine ß-hydroxylase (EC 1.14.2.1.) and chromomembrin B in the membrane of chromaffin granules. J Neurochem 27: 1539–1541

    PubMed  Google Scholar 

  • Konings F, de Potter W (1981 a) Calcium-dependent in vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules as a model for exocytosis. FEBS Lett 126:103–106

    PubMed  CAS  Google Scholar 

  • Konings F, de Potter W (1981 b) In vitro interaction between bovine adrenal medullary cell membranes and chromaffin granules: specific control by Ca’. NaunynSchmiedeberg’s Arch Pharmacol 317:97–99

    Google Scholar 

  • Konings F, de Potter W (1982 a) The chromaffin granule—plasma membrane interaction as a model for exocytosis: Quantitative release of the soluble granular content. Bioch Biophys Res Commun 104: 254–258

    CAS  Google Scholar 

  • Konings F, de Potter W (1982b) A role for sialic acid containing substrates in the exocytosis-like in vitro interactions between adrenal medullary plasma membranes and chromaffin granules. Biochem Biophys Res Commun 106: 1191–1195

    PubMed  CAS  Google Scholar 

  • Konings F, de Potter W (1983) Protein phosphorylation and the exocytosis-like interaction between isolated adrenal medullary plasma membranes and chromaffin granules. Biochem Biophys Res Commun 110: 55–60

    PubMed  CAS  Google Scholar 

  • Konings F, Majchrowicz B, de Potter W (1983) Release of chromaffin granular content on interaction with plasma membranes. Am J Physiol 244: C309–C312

    PubMed  CAS  Google Scholar 

  • Koter M, de Kruijff B, van Denen LLM (1978) Calcium-induced aggregation and fusion of mixed phosphatidylcholine-phosphatidic acid vesicles as studied by 31P. Biochim Biophys Acta 514: 255–263

    PubMed  CAS  Google Scholar 

  • Kuo ICY, Coffee CJ (1976) Bovine adrenal medulla troponin-C. Demonstration of a calcium-dependent confirmational change. J Biol Chem 251: 6315–6319

    Google Scholar 

  • Ladona MG, Bader MF, Aunis D (1987 a) Influence of hypertonic solutions on catecholamine release from intact and permeabilized cultured chromaffin cells. Biochim Biophys Acta 927: 18–25

    Google Scholar 

  • Ladona MG, Aunis D, Gandia L, Garcia AG (1987 b) Dihydropyridine modulation of the chromaffin cell secretory response. J Neurochem 48: 483–490

    Google Scholar 

  • Lagercrantz H (1976) On the composition and function of large densel cored vesicles in sympathetic nerves. Neuroscience 1: 81–92

    PubMed  CAS  Google Scholar 

  • Langley AE, Gardier RW (1977) Effect of atropine and acetylcholine on nerve stimulated output of noradrenaline and dopamine beta-hydroxylase from isolated rabbit and guinea pig hearts. Naunyn Schmiedeberg’s Arch Pharmacol 297: 251–256

    PubMed  CAS  Google Scholar 

  • Langley AE, Weiner N (1978) Enhanced exocytotic release of norepinephrine consequent to nerve stimulation by low concentrations of cyclic nucleotides in the presence of phenoxybenzamine. J Pharmacol Exp Ther 205: 426–437

    PubMed  CAS  Google Scholar 

  • Lawson D, Raff MC, Comperts B, Fewtrell C, Gilula NB (1977) Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J Cell Biol 72: 242–259

    Google Scholar 

  • Ledbetter Fil, Kirshner N (1981) Quantitative correlation between secretion and cellular content of catecholamines and dopamine ß-hydroxylase in cultures of adrenal medulla cells. Biochem Pharmacol 30: 3246–3249

    Google Scholar 

  • Ledbetter FH, Kilpatrick D, Sage HL, Kirshner N (1978) Synthesis of chromogranins and dopamine ß-hydroxylase by perfused bovine adrenal glands. Am J Phys 235: E475–E486

    CAS  Google Scholar 

  • Lee RWH, Trifaro JM (1981) Characterization of anti-actin antibodies and their use in immunocytochemical studies on the localization of actin in adrenal chromaffin cells in culture. Neuroscience 6: 2087–2108

    PubMed  CAS  Google Scholar 

  • Lee SA, Holz RW (1986) Protein phosphorylation and secretion in digitonin-permeabilized adrenal chromaffin cells. J Biol Chem 261: 17089–17098

    PubMed  CAS  Google Scholar 

  • Lefebvre YA, White DA, Hawthorne JN (1976) Diphosphoinositide metabolism in bovine adrenal medulla. Cand J Biochem 54: 746–753

    CAS  Google Scholar 

  • Lelkes PI, Friedman JE, Rosenheck K, Oplatka A (1986) Destabilization of actin filaments as a requirement for the secretion of catecholamines from permeabilized chromaffin cells. FEBS 208: 357–363

    CAS  Google Scholar 

  • Levine M, Asher A, Pollard H, Zinder 0 (1983) Ascorbic acid and catecholamine secretion from cultured chromaffin cells. J Biol Chem 258: 13111–13115

    CAS  Google Scholar 

  • Liang BT, Perlman RL (1979) Catecholamine secretion by hamster adrenal cells. J Neurochem 32: 927–933

    PubMed  CAS  Google Scholar 

  • Lind I, Ahnert-Hilger G, Fuchs G, Gratzl M (1987) Purification of alpha-toxin from staphylococcus aureus and application to cell permeabilization. Anal Biochem 164: 84–89

    PubMed  CAS  Google Scholar 

  • Lingg G, Fischer-Colbrier R, Schmidt W, Winkler H (1983) Exposure of an antigen of chromaffin granules on cell surface during exocytosis. Nature 301: 610–611

    PubMed  CAS  Google Scholar 

  • Lishajko F (1969) Influence of chloride ions and ATP-Mg’ on the release of catecholamines from isolated adrenal medullary granules. Acta Physiol Scand 75: 255–256

    PubMed  CAS  Google Scholar 

  • Livett BG (1984) The Secretory Process in Adrenal Medullary Cells. In: Cantin M (ed) Cell Biology of the Secretory Process. Karger, Basel pp 304–358

    Google Scholar 

  • Livett BG, Dean DM, Whelan LG, Udenfriend S, Rossier J (1981) Co-release of enkephalin and catecholamines from cultured adrenal chromaffin cells. Nature 289: 317–319

    PubMed  CAS  Google Scholar 

  • Llinas R, McGuiness TL, Leonard CS, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Nat Acad Sci USA 82: 3035–3039

    PubMed  CAS  Google Scholar 

  • Lotshaw DP, Ye HZ, Edwards C (1986) Endocytosis of surface bound dopamine ß-hydroxylase and plasma membrane following catecholamine secretion by bovine adrenal chromaffin cells. Neurochem Int 9: 391–399

    PubMed  CAS  Google Scholar 

  • Lucy JA (1978) Mechanisms of chemically induced cell fusion. In: Poste G, Nicolson GL (eds) Membrane fusion Cell Surface Rev, vol 5 Elsevier North Holland Publ Amsterdam, pp 267–304

    Google Scholar 

  • Lumpert CJ, Kersken H, Gras U, Plattner H (1987) Screening of enzymatic mechamisms possibly involved in membrane fusion during exocytosis in parmacium cells. Cell Biol Int Rep 11: 405–414

    PubMed  CAS  Google Scholar 

  • Lundberg J, Bylock A, Goldstein M, Hanson HA, Dahlström A (1977) Ultrastructural localization of dopamine ß-hydroxylase in nerve terminals of the rat brain. Brain Res. 120: 549–552

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Hamberger B, Schultzberg M, Hökfelt T, Granberg PO, Efendic S, Terenius L, Goldstein M, Luft R (1979) Enkephaline and somatostatin-like immunoreactivity in human adrenal medulla and phaeochromocytoma. Proc Natl Acad Sci USA 76: 4079–4083

    PubMed  CAS  Google Scholar 

  • Malamed S, Poisner AM, Trifaro JM, Douglas WW (1968) The fate of the chromaffin granule during catecholamine release from the adrenal medulla. III. Recovery of a purified fraction of electrontranslucent structures. Biochem Pharmacol 17: 241–246

    Google Scholar 

  • Malviya AN, Gabellec MM, Rebel G (1986) Plasma membrane lipids of bovine adrenal chromaffin cells. Lipis 21: 417–419

    CAS  Google Scholar 

  • Margolis RK, Jaanus SD, Margolis RU (1973) Stimulation by acetylcholine of sulfated mucopolysaccharide release from the perfused cat adrenal gland Mol Pharmacol 9: 590–594

    CAS  Google Scholar 

  • Marin WH, Creutz CE (1987) Chromobindin A, a Cat+ and ATP regulated chromaffin granule binding protein. J Biol Chem 262: 2803–2810

    Google Scholar 

  • Matthews EK, Evans RJ, Dean PM (1972) The ionogenic nature of the secretory-granule membrane. Electrokinetic properties of isolated chromaffin granules. Biochem J 130: 825–832

    Google Scholar 

  • McKay DB, Schneider AS (1984) Selective inhibition of cholinergic receptor-mediated ^SCa2+ uptake and catecholamine secretion from adrenal chromaffin cells by taxol and vinblastine. J Pharmacol Exp Ther 231: 102–108

    PubMed  CAS  Google Scholar 

  • Meldolesi B, Ceccarelli B (1981) Exocytosis and membrane recycling. Phil Trans R Soc Lond B 296: 55–65

    CAS  Google Scholar 

  • Meldolesi J, Borgese N, de Camilli P, Ceccarelli B (1978) Cytoplasmic membranes and the secretory process. In: Poste G, Niclolson GL (eds) Membrane fusion. Cell Surface Review, vol 5. North Holland Publ. Amsterdam, Oxford pp 510–627

    Google Scholar 

  • Meyer DI, Burger MM (1976) The chromaffin granule surface. Localization of carbohydrate on the cytoplasmic surface of an intracellular organelle. Biochim Biophys Acta 443: 428–436

    Google Scholar 

  • Meyer DI, Burger MM (1979a) The chromaffin granule surface: the presence of actin and the nature of its interaction with the membrane. FEBS Lett 101: 129–133

    PubMed  CAS  Google Scholar 

  • Meyer DI, Burger MM (1979b) Isolation of a protein from the plasma membrane of adrenal medulla which binds to secretory vesicles. J Biol Chem 254: 9854–9859

    PubMed  CAS  Google Scholar 

  • Michaels JE, Leblond CP (1976) Transport of glycoprotein from Golgi apparatus to cell surface by means of “carrier” vesicles as shown by radioautography of mouse colonic epithelium after injection of 3H-fucose. J Microscop Biol Cell 25: 243–248

    Google Scholar 

  • Michener ML, Dawson WB, Creutz CE (1986) Phosphorylation of a chromaffin granule-binding protein in stimulated chromaffin cells. J Biol Chem 261: 6548–6555

    PubMed  CAS  Google Scholar 

  • Misbahuddin M, Isosaki M, Houchi H, Oka M (1985) Muscarinic receptor-mediated increase in cytoplasmic free Ca2+ in isolated bovine adrenal medullary cells. FEBS 190: 25–28

    CAS  Google Scholar 

  • Mizobe F, Iwamoto M (1984) Veratridine-evoked release of intracellular and external acetylcholinesterase from cultured adrenal chromaffin cells. Biomed Res 5: 83–88

    CAS  Google Scholar 

  • Mizobe F, Livett BG (1983) Nicotine stimulates secretion of both catecholamines and acetylcholinesterase from cultured adrenal chromaffin cells. J Neuroscience 3: 871–876

    CAS  Google Scholar 

  • Mizobe F, Iwamoto M, Livett BG (1984) Parallel but separate release of catecholamines and acetylcholinesterase from stimulated adrenal chromaffin cells in culture. J Neurochem 42: 1433–1438

    PubMed  CAS  Google Scholar 

  • Momayezi M, Lumpert CJ, Kersken H, Gras U, Plattner H, Krinks MH, Klee CB (1987) Exocytosis induction in paramecium tetraurelia cells by exogenous phosphoprotein phosphatase in vivo and in vitro: possible involvement of calcineurin in exocytotic membrane fusion. J Cell Biol 105: 181–189

    PubMed  CAS  Google Scholar 

  • Montiel C, Artalejo AR, Garcia AG (1984) Effects of the novel dihydropyridine BAY-K-8644 on adrenomedullary catecholamine release evoked by calcium reintroduction. Biochem Biophys Res Com 120: 851–857

    PubMed  CAS  Google Scholar 

  • Morita K, Brocklehurst KW, Tomares StM, Pollard HB (1985 a) The phorbol ester TPA enhances A23187—but not carbachol—and high K+-induced catecholamine secretion from cultured bovine adrenal chromaffin cells. Biochem Biophys Res Comm 129: 511–516

    Google Scholar 

  • Morita K, Brocklehurst KW, Tomares SM, Pollard HB (1985 b) The phorbol ester TPA enhances A23187—but not carbachol—and high K+-induced catecholamine secretion from cultured bovine adrenal chromaffin cells. Biochem Biophys Res Comm 129: 511–516

    Google Scholar 

  • Morita K, Dohi T, Kitayama S, Koyama Y, Tsujimoto A (1987a) Enhancement of stimulation-evoked catecholamine release from cultured bovine adrenal chromaffin cells by forskolin. J Neurochem 48:243+247

    Google Scholar 

  • Morita K, Dohi T, Kitayama S, Koyama Y, Tsujimoto A (1987b) Stimulation-evoked Ca“ fluxes in cultured bovine adrenal chromaffin cells are enhanced by forskolin. J Neurochem 48:248+252

    Google Scholar 

  • Morris SJ, Bradley D (1984) Calcium-promoted fusion of isolated chromaffin granules detected by resonance energy transfer between labelled lipids embedded in the membrane bilayer. Biochemistry 23:4642+4650

    Google Scholar 

  • Morris SJ, Hughes JMX (1979) Synexin protein is non-selective in its ability to increase Ca’-dependent aggregation of biological and artificial membranes. Biochem Biophys Res Commun 91:345+350

    Google Scholar 

  • Morris SJ, Schober R (1977) Demonstration of binding sites for divalent and trivalent ions on the outer surface of chromaffin granule membranes. Eur J Biochem 75:1+12

    Google Scholar 

  • Morris SJ, Hughes JMX, Whittaker VP (1982) Purification and mode of action of synexin: A protein enhancing calcium-induced membrane aggregation. J Neurochem 39:529+536

    Google Scholar 

  • Morris SJ, Costello MJ, Robertson JD, Südhof TC, Odenwald WF, Haynes DH (1983) The chromaffin granule as a model for membrane fusion: implications for exocytosis. J Auton Nery System 7:19+33

    Google Scholar 

  • Moskowitz N, Glassman A, Ores Ch, Shook W, Puszkin S (1983) Phosphorylation of brain synaptic and coated vesicle proteins by endogenous Ca2+/calmodulin-and cAMP-dependent protein kinases. J Neurochem 40: 711–718

    PubMed  CAS  Google Scholar 

  • Mundy DI, Strittmatter WJ (1985) Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells. Cell 40: 645–656

    PubMed  CAS  Google Scholar 

  • Muscholl E, Spira FJ (1982) Kinetic analysis of stimulation-evoked overflow of noradrenaline and dopamine ß-hydroxylase from the isolated rabbit heart. The effect of dopa decarboxylase inhibition. Neuroscience 7: 3201–3211

    Google Scholar 

  • Muscholl E, Racke K, Ritzel H (1980) Facilitation by low sodium-urea’ medium of the washout of dopamine ß-hydroxylase released by potassium ions from the per-fused rabbit heart. Neuroscience 5: 453–457

    PubMed  CAS  Google Scholar 

  • Muscholl E, Racke K, Spira FJ (1985) Evidence for exocytotic release of dopamine ß-hydroxylase from rabbit heart and of vasopressin from rat neurohypophyses during homogenization and fractionation effects of gadolinium ions, cytochalasin B, gallopamil and different temperatures. Neuroscience 14: 79–93

    PubMed  CAS  Google Scholar 

  • Nagasawa J (1977) Exocytosis: The common release mechanism of secretory granules in granular cells, neurosecretory cells, neurons and paraneurons. Arch Histol Jap 40, Suppl 31–47

    Google Scholar 

  • Nagasawa J, Douglas WW (1972) Thorium dioxide uptake into adrenal medullary cells and the problem of recapture of granule membrane following exocytosis. Brain Res 37: 141–145

    PubMed  CAS  Google Scholar 

  • Nakanishi A, Morita K, Oka M, Katsunuma N (1986) Evidence against a possible involvement of the serine, and thiol proteases in the exocytotic mechanism of catecholamine secretion in cultured bovine adrenal medullary cells. Biochem Int 13: 799–807

    PubMed  CAS  Google Scholar 

  • Navone F, Jahn R, di Gioia G, Stukenbrok H, Greengard P, de Camilli P (1986) Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103: 2511–2527

    PubMed  CAS  Google Scholar 

  • Nayar R, Hope MJ, Cullis PR (1982) Phospholipids as adjuncts for calcium ion stimulated release of chromaffin granule contents: Implications for mechanisms of exocytosis. Biochemistry 21: 4583–4589

    Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79: 6712–6716

    PubMed  CAS  Google Scholar 

  • Nelson DL, Molinoff PB (1976) Distribution and properties of adrenergic storage vesicles in nerve terminals J Pharmacol Exp Ther 196: 346–359

    CAS  Google Scholar 

  • Nestler EJ, Greengard P (1982) Nerve impulse increase the phosphorylation state of protein I in rabbit superior cervical ganglion. Nature 296: 452–454

    PubMed  CAS  Google Scholar 

  • Neuman B, Wiedermann CJ, Fischer-Colbrie R, Schober M, Sperk G, Winkler H (1984) Biochemical and functional properties of large and small dense core vesicles in sympathetic nerves of rat and ox vas deferens. Neuroscience 13: 921–931

    PubMed  CAS  Google Scholar 

  • Ngai SH, Dairman W, Marchelle M, Spector S (1974) Dopamine ß-hydroxylase in dog lymph-effect of sympathetic activation. Life Sci 14: 2431–2439

    PubMed  CAS  Google Scholar 

  • Niggli V, Knight DE, Baker PF, Vigny A, Henry JP (1984) Tyrosine hydroxylase in “leaky” adrenal medullary cells: Evidence for in situ phosphorylation by separate Ca’ and cyclic AMP-dependent systems. J Neurochem 43: 646–658

    Google Scholar 

  • Nijjar MS, Hawthorne JN (1974) A plasma membrane fraction from bovine adrenal medulla: Preparation, marker enzyme studies and phospholipid composition. Biochim Biophys Acta 367: 190–201

    Google Scholar 

  • Nishibe S, Ogawa M, Murata A, Nakamura K, Hatanaka T, Kambayashi JI, Kosaki G (1983) Inhibition of catecholamine release from isolated bovine adrenal medullary cells by various inhibitors: possible involvement of protease, calmodulin and arachidonic acid. Life Sci 32: 1613–1620

    PubMed  CAS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308: 693–698

    PubMed  CAS  Google Scholar 

  • Nobiletti JB, Kirpekar SM (1983) Nonreutilization of bovine adrenal chromaffin granule membrane in secretion. Fed Proc 42: 380

    Google Scholar 

  • Nordmann JJ (1984) Combined stereological and biochemical analysis of storage and release of catecholamines in the adrenal medulla of the rat. J Neurochem 42: 434–437

    PubMed  CAS  Google Scholar 

  • O’Connor DT, Frigon RP (1984) Chromogranin A, the major catecholamine storage vesicle soluble protein. J Biol Chem 259: 3237–3247

    PubMed  Google Scholar 

  • O’Connor DT, Deftos LJ (1986) Secretion of chromogranin A by peptide-producing endocrine neoplasms. N Engl J Med 314: 1145–1151

    PubMed  Google Scholar 

  • O’Conner DT, Frigon, Odenwald WF, Morris SJ (1983) Identification of a second synexin-like adrenal medullary and liver protein that enhances calcium-induced membrane aggregation. Biochem Biphys Res Commun 112: 147–154

    Google Scholar 

  • Ohashi Y, Narumiya S (1987) ADP-ribosylation of a M 21000 membrane protein by type D botulinum toxin. J Biol Chem 262: 1430–1433

    PubMed  CAS  Google Scholar 

  • Oka M, Ohuchi T, Yoshida H, Imaizumi R (1965) Effect of adenosine triphosphate and magnesium on the release of catecholamines from adrenal medullary granules. Biochim Biophys Acta 97: 170–171

    PubMed  CAS  Google Scholar 

  • Oka M, Ohuchi T, Yoshida H, Imaizumi R (1974) Stimulatory effect of adenosine triphosphate and magnesium on the release of catecholamines from adrenal medullary granules. Jap J Pharmacol 17: 199–207

    Google Scholar 

  • Orci L, Perrelet A, Friend DS (1977) Freeze-fracture of membrane fusions during exocytosis in pancreatic B-cells. J Cell Biol 75: 23–30

    PubMed  CAS  Google Scholar 

  • Ornberg RL, Reese TS (1981) Beginning of exocytosis captured by rapid freezing of limulus amebocytes. J Cell Biol 90: 40–54

    PubMed  CAS  Google Scholar 

  • Palade GE (1959) Functional changes in the structure of cell components. In: Hayashi T (ed) Subcellular Particles. Ronald Press New York, pp 64–83

    Google Scholar 

  • Papahadjopoulos D, Vail WJ, Pangborn WA, Poste G (1976) Studies on the membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals. Biochim Biophys Acta 448: 265–283

    Google Scholar 

  • Papahadjopoulos D, Vail WJ, Newton C, Nir S, Jacobson K, Poste G, Lazo R (1977) Studies on membrane fusion. III. The role of calcium-induced phase changes. Biochim Biophys Acta 465: 579–598

    Google Scholar 

  • Papahadjopoulos D (1978) Calcium-induced phase changes and fusion in natural and model membranes. In: Poste G, Nicolson GL (eds) Membrane Fusion. Cell Surface Rev, vol. 5. Elsevier North Holland Publ Amsterdam, pp 766–786

    Google Scholar 

  • Parsons SJ, Creutz CE (1986) p60c-sRG activity detected in the chromaffin granule membrane. Biochem Biophys Res Comm 134: 736–742

    Google Scholar 

  • Patzak A, Winkler H (1986) Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immunolabelling. J Cell Biol 102: 510–515

    PubMed  CAS  Google Scholar 

  • Patzak A, Böck G, Fischer-Colbrie R, Schauenstein K, Schmidt W, Lingg G, Winkler H (1984) Exocytotic exposure and retrieval of membrane antigens of chromaffin granules: Quantitative evaluation of immunofluorescence on the surface of chromaffin cells. J Cell Biol 98: 1817–1824

    Google Scholar 

  • Patzak A, Aunis D, Langley K (1987) Membrane recycling after exocytosis: an ultrastructural study of cultured chromaffin cells. Exp Cell Res 171: 346–356

    PubMed  CAS  Google Scholar 

  • Pazoles CJ, Pollard HB (1978) Evidence for stimulation of anion transport in ATP-evoked transmitter release from isolated secretory vesicles. J Biol Chem 253: 3962–3969

    PubMed  CAS  Google Scholar 

  • Peach MJ (1972) Stimulation and release of adrenal catecholamine by adenosine 3’-5’ cyclic monophosphate and theophylline in the absence of extracellular Cat+. Proc Natl Acad Sci USA 69: 834–836

    PubMed  CAS  Google Scholar 

  • Pearse BMF (1976) Clathrin: an unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 73: 1255–1259

    PubMed  CAS  Google Scholar 

  • Pearse BMF, Bretscher MS (1981) Membrane recycling by coated vesicles. Ann Rev Biochem 50: 85–101

    PubMed  CAS  Google Scholar 

  • Penner R, Neher E, Dreyer F (1986) Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 324: 76–78

    PubMed  CAS  Google Scholar 

  • Peppers SC, Holz RW (1986) Catecholamine secretion from digitonin-treated PC12 cells. J Biol Chem 261: 14665–14669

    PubMed  CAS  Google Scholar 

  • Perlman RL, Chalfie M (1977) Catecholamine release from the adrenal medulla. Clinics Endocrin Metabol 6: 551–576

    CAS  Google Scholar 

  • Perlman RL, Cossi AF, Role LW (1980) Mechanisms of ionophore-induced catecholamine secretion. J Pharmacol Exp Ther 213: 241–246

    PubMed  CAS  Google Scholar 

  • Perrin D, Aunis D (1985) Reorganization of a-fodrin induced by stimulation in secretory cells. Nature 315: 589–592

    PubMed  CAS  Google Scholar 

  • Perrin D, Langley OK, Aunis D (1987) Anti-a-fodrin inhibits secretion from permeabilized chromaffin cells. Nature 326: 498–501

    PubMed  CAS  Google Scholar 

  • Phillips JH, Apps DK, Tipton KF (1979) Storage and secretion of catecholamines: The adrenal medulla. In (ed) Physiological and Pharmacological Biochemistry, Internat. Review of Biochemistry, vol 26. University Park Press Baltimore, pp 121–178

    Google Scholar 

  • Phillips JH, Slater A (1975) Actin in the adrenal medulla. FEBS LETT 56: 327–331

    PubMed  CAS  Google Scholar 

  • Phillips JH, Burridge K, Wilson SP, Kirshner N (1983) Visualization of the exocytosis/ endocytosis secretory cycle in cultured adrenal chromaffin cells. J Cell Biol 97: 1906–1917

    PubMed  CAS  Google Scholar 

  • Pinardi G, Talmaciu RK, Santiago E, Cubeddu LX (1979) Contribution of adrenal medulla, spleen and lymph, to the plasma levels of dopamine ß-hydroxylase and catecholamines induced by hemorrhagic hypotension in dogs. J Pharmacol Exp Ther 209: 176–184

    PubMed  CAS  Google Scholar 

  • Pinto JEB, Trifaro JM (1976) The different effects of D-600 (methoxyverapamil) on the release of adrenal catecholamines induced by acetylcholine, high potassium or sodium deprivation. Br J Pharmacol 57: 127–132

    PubMed  CAS  Google Scholar 

  • Pinto JEB, Viglione PN, KIM MK (1985) Inhibitory effect of hyperosmolality on catecholamine secretion from the bovine adrenal medulla. Arch Int Pharmacodyn 276: 236–246

    PubMed  CAS  Google Scholar 

  • Plattner H (1978) Fusion of cellular membranes. In Silverstein SC (ed) Transport of macromolecules in cellular systems. Berlin Dahlem Konferenzen, pp 465–488

    Google Scholar 

  • Plattner H (1987) Synchronous Exocytosis in Paramecium Cells. In: Sowers AE (ed) Cell Fusion. Plenum Publ Corp, pp 69–98

    Google Scholar 

  • Pocotte SL, Frye RA, Senter RA, Terbush DR, Lee SA, Holz RW (1985) Effects of phorbol ester on catecholamine secretion and protein phosphorylation in adrenal medullary cell cultures. Proc Nall Acad Sci USA 82: 930–934

    CAS  Google Scholar 

  • Poisner AM, Bernstein J (1971) A possible role of microtubules in catecholamine release from the adrenal medulla: effect of colchicine, vinca alkaloids and deuterium oxide. J Pharmacol Exp Ther 177: 102–108

    PubMed  CAS  Google Scholar 

  • Poisner AM, Cooke P (1975) Microtubules and the adrenal medulla. Ann NY Acad Sci 253: 653–669

    PubMed  CAS  Google Scholar 

  • Poisner AM, Trifaro JM (1967) The role of ATP and ATPase in the release of catecholamines from the adrenal medulla. I. ATP-evoked release of catecholamines, ATP and protein from isolated chromaffin granules. Mol Pharmacol 3: 561–571

    Google Scholar 

  • Poisner AM, Trifaro JM, Douglas WW (1967) The fate of the chromaffin granule during catecholamine release from the adrenal medulla. II. Loss of protein and retention of lipid in subcellular fractions. Biochem Pharmacol 16: 2101–2108

    Google Scholar 

  • Pollard HB, Scott JH (1982) Synhibin: a new calcium-dependent membrane-binding protein that inhibits synexin-induced chromaffin granule aggregation and fusion. FEBS Lett 150: 201–206

    PubMed  CAS  Google Scholar 

  • Pollard HB, Pazoles CJ, Creutz CE, Ramu A, Strott RP, Brown EM, Aurbach GD, Tack-Goldman KM, Shulman NR (1977) A role for anion transport in the regulation of release from chromaffin granules and exocytosis from cells. J Supramol Struct 7: 277–285

    PubMed  CAS  Google Scholar 

  • Pollard HB, Pazoles CJ, Creutz CE, Zinder 0 (1979) The chromaffin granule and possible mechanisms of exocytosis. Int Rev Cytol 58: 159–197

    CAS  Google Scholar 

  • Pollard HB, Scott JH, Creutz CE, Fowler VM, Pazoles CJ (1982a) Regulation of organelle movement, membrane fusion and exocytosis in the chromaffin cell. In: Frazier WA, Glaser L, Gottlieb DI (eds) Cellular recognition, UCLA Symposium on Molecular and Cellular Biology, vol 3. Alan R Liss Inc New York, pp 893–917

    Google Scholar 

  • Pollard RM, Fillenz M, Kelly P (1982b) Parallel changes in ultrastructure and noradrenaline content of nerve terminals in rat vas deferens following transmitter release. Neuroscience 7: 1623–1629

    PubMed  CAS  Google Scholar 

  • Pollard HB, Scott JH, Creutz CE (1983) Inhibition of synexin activity and exocytosis from chromaffin cells by phenothiazine drugs. Biochem Biophys Res Corn 113: 908–915

    CAS  Google Scholar 

  • Pollard HB, Pazoles CJ, Creutz CE, Scott JH, Zinder O, Hotchkiss A (1984) An osmotic mechanism for exocytosis from dissociated chromaffin cells. J Biol Chem 259: 1114–1121

    PubMed  CAS  Google Scholar 

  • Pollard HB, Ornberg R, Levine M, Kelner K, Morita K, Levine R, Forsberg E, Brocklehurst KW, Duong L, Lelkes PI, Heldman E, Youdim M (1985) Hormone secretion by exocytosis with emphasis on information from the chromaffin cell systems. Vit Horm 42: 109–195

    CAS  Google Scholar 

  • Pollard HB, Rojas E, Burns AL (1987) Synexin and chromaffin granule membrane fusion. Ann N Y Acad Sci 493: 524

    PubMed  CAS  Google Scholar 

  • Portis A, Newton C, Pangborn W, Papahadjopoulos D (1979) Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+ phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry 18: 780–790

    PubMed  CAS  Google Scholar 

  • Povilaitis V, Gagnon C, Heisler S (1981) Stimulus-secretion coupling in exocrine pancreas: role of protein carboxyl methylation. Am J Physiol 240: G199–G205

    PubMed  CAS  Google Scholar 

  • Quatacker J (1981) The axonal reticulum in the neurons of the superior cervical ganglion of the rat as a direct extension of the Golgi apparatus. Histochem J 13: 109–124

    PubMed  CAS  Google Scholar 

  • Quatacker J, de Potter W (1981) Organization and relationship of the axonal reticulum in the cell body of sympathetic ganglion cells. Acta Histochem Suppl XXIV: 33–36

    Google Scholar 

  • Richards JG, da Prada M (1977) Uranaffin reaction: a new cytochemical technique for the localization of adenine nucleotides in organelles storing biogenic amines. J Histochem Cytochem 25: 1322–1336

    PubMed  CAS  Google Scholar 

  • Rimle D, Morse II PD, Njus D (1983) A spin-label study of plasma membranes of adrenal chromaffin cells. Biochim Biophys Acta 728: 92–96

    PubMed  CAS  Google Scholar 

  • Rink TJ, Sanchez A, Hallam TJ (1983) Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature 305: 317–319

    PubMed  CAS  Google Scholar 

  • Roizen MF, Thoa NB, Moss J, Kopin IJ (1975) Inhibition by halothane of release of norepinephrine, but not of dopamine ß-hydroxylase from guinea-pig vas deferens. Eur J Pharmacol 31: 313–318

    PubMed  CAS  Google Scholar 

  • Rojas E, Pollard HB, Heldman E (1985) Real-time measurements of acetylcholine-induced release of ATP from bovine medullary chromaffin cells. FEBS 185: 323–327

    CAS  Google Scholar 

  • Rökaeus A, Fried G, Lundberg JM (1984) Occurrence, storage and release of neurotensin-like immunoreactivity from the adrenal gland. Acta Physiol Scand 120: 373–380

    PubMed  Google Scholar 

  • Rosenheck K, Lelkes PI (1987) Stimulus-secretion coupling in chromaffin cells. CRC Press, Boca Raton

    Google Scholar 

  • Rosenheck K, Plattner H (1986) Ultrastructural and cytochemical characterization of adrenal medullary plasma membrane vesicles and their interaction with chromaffin granules. Biochim Biophys Acta 856: 373–382

    PubMed  CAS  Google Scholar 

  • Ross SB, Eriksson HE, Hellström W (1974) On the fate of dopamine ß-hydroxylase after release from the peripheral sympathetic nerves in the cat. Acta Physiol Scand 92: 578–580

    PubMed  CAS  Google Scholar 

  • Rubin RP (1970a) The role of energy metabolism in calcium-evoked secretion from the adrenal medulla. J Physiol 206: 181–192

    PubMed  CAS  Google Scholar 

  • Rubin RP (1970b) The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Rev 22: 389–428

    PubMed  CAS  Google Scholar 

  • Rush RA, Millar TJ, Chubb IW, Geffen LB (1979) Use of dopamine ß-hydroxylase in the study of vesicle dynamics. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines vol 1. Pergamon Press, Oxford New York, pp 331–336

    Google Scholar 

  • Ryan US, Ryan JW, Smith DS, Winkler H (1975) Fenestrated endothelium of the adrenal gland: Freeze-fracture studies. Tissue Cell 7: 181–190

    Google Scholar 

  • Sage HJ, Smith WJ, Kirshner N (1967) Mechanism of secretion from the adrenal medulla. I. A microquantitative immunologic assay for bovine adrenal catecholamine storage vesicle protein and its application to studies of the secretory process. Molec Pharmacol 3: 81–89

    Google Scholar 

  • Sasakawa N, Yamamoto S, Kumakura K, Kato R (1983) Prevention of catecholamine release from adrenal chromaffin cells by phospholipase A2- and lipoxygenase-inhibitors. Jap J Pharmacol 33: 1077–1080

    PubMed  CAS  Google Scholar 

  • Schmidt W, Patzak A, Lingg G, Winkler H, Plattner H (1983) Membrane events in adrenal chromaffin cells during exocytosis: a freeze-etching analysis after rapid cryofixation. Eur J Cell Biol 32: 31–37

    PubMed  CAS  Google Scholar 

  • Schneeweiss F, Naquira D, Rosenheck K, Schneider AS (1979) Cholinergic stimulants and excess potassium ion increase the fluidity of plasma membranes isolated from adrenal chromaffin cells. Biochim biophys Acta 555: 460–471

    PubMed  CAS  Google Scholar 

  • Schneider FH (1968) Observations on the release of lysosomal enzymes from the isolated bovine adrenal gland. Biochem Pharmacol 17: 848–851

    PubMed  CAS  Google Scholar 

  • Schneider FH (1969a) Drug-induced release of catecholamines, soluble protein and chromogranin A from the isolated bovine adrenal gland. Biochem Pharmacol 18: 101–107

    PubMed  CAS  Google Scholar 

  • Schneider FH (1969b) Secretion from the cortex-free bovine adrenal medulla. Brit J Pharmacol 37: 371–379

    CAS  Google Scholar 

  • Schneider FH (1970) Secretion from the bovine adrenal gland: release of lysosomal enzymes. Biochem Pharmacol 19: 833–847

    PubMed  CAS  Google Scholar 

  • Schneider FH, Smith AD, Winkler H (1967) Secretion from the adrenal medulla: biochemical evidence for exocytosis. Brit J Pharmacol 31: 94–104

    PubMed  CAS  Google Scholar 

  • Schneider AS, Herz R, Rosenheck K (1977) Stimulus-secretion coupling in chromaffin cells isolated from bovine adrenal medulla. Proc Natl Acad Sci USA 74: 5036–5040

    PubMed  CAS  Google Scholar 

  • Schneider AS, Cline HT, Lemaire S (1979) Rapid rise in cyclic GMP accompanies catecholamine secretion in suspensions of isolated adrenal chromaffin cells. Life Sci 24: 1389–1394

    PubMed  CAS  Google Scholar 

  • Schneider AS, Cline HT, Rosenheck K, Sonenberg M (1981) Stimulus-secretion coupling in isolated adrenal chromaffin cells: Calcium channel activation and possible role of cytoskeletal elements. J Neurochem 37: 567–575

    Google Scholar 

  • Schober R, Nitsch C, Rinne U, Morris SJ (1977) Calcium-induced displacement of membrane associated particles upon aggregation of chromaffin granules. Science 195: 495–497

    PubMed  CAS  Google Scholar 

  • Schook W, Puszkin S, Bloom W, Ores C, Kochwa S (1979) Mechanochemical properties of brain clathrin: interactions with actin and a-actinin and polymerization into basketlike structures of filaments. Proc Natl Acad Sci USA 76: 116–120

    PubMed  CAS  Google Scholar 

  • Schubert D, Klier FG (1977) Storage and release of acetylcholine by a clonal cell line. Proc Natl Acad Sci USA 74: 5184–5188

    PubMed  CAS  Google Scholar 

  • Schuler G, Plattner H, Aberer W, Winkler H (1978) Particle segregation in chromaffin granule membranes by forced physical contact. Biochim Biophys Acta 513: 244–254

    PubMed  CAS  Google Scholar 

  • Schwab ME, Thoenen H (1983) Mechanism of uptake and retrograde axonal transport of noradrenaline in sympathetic neurons in culture: reserpine-resistant large dense-core vesicles as transport vehicles. J Cell Biol 96: 1538–1547

    PubMed  CAS  Google Scholar 

  • Scott JH, Creutz CE, Pollard HB, Ornberg R (1985) Synexin binds in a calcium-dependent fashion to oriented chromaffin cell plasma membranes. FEBS 180: 17–23

    CAS  Google Scholar 

  • Serck-Hanssen G (1972) The release of protein in the course of catecholamine secre- tion from bovine adrenals perfused in vitro. Acta Physiol Scand 86: 289–298

    PubMed  CAS  Google Scholar 

  • Serck-Hanssen G (1974) Effects of theophylline and propranolol on acetylcholine—induced release of adrenal medullary catecholamines. Biochem Pharmacol 23: 1225–1234

    Google Scholar 

  • Serck-Hanssen G, Helle KB (1972) Biochemical and morphological characterization of chromaffin granules accumulating during in vitro secretion from perfused adrenal glands. Biochim Biophys Acta 273: 199–207

    PubMed  CAS  Google Scholar 

  • Serck-Hanssen G, Helle KB, Sommersten B, Pihl KE (1980) Quantitative aspects of the acetylcholine-induced release of dopamine ß-hydroxylase and catecholamines from the bovine adrenal medulla. Gen Pharmacol 11: 243–249

    CAS  Google Scholar 

  • Slotkin T, Kirshner N (1973) All-or-none secretion of adrenal medullary storage vesicle contents in the rat. Biochem Pharmacol 22: 205–219

    PubMed  CAS  Google Scholar 

  • Smith AD (1968) Biochemistry of adrenal chromaffin granules. In: Campbell PN (ed) The interaction of drugs and subcellular components in animal cells. Churchill Ltd London, pp 239–292

    Google Scholar 

  • Smith AD (1969) Extracellular release of lysosomal phospholipases from the perfused adrenal gland. Biochem J 114: 72 P

    Google Scholar 

  • Smith AD (1971) Secretion of proteins (chromogranin A and dopamine ß-hydroxylase) from a sympathetic neuron. Phil Trans Roy Soc Lond B 261: 363–370

    CAS  Google Scholar 

  • Smith AD (1972a) Mechanisms involved in the release of noradrenaline from sympathetic nerves. Brit Medical Bulletin 29: 123–129

    Google Scholar 

  • Smith AD (1972b) Subcellular localization of noradrenaline in sympathetic neurons. Pharmacol Rev 24: 435–457

    PubMed  CAS  Google Scholar 

  • Smith AD (1978) Biochemical studies of the mechanism of release. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon Press Oxford New York, pp 1–15

    Google Scholar 

  • Smith DJ, van Orden LS III (1973) Ultrastructural evidence for increased incidence of exocytosis in the stimulated adrenal medulla of the cat. Neuropharmacology 12: 875–883

    PubMed  CAS  Google Scholar 

  • Smith AD, Winkler H (1972) Fundamental mechanisms in the release of catecholamines In: Blaschko H, Muscholl E (eds) Catecholamines. Springer Berlin Heidelberg New York, pp 538–617 (Handbook of Experimental Pharmacology, vol 33)

    Google Scholar 

  • Smith AD, de Potter WP, Moerman EJ, de Schaepdryver AF (1970) Release of dopamine ß-hydroxylase and chromogranin A upon stimulation of the splenic nerve. Tissue and Cell 2: 547–568

    PubMed  CAS  Google Scholar 

  • Smith U, Smith DS, Winkler H, Ryan JW (1973) Exocytosis in the adrenal medulla. Demonstrated by freeze-etching. Science NY 179: 79–82

    Google Scholar 

  • Sobue K, Tanaka T, Kanda K, Ashino N, Kakiuchi S (1985) Purification and characterization of caldesmon77: a calmodulin-binding protein that interacts with actin filaments from bovine adrenal medulla. Proc Natl Acad Sci USA 82: 5025–5029

    PubMed  CAS  Google Scholar 

  • Somogyi P, Chubb IW, Smith AD (1975) A possible structural basis for the extracellular release of acetylcholinesterase. Proc R Soc Lond B 191: 271–283

    PubMed  CAS  Google Scholar 

  • Sorimachi M, Yoshida K (1979) Exocytotic release of catecholamines and dopamine ß-hydroxylase from the perfused adrenal gland of the rabbit and cat. Br J Pharmacol 65: 117–125

    PubMed  CAS  Google Scholar 

  • Starke K (1977) Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 77: 1–124

    PubMed  CAS  Google Scholar 

  • Steinhardt RA, Alderton JM (1982) Calmodulin confers calcium sensitivity on secretory exocytosis. Nature 295: 154–155

    PubMed  CAS  Google Scholar 

  • Stevens P, Robinson RL, van Dyke K, Stitzel R (1972) Studies on the synthesis and release of adenosine triphosphate 8–3H in the isolated perfused cat adrenal gland. J Pharmacol Exp Ther 181: 463–471

    PubMed  CAS  Google Scholar 

  • Stjärne L (1964) Studies of catecholamine uptake storage and release mechanisms. Acta physiol scand 62: 1–60

    Google Scholar 

  • Stjärne L (1976) Relative importance of calcium and cyclic AMP for noradrenaline secretion from sympathetic nerves of guinea-pig vas deferens and for prostaglandin-induced depression of noradrenaline secretion. Neuroscience 1: 19–22

    PubMed  Google Scholar 

  • Stjärne L (1979) Role of prostaglandins and cyclic adenosine monophosphate in release. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon Press Oxford, pp 111–142

    Google Scholar 

  • Stjärne L, Hedqvist P, Lagercrantz H (1970) Catecholamines and adenine nucleotide material in effluent from stimulated adrenal medulla and spleen. A study of the exocytosis hypothesis for hormone secretion and neurotransmitter release. Biochem Pharmac 19: 1147–1158

    Google Scholar 

  • Stoehr SJ, Smolen JE, Holz RW, Agranoff BW (1986) Inositol triphosphate mobilizes intracellular calcium in permeabilized adrenal chromaffin cells. J Neurochem 46: 637–640

    PubMed  CAS  Google Scholar 

  • Suchard SJ, Corcoran JJ, Pressman BC, Rubin RW (1981) Evidence for secretory granule membrane recycling in cultured adrenal chromaffin cells. Cell Biol Int Rep 5: 953–962

    PubMed  CAS  Google Scholar 

  • Summers ThA, Creutz CE (1985) Phosphorylation of a chromaffin granule-binding protein by protein kinase C. J Biol Chem 260: 2437–2443

    PubMed  CAS  Google Scholar 

  • Swilem A-MF, Yagisawa H, Hawthorne JN (1986) Muscarinic release of inositol triphosphate without mobilization of calcium in bovine adrenal chromaffin cells. J Physiol Paris 81: 246–251

    PubMed  CAS  Google Scholar 

  • Terbush DR, Holz RW (1986) Effects of phorbol esters, diglyceride, and cholinergic agonists on the subcellular distribution of protein kinase C in intact or digitoninpermeabilized adrenal chromaffin cells. J Biol Chem 261: 17099–17106

    PubMed  CAS  Google Scholar 

  • Thoa NB, Wooten GF, Axelrod J, Kopin IJ (1972) Inhibition of release of dopamine ß-hydroxylase and norepinephrine from sympathetic nerves by colchicine, vinblastine or cytochalasin B. Proc Natl Acad Sci USA 69: 520–522

    PubMed  CAS  Google Scholar 

  • Thoa NB, Wooten GF, Axelrod J, Kopin IJ (1975) On the mechanism of release of nor-epinephrine from sympathetic nerves induced by depolarizing agents and sympathomimetic drugs. Mol Pharmacol 11: 10–18

    PubMed  CAS  Google Scholar 

  • Thureson-Klein Å (1982a) Insights into the functional role of the noradrenergic vesicles. In: Klein RL, Lagercrantz H, Zimmermann H (Eds) Neurotransmitter Vesicles: Composition, Structure and Function. Academic Press Oxford New York, pp 219–239

    Google Scholar 

  • Thureson-Klein Å (1982b) Fine structure of the isolated noradrenergic vesicles. In Klein RL, Lagercrantz H, Zimmermann H (Eds) Neurotransmitter Vesicles: Composition, Structure and Function. Academic Press Oxford New York, pp 119–132

    Google Scholar 

  • Thureson-Klein Å (1983) Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals. Neuroscience 10: 245–252

    PubMed  CAS  Google Scholar 

  • Thureson-Klein Å, Stjärne L (1979) Ultrastructural features of mast cells in human omental veins. Blood Vessels 16: 311–319

    PubMed  CAS  Google Scholar 

  • Thureson-Klein Å, Chen-Yen SH, Klein RL (1974) Retention of matrix density in adrenergic vesicles after extensive norepinephrine depletion. Experientia 30: 935–937

    PubMed  CAS  Google Scholar 

  • Thureson-Klein Å, Stjärne LL, Brundin J (1976a) Effects of field stimulation on nerve terminals in human blood vessels. In: Bailey GW (ed) 34th Ann Proc Electron Microscopy Soc Amer Miami Beach, FL, USA, pp 108

    Google Scholar 

  • Thureson-Klein Å, Stjäme L, Brundin J (1976b) Ultrastructure of the nerves in veins from human omentum. Neuroscience 1: 333–337

    PubMed  CAS  Google Scholar 

  • Thureson-Klein Å, Klein RL, Johansson O (1979a) Catecholamine-rich cells and varicosities in bovine splenic nerve, vesicle contents and evidence for exocytosis. J Neurobiol 10: 309–324

    PubMed  CAS  Google Scholar 

  • Thureson-Klein Å, Klein RL, Stjärne LL (1979b) Vesicle populations and exocytosis in noradrenergic terminals of human veins. In Catecholamines. Basic and clinical frontiers, (Usdin E, Kopin IJ, Barchas J) vol 1. Pergamon Press New York, pp 262–264

    Google Scholar 

  • Thureson-Klein Å, Harless S, Klein R (1984) Ultrastructural changes in adrenaline-and SGC-cells after morphine coincide with alterations of adrenaline and dopamine levels. Cell Tiss Res 236: 53–65

    CAS  Google Scholar 

  • Till R, Banks P (1976) Pharmacological and ultrastructural studies on the electron dense cores of the vesicles that accumulate in noradrenergic axons constricted in vitro. Neuroscience 1: 49–55

    PubMed  CAS  Google Scholar 

  • Treiman M, Weber W, Gratzl M (1983) 3’,5’-cyclic adenosine monophosphate -and Ca2+-calmodulin-dependent endogenous protein phosphorylation activity in membranes of the bovine chromaffin secretory vesicles: Identification of two phosphorylated components as tyrosine hydroxylase and protein kinase regulatory subunit type II. J Neurochem 40: 661–669

    Google Scholar 

  • Trifaro JM (1977) Common mechanisms of hormone secretion. Ann Rev Pharmacol Toxicol 17: 27–47

    CAS  Google Scholar 

  • Trifaro JM (1978) Contractile proteins in tissues originating in the neural crest. Neuroscience 3: 1–24

    CAS  Google Scholar 

  • Trifaro JM, Dworkind J (1975) Phosphorylation of the membrane components of chromaffin granules: Synthesis of diphosphatidylinositol and presence of phosphatidylinositol kinase in granule membranes. Can J Physiol Pharmacol 53: 479–492

    Google Scholar 

  • Trifaro JM, Ulpian C (1976) Isolation and characterization of myosin from the adrenal medulla. Neuroscience 1: 483–488

    PubMed  CAS  Google Scholar 

  • Trifaro JM, Poisner AM, Douglas WW (1967) The fate of the chromaffin granule during catecholamine release from the adrenal medulla. I. Unchanged efflux of phospholipid and cholesterol. Biochem Pharmacol 16: 2095–2100

    Google Scholar 

  • Trifaro JM, Collier B, Lastowecka A, Stern D (1972) Inhibition by colchicine and by vinblastine of acetylcholine-induced catecholamine release from the adrenal gland: an anticholinergic action, not an effect upon microtubules. Molec Pharmacol 8: 264–267

    CAS  Google Scholar 

  • Trifaro JM, Ulpian C, Preiksaitis H (1978) Anti-myosin stains chromaffin cells. Experientia 34: 1568–1571

    PubMed  CAS  Google Scholar 

  • Triggle DJ (1979) Release induced by calcium ionophores. In: Paton DM (ed) The release of catecholamines from adrenergic neurons. Pergamon Press Oxford, pp 303–322

    Google Scholar 

  • Ueda T, Greengard P, Berzins K, Cohen RS, Blomberg F, Grab DJ, Siekevitz P (1979) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent kinase. J Cell Biol 83: 308–319

    PubMed  CAS  Google Scholar 

  • Unsicker K (1973) Fine structure and innervation of the avian adrenal gland. I. Fine structure of adrenal chromaffin cells and ganglion cells. Z Zellforsch 145: 389–416

    PubMed  CAS  Google Scholar 

  • Van der Meulen JA, Emerson DM, Grinstein S (1981) Isolation of chromaffin cell plasma membranes on polycationic beads. Biochim Biophys Acta 643: 601–615

    PubMed  Google Scholar 

  • Van Orden LS, Bensch KG, Giarman NJ (1967) Histochemical and functional relationships of catecholamines in adrenergic nerve endings. 2. Extravesicular noradrenaline. J Pharmacol Exp Ther 155: 428–439

    Google Scholar 

  • Vilmart-Seuwen J, Kersken H, Stürzl R, Plattner H (1986) ATP keeps exocytosis sites in a primed state but is not required for membrane fusion: an analysis with paramecium cells in vivo and in vitro. J Cell Biol 103: 1279–1288

    PubMed  CAS  Google Scholar 

  • Viveros OH (1975) Mechanism of secretion of catecholamines from adrenal medulla. In: Blaschko H, Sayers G, Smith AD (eds) Handbook of Physiology, vol VI, Adrenal gland. American Physiological Society, Washington, pp 389–426

    Google Scholar 

  • Viveros OH, Arqueros L, Kirshner N (1968) Release of catecholamines and dopamine ß-oxidase from the adrenal medulla. Life Sci 7: 609–618

    CAS  Google Scholar 

  • Viveros OH, Arqueros L, Connett RJ, Kirshner N (1969a) Mechanism of secretion from the adrenal medulla. 3. Studies of DBH as a marker for catecholamine storage vesicle membranes in rabbit adrenal glands. Molec Pharmacol 5: 60–68

    Google Scholar 

  • Viveros OH, Arqueros L, Connett RJ, Kirshner N (1969b) Mechanism of secretion of adrenal medulla. IV. The fate of the storage vesicles following insulin and reserpine administration. Mol Pharmacol 6: 69–82

    Google Scholar 

  • Viveros OH, Arqueros L, Kirshner N (1969c) Mechanism of secretion from the adrenal medulla. V. Retention of storage vesicle membrane following release of adrenaline. Mol Pharmacol 5: 342–345

    Google Scholar 

  • Viveros OH, Arqueros L, Kirshner N (1969d) Quantal secretion from adrenal medulla: all-or-none release of storage vesicle content. Science 165: 911–913

    PubMed  CAS  Google Scholar 

  • Viveros OH, Arqueros L, Kirshner N (1971a) Mechanism of secretion from the adrenal medulla. VI. Effect of reserpine on the dopamine ß-hydroxylase and catecholamine content and on the buoyant density of adrenal storage vesicles. Mol Pharmacol 7: 434–443

    Google Scholar 

  • Viveros OH, Arqueros L, Kirshner N (1971b) Mechanism of secretion from the adrenal medulla. VII. Effect of insulin administration on the buoyant density, dopamine ß-hydroxylase and catecholamine content of adrenal storage vesicles. Mol Pharmacol 7: 444–545

    Google Scholar 

  • Viveros OH, Diliberto EJ, Hazum E, Chang KJ (1979) Opiate-like materials in the adrenal medulla: Evidence for storage and secretion with catecholamines. Mol Pharmacol 16: 1101–1108

    Google Scholar 

  • Von Grafenstein H, Roberts CS, Baker PF (1986) Kinetic analysis of the triggered exocytosis/endocytosis secretory cycle in cultured bovine adrenal medullary cells. J Cell Biol 103: 2343–2352

    Google Scholar 

  • Voyta JC, Slakey LL, Westhead EW (1978) Accessibility of lysolecithin in catecholamine secretory vesicles to acyl CoA: lysolecithin acyl transferase. Biochem Biophys Res Commun 80: 413–417

    PubMed  CAS  Google Scholar 

  • Wacker Ph, Forssmann WG (1972) Immersion and perfusion fixed rat adrenal medulla: The problem of mixed cells, clear cells and the mode of secretion. Z Zell-forsch 126: 261–277

    Google Scholar 

  • Wada A, Yanagihara N, Izumi F, Sakurai S, Kobayashi H (1983a) Trifluoperazine inhibits 45Ca2+ uptake and catecholamine secretion and synthesis in adrenal medullary cells. J Neurochem 40: 481–486

    PubMed  CAS  Google Scholar 

  • Wada A, Sakurai S, Kobayashi H, Yanagihara N, Izumi F (1983b) Suppression by phospholipase A2 inhibitors of secretion of catecholamines from isolated adrenal medullary cells by suppression of cellular calcium uptake. Biochem Pharmacol 32: 1175–1178

    PubMed  CAS  Google Scholar 

  • Wakade AR (1979) Recycling of noradrenergic storage vesicles of isolated rat vas deferens. Nature 281: 374–376

    PubMed  CAS  Google Scholar 

  • Wakade AR, Wakade TD (1982a) Biochemical evidence for re-use of noradrenergic storage vesicles in the guinea-pig heart. J Physiol 327: 337–362

    PubMed  CAS  Google Scholar 

  • Wakade AR, Wakade TD (1982b) Secretion of catecholamines from adrenal gland by a single electrical shock: Electronic depolarization of medullary cell membrane. Proc Natl Acad Sci USA 79: 3071–3074

    Google Scholar 

  • Wakade AR, Wakade TD (1984a) Effects of desipramine, trifluoperazine and other inhibitors of calmodulin on the secretion of catecholamines from the adrenal medulla and postganglionic sympathetic nerves of the salivary gland. Naunyn Schmiedebergs Arch Pharmacol 325: 320–327

    PubMed  CAS  Google Scholar 

  • Wakade AR, Wakade TD (1984b) Do storage vesicles or peripheral sympathetic nerves have more than one life cycle? In: Usdin E(ed) Catecholamines• Basic and Peripheral Mechanisms. Alan R Liss Inc, New York, pp 89–103

    Google Scholar 

  • Wakade AR, Wakade TD, Müller Ch, Schwab M (1982) Epinephrine as a tool to investigate the question of recycling of sympathetic storage vesicles in the heart: chemical and morphological studies. J Pharmacol Exp Ther 221: 820–827

    PubMed  CAS  Google Scholar 

  • Wakade AR, Malhotra RK, Wakade TD (1986) Phorbol ester facilitates 45Ca accumulation and catecholamine secretion by nicotine and excess K+ but not by muscarine in rat adrenal medulla. Nature 321: 698–700

    PubMed  CAS  Google Scholar 

  • Walker JH, Obrocki J, Südhof TC (1983) Calelectrin, a calcium-dependent membrane-binding protein associated with secretory granules in torpedo cholinergic electromotor nerve endings and rat adrenal medulla. J Neurochem 41: 139–145

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM (1979) Serum dopamine ß-hydroxylase. Pharmacol Rev 30: 133–166

    Google Scholar 

  • Weinshilboum RM, Thoa NB, Johnson DG, Kopin IJ, Axelrod J (1971) Proportional release of norepinephrine and dopamine ß-hydroxylase from sympathetic nerves. Science 174: 1349–1351

    PubMed  CAS  Google Scholar 

  • West DP, Fillenz M (1975) Changes in adrenals and sympathetic nerve terminals following cold exposure. J Neurochem 25: 97–99

    Google Scholar 

  • Westfall DP, Goto K, Stitzel RE, Fedan JS, Fleming WW (1975) Effects of various de-nervation techniques on the ATP of the rat vas deferens. Eur J Pharmacol 34: 397–400

    PubMed  CAS  Google Scholar 

  • Westhead EW, Winkler H (1982) The topography of gangliosides in the membrane of the chromaffin granule of bovine adrenal medulla. Neuroscience 7: 1611–1614

    PubMed  CAS  Google Scholar 

  • Whitaker M (1985) Polyphosphoinositide hydrolysis is associated with exocytosis in adrenal medullary cells. FEBS 189: 137–140

    CAS  Google Scholar 

  • White TD (1978) Release of ATP from a synaptosomal preparation by elevated extracellular K+ and by veratridine. J Neurochem 30: 329–336

    PubMed  CAS  Google Scholar 

  • Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83: 3500–3504

    PubMed  CAS  Google Scholar 

  • Wildmann J, Dewair M, Matthaei H (1981) Immunochemical evidence for exocytosis in isolated chromaffin cells after stimulation with depolarizing agents. J Neuroimmunol 1: 353–364

    PubMed  CAS  Google Scholar 

  • Willems M, de Potter W (1983) Isolation of light noradrenaline vesicles from rat vas deferens. Arch Int Pharmacodyn 258: 333–334

    Google Scholar 

  • Williams TP, McGee R (1982) The effects of membrane fatty acid modification of clonal pheochromocytoma cells on depolarization-dependent exocytosis. J Biol Chem 257: 3491–3500

    PubMed  CAS  Google Scholar 

  • Wilson SP, Kirshner N (1976) Isolation and characterization of plasma membranes from the adrenal medulla. J Neurochem 27: 1289–1298

    PubMed  CAS  Google Scholar 

  • Wilson SP, Kirshner N (1983) Calcium-evoked secretion from digitonin-permeabilized adrenal medullary chromaffin cells. J Biol Chem 258: 4994–5001

    PubMed  CAS  Google Scholar 

  • Wilson SP, Chang KJ, Viveros OH (1982) Proportional secretion of opioid peptides and catecholamines from adrenal chromaffin cells in culture. J Neuroscience 2: 1150–1156

    CAS  Google Scholar 

  • Winkler H (1971) The membrane of the chromaffin granules. Phil Trans R Soc B 261: 293–303

    PubMed  CAS  Google Scholar 

  • Winkler H (1976) The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience 1: 65–80

    PubMed  CAS  Google Scholar 

  • Winkler H (1977) The biogenesis of adrenal chromaffin granules. Neuroscience 2: 657–683

    PubMed  CAS  Google Scholar 

  • Winkler H, Carmichael SW (1982) The chromaffin granule. In: Poisner, Trifaro J (eds) The Secretory granule. Elsevier Biomed Press, pp 3–79

    Google Scholar 

  • Winkler H, Westhead EW (1980) The molecular organization of adrenal chromaffin granules. Neuroscience (in press)

    Google Scholar 

  • Winkler H, Hörtnagl H, Schöpf JAL, Hörtnagl H, Zur Nedden G (1971) Bovine adrenal medulla: Synthesis and secretion of radioactively labelled catecholamines and chromogranins. Naunyn Schmiedeberg’s Arch exp Path Pharmacol 271: 193–203

    Google Scholar 

  • Winkler H, Schöpf JAL, Hörtnagl H, Hörtnagl H (1972) Bovine adrenal medulla: Sub-cellular distribution of newly synthesized catecholamines nucleotides and chromogranins. Naunyn Schmiedeberg’s Arch exp Path Pharmacol 273: 43–61

    Google Scholar 

  • Winkler H, Schneider FH, Rufener C, Nakane PK, Hörtnagl H (1974) Membranes of adrenal medulla: Their role in exocytosis. In: Ceccarelli B, Clementi F, Meldolesi J (eds) Cytopharmacology of secretion. Advances in Cytopharmacology, vol 2. Plenum Press New York, pp 127–139

    Google Scholar 

  • Winkler H, Apps DK, Fischer-Colbrie R (1986) The molecular function of adrenal chromaffin granules: established facts and controversial results. Neuroscience 18: 261–290

    PubMed  CAS  Google Scholar 

  • Wooten GF, Thoa NB, Kopin IJ, Axelrod J (1973) Enhanced release of dopamine ß-hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cyclic adenosine 3’,5’-monophosphate and theophylline. Mol Pharmacol 9: 178–183

    PubMed  CAS  Google Scholar 

  • Wright CD, Hoffman MD (1986) The protein kinase C inhibitors H-7 and H-9 fail to inhibit human neutrophil activation. Biochem Biophys Res Comm 135: 749–755

    PubMed  CAS  Google Scholar 

  • Wyllie MG, Gilbert JC (1980) Exocytotic release of noradrenaline from synaptosomes. Biochem. Pharmacol 29: 1302–1303

    Google Scholar 

  • Yamada R, Sato J, Komiya E, Nakai T (1978) A new serological assay of chromogranine. Endocrin Jap 25: 37–41

    CAS  Google Scholar 

  • Yamada K, Iwahashi K, Kase H (1987) K252a, a new inhibitor of protein kinase C, concomitantly inhibits 40K protein phosphorylation and serotonin secretion in a phorbol ester-stimulated platelets. Biochem Biophys Res Comm 144: 35–40

    PubMed  CAS  Google Scholar 

  • Yanagihara N, Isosaki M, Ohuchi T, Oka M (1979) Muscarinic receptor-mediated increase in cyclic GMP level in isolated bovine adrenal medullary cells. FEBS LETT 105: 296–298

    PubMed  CAS  Google Scholar 

  • Yen SS, Klein RL, Chen-Yen SH, Thureson-Klein A (1976) Norepinephrine adenosinetriphosphate ratios in purified adrenergic vesicles. J Neurobiol 7: 11–22

    PubMed  CAS  Google Scholar 

  • Zaremba S, Hogue-Angeletti R (1985) A reliable method for assessing topographical arrangement of proteins in the chromaffin granule membrane. Neurochem Res 10: 19–32

    PubMed  CAS  Google Scholar 

  • Zhu PC, Thureson-Klein Å, Klein RL (1986) Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience 19: 43–54

    PubMed  CAS  Google Scholar 

  • Ziegler MG, Thomas JA, Jacobowith DM (1976) Retrograde axonal transport of antibody to dopamine ß-hydroxylase. Brain Res 104: 390–395

    PubMed  CAS  Google Scholar 

  • Zimmerberg J, Curran M, Cohen FS, Brodwick M (1987) Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc Natl Acad Sci USA 84: 1585–1589

    PubMed  CAS  Google Scholar 

  • Zinder O, Pollard HB (1980) The chromaffin granule: Recent studies leading to a functional model for exocytosis. In: Youdim MBH, Lovenberg W, Sharman DF, Lagnado JR (eds) Essays in Neurochemistry and Neuropharmacology, vol 4. Wiley and Sons Ltd Chichester, pp 126–155

    Google Scholar 

  • Zinder O, Hoffman PG, Bonner WM, Pollard HB (1978) Comparison of chemical properties of purified plasma membranes and secretory vesicle membranes from the bovine adrenal medulla. Cell Tiss Res 188: 153–170

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winkler, H. (1988). Occurrence and Mechanism of Exocytosis in Adrenal Medulla and Sympathetic Nerve. In: Trendelenburg, U., Weiner, N. (eds) Catecholamines I. Handbook of Experimental Pharmacology, vol 90 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46625-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46625-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46627-4

  • Online ISBN: 978-3-642-46625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics