Skip to main content

Semi-Infinite Programming and Continuum Physics

  • Conference paper
Infinite Programming

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 259))

Abstract

A unifying structure of semi-infinite programming has been the linear space of generalized finite sequences. While providing a duality theory, their use also opens up promising avenues for numerical treatment. In this paper the unification is extended to some problems in continuum physics whose mathematical formulations involve choices of function spaces, techniques of integration by parts in one and two dimensions, and finite element numerical approximations. The extension produces a biextremal formulation of equilibrium problems in continuum mechanics having material stress and displacement variables which is equivalent to a dual pair of infinite linear programs. Analogous to two-person game theory each problem has its own set of variables (stresses or displacements but not both) augmented by the dual variables associated with some of the constraining inequalities of the companion problem. Simultaneously, generalized finite sequences generate a class of generalized finite elements, including for example, the space of all 4-node nonlinear quadrilateral elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuska, I. and Osborn, J. E., “Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods”, SIAM J. Numer. Anal., vol. 20, pp. 510–536, 1983.

    Article  Google Scholar 

  2. Becker, E. B., Carey, G. F. and Oden, J. T., Finite Elements An Introduction, Volume I, Englewood Cliffs, New Jersey: Prentice Hall, 1981.

    Google Scholar 

  3. Charnes, A., Gribik, P. R. and Kortanek, K. O., “Polyextremal Principles and Separably-Infinite Programs”, Z. Op. Res., vol. 25, pp. 211–234, 1980.

    Article  Google Scholar 

  4. Charnes, A. and Kortanek, K. O., “Semi-Infinite Programming and Continuum Mechanics”, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, August, 1983.

    Google Scholar 

  5. Christiansen, E., “Limit Analysis in Plasticity as a Mathematical Programming Problem, Calcolo, vol. 17, pp. 41–65, 1980a.

    Google Scholar 

  6. Christiansen, E.,“Limit Analysis for Plastic Plates, SIAM J. Math. Anal., vol. 11, pp. 514–522, 1980b.

    Google Scholar 

  7. Christiansen, E.,“Computation of Limit Loads”, Int. J. Num. Meth. Eng., vol. 17, pp. 1547–1570, 1981a.

    Google Scholar 

  8. Christiansen, E., “On the Collapse State in Limit Analysis, Meeting on“Mathematical Problems in Continuum Mechanics”, Trento, January, 1981b.

    Google Scholar 

  9. Christiansen, E., “Examples of Collapse Solutions in Limit Analysis”, Utilitas Math., vol. 22, pp. 77–102, 1982.

    Google Scholar 

  10. Christiansen, E. and Larsen, S., “Computations in Limit Analysis for Plastic Plates”, Int. J. Num. Meth. Eng., vol. 18, pp. 169–184, 1983.

    Article  Google Scholar 

  11. Dupont, T., “Mesh Modification for Evolution Equations”, Math Computation, vol. 39, pp. 85–107, 1982.

    Article  Google Scholar 

  12. Fiacco, A. V. and Kortanek, K. O. (Editors), Semi-Infinite Programming and Applications. In Lecture Notes in Economics and Mathematical Systems, vol. 215, Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1983.

    Google Scholar 

  13. Hobson, E. W., The Theory of Functions of a Real Variable and the Theory of Fourier Series, vol. 1, New York:Dover Publications, 1927 and 1

    Google Scholar 

  14. Housner, G. W. and Vreeland, T., Jr., The Analysis of Stress and Deformation, New York: The MacMillan Company, 1966.

    Google Scholar 

  15. Kortanek, K. O., “Using Generalized Finite Sequences in Mathematical Physics”, Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, August, 1984a.

    Google Scholar 

  16. Kortanek, K. O., “On Generalized Finite Sequence Quadrilateral Elements”, Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, August, 1984b.

    Google Scholar 

  17. Matthies, H., Strang, G. and Christiansen, E., “The Saddle Point of a Differential Program”. In Energy Methods in Finite Element Analysis (Eds. R. Glowinski, E. Rodin, and O. C. Zienkiewicz), New York: John Wiley & Sons, pp. 309–319, 1979.

    Google Scholar 

  18. Miller, K. and Miller, R. N., “Moving Finite Elements I”, SIAM J. Numer. Anal., vol. 18, pp. 1019–1032, 1981.

    Article  Google Scholar 

  19. Rheinboldt, W. C., “On a Theory of Mesh Refinement Processes”, SIAM J. Numer. Anal., vol. 17, pp. 766–778, 1980.

    Article  Google Scholar 

  20. Sard, A., Linear Approximation, Mathematical Surveys No. 9, American Mathematical Society, Providence, Rhode Island, 1963.

    Google Scholar 

  21. Shilov, G. E. and Gurevich, B. L., Integral, Measure and Derivative: A Unified Approach (translation by Richard A. Silverman), Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1966.

    Google Scholar 

  22. Shoemaker, E. M., “On Nonexistence of Collapse Solutions in Rigid-Perfect Plasticity”, Utilitas Math., vol. 16, pp. 3–13, 1979.

    Google Scholar 

  23. Strang, G., “A Minimax Problem in Plasticity Theory”. In Functional Analysis Methods in Numerical Analysis (Ed. M. Z. Nashed), Lecture Notes in Mathematics 701, Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, pp. 319–333, 1979.

    Chapter  Google Scholar 

  24. Strang, G., “Maximal Flow through a Domain”, Math. Prog., vol. 26, pp. 123–143, 1983.

    Article  Google Scholar 

  25. Temam, R., “Dual Variational Principles in Mechanics and Physics”. In Semi-Infinite Programming and Applications (Eds. A. V. Fiacco and K. 0. Kortanek), Lecture Notes in Economics and Mathematical Systems, vol. 215, Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, pp. 295–309, 1983.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kortanek, K.O. (1985). Semi-Infinite Programming and Continuum Physics. In: Anderson, E.J., Philpott, A.B. (eds) Infinite Programming. Lecture Notes in Economics and Mathematical Systems, vol 259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46564-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46564-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15996-4

  • Online ISBN: 978-3-642-46564-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics