Skip to main content

References

  • Chapter

Part of the book series: Biotechnology Monographs ((BIOTECHNOLOGY,volume 1))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mateles RI, Tannenbaum SR (eds) (1968) Single cell protein I. MIT Press, Cambridge, MA

    Google Scholar 

  2. Altschul AM (1968) The agricultural, scientific, and economic basis for low-cost protein food. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 48

    Google Scholar 

  3. Brown LR (1968) World food problems. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 11

    Google Scholar 

  4. Munro HN (1968) The nature of protein needs. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 27

    Google Scholar 

  5. Scrimshaw NS (1975) Single-cell protein for human consumption - an overview. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 24

    Google Scholar 

  6. Borgstrom G (1976) Principles of food science, vol 2, food microbiology and biochemistry. Foo and Nutrition Press, Inc., Westport, CT

    Google Scholar 

  7. Litchfield JH (1983) Science 219: 740

    Article  PubMed  CAS  Google Scholar 

  8. Solomons GL (1983) CRC Crit Rev Biotech 1: 21

    Article  CAS  Google Scholar 

  9. Mellor JW, Adams RH Jr (1984) Chem Eng News 62: 32

    Google Scholar 

  10. Scrimshaw NS (1968) Introduction. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 3

    Google Scholar 

  11. Litchfield JH (1978) Chemtech 8: 218

    Google Scholar 

  12. Rose AH (1979) History and scientific basis of large-scale production of microbial biomass. In: Rose AH (ed) Economic microbiology, vol 4. Microbial biomass. Academic Press, London, p 1

    Google Scholar 

  13. Peppler HJ (19792) Production of yeasts and yeast products. In: Peppler HJ, Perlman D (eds) Microbial technology, vol 1. Microbial processes. Academic Press, New York, p 157

    Google Scholar 

  14. Rose AH (ed) (1979) Economic microbiology, vol 4. Microbial biomass. Academic Press, London

    Google Scholar 

  15. Lipinsky ES (1981) Science 212: 1465

    Article  PubMed  CAS  Google Scholar 

  16. Rolz C (1983) IOBB Newsletter, Sept Issue, p 1

    Google Scholar 

  17. Jarvis B, Holms AW (1982) J Chem Tech Biotechnol 32: 224

    CAS  Google Scholar 

  18. Anthony C (1982) The biochemistry of methylotrophs. Academic Press, London

    Google Scholar 

  19. Pontanel HG De (ed) (1972) Proteins from hydrocarbons. Academic Press, New York

    Google Scholar 

  20. Gulch S (1973) Proteins from hydrocarbons. Noyes Data Corporation, Park Ridge, NJ

    Google Scholar 

  21. Davis JP (ed) (1974) Single cell protein. Academic Press, New York

    Google Scholar 

  22. Tannenbaum SR, Wang DIC (eds) (1975) Single cell protein II, MIT Press, Cambridge, MA

    Google Scholar 

  23. Wagner F (ed) (1975) Symposium mikrobielle Proteingewinnung. Verlag-Chemie, Weinheim

    Google Scholar 

  24. Rockwell PJ (1976) Single cell proteins from cellulose and hydrocarbons, Noyes Data Corporation, Park Ridge, NJ

    Google Scholar 

  25. Gaden EL Jr, Humphrey AE (eds) (1977) Single cell protein from renewable and nonrenewable resources. Biotech Bioeng, Symp 7. John Wiley & Sons, New York

    Google Scholar 

  26. Shelef G, Soeder CJ (eds) (1980) Algae biomass production and use. Elsevier/North-Holland, New York

    Google Scholar 

  27. Harrison DEF, Higgins IJ, Watkinson R (eds) (1980) Hydrocarbons in biotechnology. Heyden & Sons Ltd, London

    Google Scholar 

  28. Ferranti MP, Fiechter A (eds) (1983) Production and feeding of single cell protein. Applied Science Publishers Ltd, London

    Google Scholar 

  29. Lipinsky ES, Litchfield JH (1970) Crit Rev Food Technol 1: 581

    Article  Google Scholar 

  30. Snyder HE (1970) Adv Food Res 18: 85

    Article  PubMed  CAS  Google Scholar 

  31. Kihlberg R (1972) Ann Rev Microbiol 26: 427

    Article  CAS  Google Scholar 

  32. Waslien CI (1975) Crit Rev Food Sci Nutr 6: 77

    Article  CAS  Google Scholar 

  33. Litchfield JH (1977) Adv Appl Microbiol 22: 267

    Article  CAS  Google Scholar 

  34. Riviere J (1977) Industrial applications of microbiology. John Wiley & Sons, New York

    Google Scholar 

  35. Cooney CL, Rha C, Tannenbaum SR (1979) Adv Food Res 26: 1

    Article  Google Scholar 

  36. Mateles RI (1979) Symp Soc Gen Microbiol 29: 29

    CAS  Google Scholar 

  37. Hamer G, Hamdan IY (1979) Chem Soc Rev 8: 143

    Article  CAS  Google Scholar 

  38. Hamer G, Harrison DEF (1980) Single cell protein: the technology, economics and future potential. In: Harrison DEF, Higgins IJ, Watkinson R (eds) Hydrocarbons in biotechnology. Hcyden & Sons Ltd, London

    Google Scholar 

  39. Reed G (1982) Microbial biomass, single cell protein, and other microbial products. In: Reed G (ed) Prescott and Dunn’s industrial microbiology. Avi Publishing Comp Inc, Westport, CT, p 541

    Google Scholar 

  40. Samuelov NS (1983) Adv Biotech Processes 1: 293

    CAS  Google Scholar 

  41. Batt CA, Sinskey AJ (1984) Food Technol 38: 108

    CAS  Google Scholar 

  42. Delbrück M (1910) Wochschrift für Brauerei 27: 375

    Google Scholar 

  43. Hockberg M, Melnick D, Oser BL (1945) J Nutr 26: 385

    Google Scholar 

  44. Litchfield JH (1968) The production of fungi. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 309

    Google Scholar 

  45. Anderson C, Longton J, Maddix C, Scammel GW, Solomons GL (1975) The growth of micro-fungi on carbohydrates. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 314

    Google Scholar 

  46. Benemann JR, Weissman JC, Oswald WJ (1979) Algal biomass. In: Rose AH (ed) Economic microbiology, vol 4. Microbial biomass. Academic Press, London, p 177

    Google Scholar 

  47. Jüttner F (1982) Process Biochem 17: 2

    Google Scholar 

  48. Soong P (1980) In: Shelef G, Soeder CJ (eds) Algae biomass production and use. Elsevier/NorthHolland, New York, p 92

    Google Scholar 

  49. Lipinsky ES, Litchfield JH (1974) Food Technol 28: 16

    CAS  Google Scholar 

  50. Clement G (1975) Producing Spirulina with CO2. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 467

    Google Scholar 

  51. Laskin AI (1977) Biotech Bioeng Symp 7: 91

    CAS  Google Scholar 

  52. Vonshak A, Boussiba S, Abeliovich A, Richmond A (1983) Biotech Bioeng 25: 341

    Article  CAS  Google Scholar 

  53. Azov Y, Shelef G, Maraine R (1982) Biotech Bioeng 24: 579

    Article  CAS  Google Scholar 

  54. Ben-Amotz A, Avron M (1983) Ann Rev Microbiol 37: 95

    Article  CAS  Google Scholar 

  55. Gow JS, Littlehailes JD, Smith SRL, Walter RB (1976) SCP production from methanol: bacteria. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 370

    Google Scholar 

  56. Faust U, Prave P, Sukatsch DA (1977) J Ferment Technol 55: 609

    CAS  Google Scholar 

  57. Mogren H (1979) Process Biochem 14: 2

    CAS  Google Scholar 

  58. Ebbinghaus L, Ericsson M, Lindblom M (1981) Production of single cell protein from methanol by bacteria. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 413

    Google Scholar 

  59. Ridgeway JA Jr, Lappin TA, Benjamin BM, Corns JB, Akin C (1975) US Patent 3. 865–691

    Google Scholar 

  60. Humphrey AE (1981) Production of single cell protein from ethanol. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 431

    Google Scholar 

  61. Ko PC, Yu Y (1968) Production of SCP from hydrocarbons: Taiwan. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 255

    Google Scholar 

  62. Dube P, Gupta A, Khan WA, Dutta KK, Kaw JL, Dikshith TSS, Mehrotra NK, Pandya KP (1982) XIII International congress in microbiology, Boston, MA, p 151

    Google Scholar 

  63. Watts H (1976) Chemistry and Industry 3: 537

    Google Scholar 

  64. LeDuy A (1976) Process Biochem 14: 5

    Google Scholar 

  65. Knecht R, Prave P, Seipenbusch R, Sukatsch DA (1977) Process Biochem 12: 11

    CAS  Google Scholar 

  66. Birckenstaedt JW, Faust U, Sambeth W (1977) Process Biochem 12: 7

    CAS  Google Scholar 

  67. Shacklady CA (1970) Outlook on Agriculture 6: 102

    Google Scholar 

  68. Oullivan DA (1978) Chem Eng News 3: 12

    Article  Google Scholar 

  69. Cooper P, Silver R, Boyle J (1975) Semi-commercial studies of a petroprotein process based on n-paraffins. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 454

    Google Scholar 

  70. Zanetti R (1984) Chem Eng 91: 18

    Google Scholar 

  71. Forage AJ (1978) Process Biochem 13: 8

    CAS  Google Scholar 

  72. Davy CAE, Wilson D, Lyon JCM (1981) Commercial production of feed yeast from carbohydrate waste. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 343

    Google Scholar 

  73. Jarl K (1969) Food Technol 23: 23

    Google Scholar 

  74. Lemmel SA, Heimsch RC, Edwards LL (1979) Appl Environ Microbiol 37: 227

    PubMed  CAS  Google Scholar 

  75. Sanchez-Marroquin A (1977) Biotech Bioeng Symp 7: 23

    CAS  Google Scholar 

  76. Espinosa R (1976) Chemtech 6: 636

    Google Scholar 

  77. Romantschuk H, Lehtomaki M (1978) Process Biochem 13: 16

    CAS  Google Scholar 

  78. Rychtera M, Barta J, Fiechter A, Einsele AA (1977) Process Biochem 12: 26

    CAS  Google Scholar 

  79. Anderson R, Weisbaum RB, Robe K (1974) Food Process 35: 58

    Google Scholar 

  80. Bernstein S, Tzeng CH, Sisson D (1977) Biotech Bioeng Symp 7: 1

    CAS  Google Scholar 

  81. Kim JH, Lebault JM (1981) Eur J Appl Microbiol Biotechnol 13: 151

    Article  CAS  Google Scholar 

  82. Bayer K, Meyrath J (1976) Zentralblatt Bakteriol Hygiene 252: 37

    Google Scholar 

  83. Moulin G, Malige B, Galzy P (1983) Industrial production of SCP from whey. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 153

    Google Scholar 

  84. Robe K (1964) Food Process 25: 95

    Google Scholar 

  85. Kappeli O, Halter N, Puhan Z (1981) Upgrading of milk ultrafiltration permeate by yeast fermentation. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 351

    Google Scholar 

  86. Halter N, Puhan Z, Kappeli O (1983) Upgrading of milk UF-permeate by yeast fermentationsemiindustrial trials and economy. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 147

    Google Scholar 

  87. Chahal DS, Vlach D, Moo-Young M (1981) Upgrading the protein feed value of lignocellulosic materials using Chaetomium cellulolyticum in solid-state fermentation. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 327

    Google Scholar 

  88. Dimmling W (1975) Hydrocarbon Process 9: 169

    Google Scholar 

  89. Glanser M, Ban SN (1984) Process Biochem 19: 105

    CAS  Google Scholar 

  90. Zomer E, Klein D, Rozhansky M, Er-el Z, Joson LM, Goldberg I(1981) Biotech Lett 3: 513

    Google Scholar 

  91. Kamibubo T, Tanaka M, Taniguchi M, Morita T, Matsuno R (1981) Production of SCP from waste cellulose. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 311

    Google Scholar 

  92. Kositanont C, Charoensiri K, Bhumiratana A (1981) Single cell production from cellulosic material. In: Taguchi H (ed) Microbial utilization of renewable resources II. Osaka University, Osaka, p 47

    Google Scholar 

  93. Davey G, Bruce J (1982) Biotech Bioeng 25: 647

    Article  Google Scholar 

  94. Tuse D, Russell LA, Hsieh DPH (1981) Nutritional and toxological evaluation of SCP produced from an environmental waste. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 363

    Google Scholar 

  95. Rao M, Mishra C, Seeta R, Srinivasan MC, Deshpande VV (1983) Biotech Lett 5: 301

    Article  CAS  Google Scholar 

  96. Araujo A, D’Souza J (1980) J Ferment Technol 58: 399

    CAS  Google Scholar 

  97. El-Masry HG (1983) J Sci Food Agric 34: 725

    Article  CAS  Google Scholar 

  98. Kim BH, Wimpenny JWT (1981) J Ferment Technol 59: 275

    CAS  Google Scholar 

  99. Ek M, Eriksson KE (1980) Biotech Bioeng 22: 2273

    Article  CAS  Google Scholar 

  100. Noparatnaraporn M, Nishizawa Y, Nagai S (1980) Utilization of photosynthetic bacteria on soybean waste. In: Taguchi H (ed) Annual reports of international center of cooperative research and development in microbial engineering. Osaka University, Osaka, p 238

    Google Scholar 

  101. Horitsu H, Hashimoto T, Tokunaka T, Kawai K, Wakazono H (1982) XIII International congress of microbiology. Boston, MA, p 151

    Google Scholar 

  102. Garg SK, Neelakantan S (1982) Biotech Bioeng 24: 2407

    Article  CAS  Google Scholar 

  103. Enriquez A, Rodrigues H (1983) Biotech Bioeng 25: 877

    Article  CAS  Google Scholar 

  104. Sidhu MS, Sandhu DK (1980) Biotech Bioeng 22: 689

    Article  CAS  Google Scholar 

  105. Bottaro Castela R, Waehner RS, Giulietti AM (1984) Biotech Lett 6: 195

    Article  Google Scholar 

  106. Moresi M, Marchionni G (1983) Biotech 1073

    Google Scholar 

  107. Kargi F, Schuler ML (1981) Biotech Lett 3: 409

    Article  Google Scholar 

  108. Kargi F, Schuler ML, Vashon R, Seeley HW, Henry A, Austic RE (1980) Biotech Bioeng 22: 1567

    Article  CAS  Google Scholar 

  109. Oron G, Shelef G, Levi A (1979) Biotech Bioeng 21: 2169

    Article  CAS  Google Scholar 

  110. Margaritis A, Bajpai P, Cannell E (1981) Biotech Lett 3: 595

    Article  CAS  Google Scholar 

  111. I 1 I. Apaire V, Guiraud JP, Galzy P (1983) Z Allg Mikrobiol 23: 211

    Article  PubMed  CAS  Google Scholar 

  112. Illanes A, Schaffeld G (1983) Biotech Lett 5: 305

    Article  CAS  Google Scholar 

  113. Friedrich J, Cimerman A, Perdih A (1983) Eur J Appl Microbiol Biotechnol 17: 243

    Article  CAS  Google Scholar 

  114. Barker TW, Patton AM, Marchiant R (1983) J Sci Food Agric 34: 638

    Article  Google Scholar 

  115. Sethi RP, Grainger JM (1981) Conversion of mangostone into SCP for animal feed by Aspergillus niger using solid substrate fermentation. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 319

    Google Scholar 

  116. Quinn JP, Marchant R (1979) Eur J Appl Microbiol Biotechnol 6: 251

    Article  CAS  Google Scholar 

  117. DeLeon R, Calzada F, Herrera R, Rolz C (1980) J Ferment Technol 58: 579

    Google Scholar 

  118. Chung SL, Meyers SP (1979) Dev Ind Microbiol 20: 723

    Google Scholar 

  119. Azoulay E, Jouanneau F, Bertrand JC, Raphael A, Janssens J, Lebeault JM (1980) Appl Environ Microbiol 39: 41

    PubMed  CAS  Google Scholar 

  120. Azoulay E, Janssens J, Raphael A, Bertrand JC (1981) Growth of Candida tropicalis on starch and cassava powder for the obtention of high-protein feed. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 333

    Google Scholar 

  121. Noparatnaraporn M, Sasaki K, Nishizawa Y, Hayashi M, Nagai S (1982) XIII International congress of microbiology. Boston, MA, p 150

    Google Scholar 

  122. Wilson JJ, Khachatourians GG, Ingledew WM (1982) Biotech Lett 4: 333

    Article  CAS  Google Scholar 

  123. Spencer-Martins I, van Uden N (1979) Eur J Appl Microbiol Biotechnol 6: 241

    Article  CAS  Google Scholar 

  124. Levy-Rick S, Champagne CC, Yaguchi M, Lusena CV, Calleja GB, Nasim A (1982) Can Soc Microbiol 116

    Google Scholar 

  125. Nga BH (1982) Improvement of utilization of starch by strains of Aspergillus niger. In: Taguchi H (ed) Annual reports of international center of cooperative research and development in microbial engineering. Osaka University, Osaka, p 455

    Google Scholar 

  126. Stakheyev IV, Babitskaya VG, Kostina AM, Vadetskii BY (1983) Mikol Fitopatol 17: 135

    Google Scholar 

  127. Moresi M, Solinas MA, Matteucci S (1983) Eur J Appl Microbiol Biotechnol 18: 92

    Article  CAS  Google Scholar 

  128. Pujol F, Bahar S (1983) Eur J Appl Microbiol Biotechnol 18: 361

    Article  CAS  Google Scholar 

  129. Urakami T, Terao I, Nagai I (1983) J Ferment Technol 61: 221

    CAS  Google Scholar 

  130. Miura Y, Okazaki M, Komemushi S, Sakata T, Shiroza S, Obana S (1983) U.K. Patent Appl G.B. 212–274

    Google Scholar 

  131. Cabane B, Galzy P (1983) US Patent 4416987

    Google Scholar 

  132. Couderc R, Baratti J (1980) Agr Biol Chem 44: 2279

    Article  CAS  Google Scholar 

  133. Allais JJ, Louktibi A, Baratti J (1983) Agr Biol Chem 47: 1509

    Article  CAS  Google Scholar 

  134. Hamer G, Hamdan IY, Humphrey AW (1981) A route for SCP production using volatile liquid hydrocarbon feedstocks. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 395

    Google Scholar 

  135. Katrush RV, Kozlova LI, Razhkova MI, Zhdannikova EN, Velikoslavinskaya OI, Bauch J, Gentzsch H, Bohlmann I (1981) Production of feed yeast from petroleum distillates. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 401

    Google Scholar 

  136. Sprenger B, Rehm HJ (1983) Eur J Appl Microbiol Biotechnol 17: 265

    Article  CAS  Google Scholar 

  137. Zarilla KA, Perry JJ (1984) Arch Microbiol 137: 286

    Article  CAS  Google Scholar 

  138. Wlodarczyk Z (1981) Chemical composition of yeasts cultivated in various hydrocarbon substrates. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 447

    Google Scholar 

  139. Krasnikov EI, Rudaya SP, Nagornaya SS, Klyushnikova TM, Ivanova LL, Sumnevich VG (1983) Mikrobiologiya 45: 24

    Google Scholar 

  140. Kilian SG, Prior BA, Lategan PM, Kruger WCJ (1981) Biotech Bioeng 23: 267

    Article  CAS  Google Scholar 

  141. Kamel BS (1979) Process Biochem 14: 12

    CAS  Google Scholar 

  142. Braun R, Meyrath J, Stuparek W, Zerlauth G (1979) Process Biochem 14: 16

    CAS  Google Scholar 

  143. Prior BA (1984) Biotech Bioeng 26: 748

    Article  CAS  Google Scholar 

  144. Prior BA, Botha M, Custers M, Casaleggio C (1981) Fermentation of pineapple effluent by Candida utilis. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 337

    Google Scholar 

  145. Rale VB (1984) Eur J Appl Microbiol Biotechnol 19: 106

    Article  CAS  Google Scholar 

  146. Revah-Moiseev S, Carroad PA (1981) Biotech Bioeng 23: 1067

    Article  CAS  Google Scholar 

  147. Hang YD (1980) Appl Environ Microbiol 39: 470

    PubMed  CAS  Google Scholar 

  148. Sandhu DK, Waraich MK (1983) Biotech Bioeng 25: 797

    Article  CAS  Google Scholar 

  149. Foda MS (1983) Egypt J Microbiol 18: 151

    CAS  Google Scholar 

  150. Moresi M, Colicchio A, Sansovini F (1980) Eur J App] Microbiol Biotechnol 9: 173

    Article  CAS  Google Scholar 

  151. Moresi M, Colicchio A, Sansovini F, Sebastiani E (1980) Eur J Appl Microbiol Biotechnol 9: 261

    Article  CAS  Google Scholar 

  152. Castillo FJ, Sanchez S, Sanchez L, Bales S, Goncalves JA (1981) Utilization of milk whey. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 686

    Google Scholar 

  153. Abou-Zeid AZA, Abd El-Fattah AF, Farid MA (1979) Agr Biol Chem 43: 1977

    Google Scholar 

  154. Gold D, Mohagheghi A, Cooney CL, Wang DIC (1981) Biotech Bioeng 23: 2105

    Article  CAS  Google Scholar 

  155. Noonai A, Flegel TW (1981) Biomass production from acid hydrolysate of spent sulfite liquor. In: Taguchi H (ed) Microbial utilization of renewable resources II. Osaka University, Osaka, p 33

    Google Scholar 

  156. Oliva RU, Hang YD (1979) Appl Environ Microbiol 38: 1027

    PubMed  CAS  Google Scholar 

  157. Henry DP, Greenfield PF, Thomson RH (1983) Eur J Appl Microbiol Biotechnol 18: 109

    Article  CAS  Google Scholar 

  158. Welsh FW, Zall RR (1984) Process Biochem 19: 122

    CAS  Google Scholar 

  159. Ercoli E, Ertola R (1983) Biotech Lett 5: 457

    Article  CAS  Google Scholar 

  160. Martinet F, Ratomahenina R, Graille J, Galzy P (1982) Biotech Lett 4: 9

    Article  Google Scholar 

  161. Koh JS, Kodama T, Minoda Y (1983) Agr Biol Chem 47: 1207

    Article  CAS  Google Scholar 

  162. Koh JS, Kodama T, Yamakawa T, Minoda Y (1980) Microbial utilization of palm oil - screening of yeasts and cultural conditions of jar fermentor for cell production. In: Taguchi H (ed) Annual reports of international center of cooperative research and development in microbial engineering. Osaka University, Osaka, p 167

    Google Scholar 

  163. Nakahara T, Sasaki K, Tabuchi T (1982) J Ferment Technol 60: 89

    CAS  Google Scholar 

  164. Montet D, Ratomahenina R, Ba A, Pina M, Graille J, Galzy P (1983) J Ferment Technol 61: 417

    Google Scholar 

  165. Karthigesan J, Brown BS (1981) J Chem Technol Biotechnol 31: 55

    Article  CAS  Google Scholar 

  166. Vrati S (1984) Eur J Appl Microbiol Biotechnol 19: 199

    Article  CAS  Google Scholar 

  167. Pirt SJ, Lee YK, Richmond A, Pirt MW (1980) J Chem Technol Biotechnol 30: 25

    Article  CAS  Google Scholar 

  168. Laws EA, Terry KL, Wickman J, Chalup MS (1983) Biotech Bioeng 25: 2319

    Article  CAS  Google Scholar 

  169. Miura Y, Okazaki M, Ohi K, Nishimura T, Komemushi S (1982) Biotech Bioeng 24: 1173

    Article  CAS  Google Scholar 

  170. Siegel RS, Ollis DF (1984) Biotech Bioeng 26: 764

    Article  CAS  Google Scholar 

  171. Stanier RY, Doudoroff M, Adelberg EA (1970) The microbial world. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  172. Shipman RH, Fan LT, Kao IC (1977) Adv Appl Microbiol 21: 161

    Article  PubMed  CAS  Google Scholar 

  173. Mahler HR, Cordes EH (1967) Biological chemistry. Harper and Row, Evanston and London, New York

    Google Scholar 

  174. Kobayashi M, Kurata SI (1981) Process Biochem 16: 27

    Google Scholar 

  175. Becker EW (1981) Process Biochem 16: 10–14

    CAS  Google Scholar 

  176. Ludwig HF, Oswald WJ (1952) Scientific Monthly 74: 3

    Google Scholar 

  177. Oswald WJ, Golueke CG (1968) Large-scale production of algae. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 271

    Google Scholar 

  178. Soeder CJ, Binsack R (1978) Ergebn Limnol 11

    Google Scholar 

  179. Nigam BP, Ramanathan PK, Venkataraman LV (1981) Biotech Lett 3: 619

    Article  Google Scholar 

  180. Eisenberg DM, Koopman B, Benemann JR, Oswald WJ (1981) Biotech Bioeng Symp 11: 429

    Google Scholar 

  181. Aiba S, Ogata T (1977) J Gen Microbiol 102: 179

    Google Scholar 

  182. Pirt SJ (1981) Fermentation - a question of life. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p X VII

    Google Scholar 

  183. Repaske R (1962) J Bacteriol 83: 418

    PubMed  CAS  Google Scholar 

  184. Repaske R (1966) Biotech Bioeng 8: 217

    Article  CAS  Google Scholar 

  185. Lafferty RM, Schlegel HG (1971) Adv Biochem Eng 1: 143

    Article  Google Scholar 

  186. Goto E, Suzuki K, Kodama T, Minoda Y (1977) Agr Biol Chem 41: 521

    Article  CAS  Google Scholar 

  187. Goto E, Kodama T, Minoda Y (1971) Agr Biol Chem 41: 685

    Article  Google Scholar 

  188. Morinaga Y, Yamanaka S, Ishizaki A, Hirose Y (1978) Agr Biol Chem 42: 439

    Article  CAS  Google Scholar 

  189. Miura Y, Okazaki M, Ohi K, Nishimura T (1981) Agr Biol Chem 45: 1181

    Article  CAS  Google Scholar 

  190. Lafferty RM, Moser A, Steiner W (1975) Production of single cell protein from chemo-lithotropic bacteria. In: Wagner F (ed) Microbial production of protein. Verlag-Chemie, Weinheim, p X

    Google Scholar 

  191. Cangelosi GA, Wheelis ML (1984) J Bacteriol 159: 138

    PubMed  CAS  Google Scholar 

  192. Schobert P, Bowien B (1984) J Bacteriol 159: 167

    PubMed  CAS  Google Scholar 

  193. Schuster E, Schlegel HG (1967) Arch Microbiol 58: 380

    CAS  Google Scholar 

  194. Robra KH, Lafferty RM, Schlegel HG (1972) Zbl Bakt II Abtlg 127: 651

    Google Scholar 

  195. Miyoshi M (1985) J Wiss Bot 28: 269

    Google Scholar 

  196. Söhngen NL (1906) Zentr Bakt Parasitenk 15: 513

    Google Scholar 

  197. Söhngen NL (1913) Zentr Bakt Parasitenk 37: 595

    Google Scholar 

  198. Tausson WO (1928) Neftyanoe Khoz 14: 220

    Google Scholar 

  199. Mogilevskii GA (1940) Rozvedka Okhrana NEDR 12: 30

    Google Scholar 

  200. Hassler GL (1943) U.S. Patent 2.321. 292

    Google Scholar 

  201. Humphrey AW (1967) Biotech Bioeng 9: 3

    Article  CAS  Google Scholar 

  202. Fuhs GW (1961) Arch Microbiol 39: 374

    CAS  Google Scholar 

  203. Bos P, de Bruyn JC (1973) Antonie van Leevwenhoek 39: 99

    Article  CAS  Google Scholar 

  204. Walker JD, Austin H F, Colwell RR (1975) J Gen Appl Microbiol 21: 27

    Article  CAS  Google Scholar 

  205. Levi JD, Shennan JL, Ebbon GP (1979) Biomass from liquid n-alkanes. In: Rose AH (ed) Economic microbiology, vol 4. Microbial biomass. Academic Press, London, p 362

    Google Scholar 

  206. Atlas RM (1981) Microbiol Rev 45: 180

    PubMed  CAS  Google Scholar 

  207. Komagata K, Kakase T, Katsuya N (1964) J Gen Appl Microbiol 10: 313

    Article  Google Scholar 

  208. Markovetz AJ, Kallio AE (1964) J Bacteriol 87: 968

    PubMed  CAS  Google Scholar 

  209. Scheda R, Bos P (1966) Nature 211: 660

    Article  PubMed  CAS  Google Scholar 

  210. Klug MJ, Markovetz AJ (1971) Utilization of aliphatic hydrocarbons by microorganisms. In: Rose AH, Wilkinson JF (eds) Advances in microbial physiology. Academic Press, Inc, New York, PI

    Google Scholar 

  211. Casas-Campillo C, Morales JL, Larrea S (1971) Single-cell protein from filamentous fungi propagated on hydrocarbons. In: Freitas YM, Fernandes F (eds) Global impacts of applied microbiology. University of Bombay, Bombay, p 531

    Google Scholar 

  212. Lowery CE Jr, Foster JW, Jurtshuk P (1968) Arch Microbiol 60: 246

    CAS  Google Scholar 

  213. Markovetz AJ Jr, Cazin J, Allen JE (1968) Appl Micriobiol 16: 487

    Google Scholar 

  214. Champagnat A, Vernet C, Laine B, Filosa J (1963) Nature (London) 197: 13

    Article  CAS  Google Scholar 

  215. Done K (1978) Financial Times (London), July 20th

    Google Scholar 

  216. Litchfield JH (1977) Biotech Bioeng Symp 7: 77

    CAS  Google Scholar 

  217. Dimmling W, Spiepenbusch R (1978) Process Biochem 13: 9

    CAS  Google Scholar 

  218. Johnson MJ (1964) Chem Indus 9: 1532

    Google Scholar 

  219. Fend Z (1969) Biotech Bioeng Symp 1: 63

    Google Scholar 

  220. Munk V, Dostalek M, Volfova O (1969) Biotech Bioeng 11: 383

    Article  CAS  Google Scholar 

  221. Anon (1967) Chem Eng News 9: 46

    Google Scholar 

  222. Ko PC, Yu Y (1968) Production of SCP from hydrocarbons. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 255

    Google Scholar 

  223. Yamada K, Takahashi J, Kawabata Y, Okada T, Onihara T (1968) SCP from yeast and bacteria grown on hydrocarbons. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 192

    Google Scholar 

  224. Wen CY, Fan LT (1975) Models for flow systems and chemical reactors. Marcel Dekker, Inc, New York

    Google Scholar 

  225. Erickson LE, Nakahara T (1975) Process Biochem 10: 9

    CAS  Google Scholar 

  226. Gutierrez JR, Erickson LE (1978) Biotech Bioeng 20: 1833

    Article  CAS  Google Scholar 

  227. Kappeli O, Fiechter A (1976) Biotech Bioeng 18: 967

    Article  Google Scholar 

  228. Kapelli O, Fiechter A, Finnerty WR (1981) Utilization of n-alkanes by microorganisms: biological aspects of transport. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 177

    Google Scholar 

  229. Blanch HW, Einsele A (1973) Biotech Bioeng 15: 861

    Article  CAS  Google Scholar 

  230. Mimura A, Watanabe S, Takeda I (1971) J Ferment Technol 49: 255

    CAS  Google Scholar 

  231. Kennedy RS, Finnerty WR, Sudarsanan K, Young RA (1975) Arch Microbiol 102: 75

    Article  PubMed  CAS  Google Scholar 

  232. Aiba S, Haung KL, Moritz V, Someya J (1969) J Ferment Technol 42: 211

    Google Scholar 

  233. Moo-Young M, Shimizu T, Whitworth DA (1971) Biotech Bioeng 13: 741

    Article  CAS  Google Scholar 

  234. Einsele A, Schneider H, Fiechter A (1975) J Ferment Technol 53: 241

    Google Scholar 

  235. Yoshida F, Yamane T, Yagi H (1971) Biotech Bioeng 13: 215

    Article  CAS  Google Scholar 

  236. Makula RA, Finnerty WR (1972) J Bacteriol 112: 398

    PubMed  CAS  Google Scholar 

  237. Prokop A, Ludvik M, Erickson LE (1972) Biotech Bioeng 14: 587

    Article  CAS  Google Scholar 

  238. Kappeli O, Fiechter A (1977) J Bacteriol 131: 917

    PubMed  CAS  Google Scholar 

  239. Cooper DG, Zajic JE (1980) Adv Appl Microbio! 26: 229

    Article  CAS  Google Scholar 

  240. Ratledge C (1978) In: Watkinson RJ (ed) Developments in biodegradation of hydrocarbons. Applied Science, London, p 1

    Google Scholar 

  241. Zajic LE, Panchal CJ (1976) Crit Rev Microbiol 5: 39

    Article  CAS  Google Scholar 

  242. Goldman S, Sabtai Y, Rubinovitz C, Rosenberg E, Gutnick DL (1982) Appl Environ Microbiol 44: 165

    PubMed  CAS  Google Scholar 

  243. Zuckerberg A, Diver A, Peeri Z, Gutnick DL, Rosenberg E (1979) Appl Environ Microbiol 37: 414

    PubMed  CAS  Google Scholar 

  244. Gallo M, Bertrand JC, Roche B, Azoulay E (1973) Biochim Biophys Acta 296: 624

    PubMed  CAS  Google Scholar 

  245. Grund A, Shapiro J, Fennewald M, Bacha P, Leahy J, Markbreiter K, Neider M, Toepfer M (1975) J Bacteriol 123: 546

    PubMed  CAS  Google Scholar 

  246. Neider M, Shapiro J (1975) J Bacteriol 122: 93

    Google Scholar 

  247. Watkinson RJ (ed) (1978) Developments in biodegradation of hydrocarbons. Applied Science, London

    Google Scholar 

  248. Peterson JA, Basu D, Coon MJ (1966) J Biol Chem 241: 5162

    PubMed  CAS  Google Scholar 

  249. McKenna EJ, Coon MJ (1970) J Biol Chem 245: 3882

    PubMed  CAS  Google Scholar 

  250. Lode ET, Coon MJ (1971) J Biol Chem 246: 791

    PubMed  CAS  Google Scholar 

  251. Finnerty WR, Makula RA (1975) Crit Rev Microbiol 4: 1

    Article  CAS  Google Scholar 

  252. Benson S, Oppici M, Shapiro J, Fennewald M (1979) J Bacteriol 140: 754

    PubMed  CAS  Google Scholar 

  253. Fennewald M, Benson S, Oppici M, Shapiro J (1979) J Bacteriol 139: 940

    PubMed  CAS  Google Scholar 

  254. Whitworth DA, Ratledge C (1975) J Gen Microbiol 88: 275

    PubMed  CAS  Google Scholar 

  255. Kennedy RS, Finnerty WR (1975) Arch Microbiol 102: 85

    Article  PubMed  CAS  Google Scholar 

  256. Kawamoto S, Tanaka A, Yamamura M, Teranishi Y, Fukui S (1977) Arch Microbiol 112: 1

    Article  PubMed  CAS  Google Scholar 

  257. Vilenchich R, Akhtar W (1971) Process Biochem 13: 41

    Google Scholar 

  258. Prokop A, Sobotka M (1975) Insoluble substrate and oxygen transport in hydrocarbon fermentation. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 127

    Google Scholar 

  259. Faust U, Prave P (1979) Process Biochem 14: 28

    Google Scholar 

  260. Kanazawa M (1975) The production of yeast from n-paraffins. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 438

    Google Scholar 

  261. Leathen WW (1971) U.S. Patent 3.620. 927

    Google Scholar 

  262. Silver RS, Cooper PG, Boyle JP (1975) Semi-commercial studies of a petroprotein process based on n-paraffins. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 454

    Google Scholar 

  263. Pirnik MP, Atlas RM, Bartha R (1974) J Bacteriol 119: 868

    PubMed  CAS  Google Scholar 

  264. Dworkin M, Foster JW (1956) J Bacteriol 72: 646

    PubMed  CAS  Google Scholar 

  265. Goldberg I (1977) Process Biochem 12: 12

    CAS  Google Scholar 

  266. Chandra TS, Shethna YI (1977) J Bacteriol 13: 383

    Google Scholar 

  267. Quayle JR, Ferenci T (1978) Microbiol Rev 42: 251

    PubMed  CAS  Google Scholar 

  268. Krug ELR, Lim HC, Tsao GT (1979) Ann Rep Ferment Processes 3: 141

    CAS  Google Scholar 

  269. Hamer G (1979) Biomass from natural gas. In: Rose AH (ed) Economic microbiology, vol 4. Microbial Biomass. Academic Press, London, p 315

    Google Scholar 

  270. Colby J, Dalton H, Whittenbury R (1979) Ann Rev Microbiol 33: 481

    Article  CAS  Google Scholar 

  271. Wolfe RS, Higgins IJ (1979) Int Rev Biochem 21: 267

    CAS  Google Scholar 

  272. Higgins IJ, Best DJ, Hammond RC (1980) Nature 280: 561

    Article  Google Scholar 

  273. Quayle JR (1980) Biochem Soc Trans 8: 1

    PubMed  CAS  Google Scholar 

  274. Quayle JR (1980) FEBS Lett 117: 16

    Article  Google Scholar 

  275. Goldberg I (1981) Single-cell protein (SCP) from methanol by bacteria: microbiological and engineering process aspects. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 419

    Google Scholar 

  276. Crawford RL, Hanson RS (eds) (1984) Microbial growth on C1 compounds. American Society for Microbiology, Washington

    Google Scholar 

  277. Goldberg I (1985) Biology of the methylotrophs. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms. Benjamin/Cummings Publishing Company, Menlo Park, CA, p X X

    Google Scholar 

  278. Hanson RS (1980) Adv Appl Microbiol 26: 3

    Article  CAS  Google Scholar 

  279. Wilkinson JF (1970) Symp Soc Gen Microbiol 21: 15

    Google Scholar 

  280. Whittenbury R, Colby J, Dalton H, Reed HL (1976) Biology and ecology of methane oxidizers. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. Erich Goltze KG, Göttingen, p 281

    Google Scholar 

  281. Whittenbury R, Phillips KC, Wilkinson JF (1970) J Gen Microbiol 61: 205

    PubMed  CAS  Google Scholar 

  282. DeBont JAM, Mulder EG (1974) J Gen Microbiol 83: 113

    Google Scholar 

  283. Tani Y, Kato N, Yamada H (1978) Adv Appl Microbiol 24: 165

    Article  PubMed  CAS  Google Scholar 

  284. Foo EL (1978) Process Biochem 13: 23

    CAS  Google Scholar 

  285. Romanovskaya VA, Malashenko YR (1978) Mikrobiologiya 47: 120

    Google Scholar 

  286. Malashenko YR (1976) Isolation and characterization of new species (thermophilic and thermotolerant ones) of methane-utilizers. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. Erich Goltze KG, Göttingen, p 293

    Google Scholar 

  287. Shen G, Kodama T, Minoda Y (1982) Agr Biol Chem 46: 191

    Article  CAS  Google Scholar 

  288. Lawrence AJ, Quayle JR (1970) J Gen Microbiol 63: 371

    PubMed  CAS  Google Scholar 

  289. De Boer WE, Hazeu W (1972) Antonie van Leeuwenhoek 38: 33

    Article  PubMed  Google Scholar 

  290. Shishkina VN, Trotsenko YA (1979) FEMS Microbiol Lett 5: 187

    Article  CAS  Google Scholar 

  291. Loginova NV, Govorukhina NI, Trotsenko YA (1982) Mikrobiologiya 51: 38

    CAS  Google Scholar 

  292. Murrell JC, Dalton H (1983) J Gen Microbiol 129: 1197

    CAS  Google Scholar 

  293. Patt TE, Cole GC, Hanson RS (1976) Int J Syst Bacteriol 26: 226

    Article  CAS  Google Scholar 

  294. Patt TE, Cole GC, Bland J, Hanson RS (1974) J Bacteriol 120: 955

    PubMed  CAS  Google Scholar 

  295. Wolf HJ, Hanson RS (1979) J Gen Microbiol 114: 187

    Google Scholar 

  296. Quayle JR (1972) Adv Microb Physiol 7: 119

    Article  CAS  Google Scholar 

  297. Green PN, Bousfield IJ (1982) J Gen Microbiol 128: 623

    Google Scholar 

  298. Ogata K, Nishikawa H, Ohsugi M (1969) Agr Biol Chem 33: 1519

    Article  CAS  Google Scholar 

  299. Tani Y, Yamada H (1980) Biotech Bioeng 22: 163

    CAS  Google Scholar 

  300. Lee JD, Komagata K (1980) J Gen Appl Microbiol 26: 133

    Article  CAS  Google Scholar 

  301. Tye R, Willets A (1973) J Gen Microbiol 77: 1 P

    Google Scholar 

  302. Large Pi, Peel D, Quayle JR (1962) Biochem J 82: 483

    PubMed  CAS  Google Scholar 

  303. Kemp MB, Quayle JR (1967) Biochem J 102: 94

    PubMed  CAS  Google Scholar 

  304. Strom T, Ferenci T, Quayle JR (1974) Biochem J 144: 465

    PubMed  CAS  Google Scholar 

  305. Quayle JR, Keech DB (1959) Biochem J 72: 623

    PubMed  CAS  Google Scholar 

  306. Quayle JR, Keech DB (1959) Biochem J 72: 631

    PubMed  CAS  Google Scholar 

  307. Cox RB, Quayle JR (1975) Biochem J 150: 569

    PubMed  CAS  Google Scholar 

  308. Shiveley JM, Saluja A, McFadden BA (1978) J Bacteriol 134: 1123

    Google Scholar 

  309. Van Verseveld HW, Stouthamer AH (1978) Arch Microbiol 118: 21

    Article  PubMed  Google Scholar 

  310. Loginova NV, Trotsenki YR (1979) FEMS Microbiol Lett 5: 239

    Article  CAS  Google Scholar 

  311. Quayle JR, Pfennig N (1975) Arch Microbiol 102: 193

    Article  PubMed  CAS  Google Scholar 

  312. Douthit HA, Pfennig N (1976) Arch Microbiol 107: 233

    Article  Google Scholar 

  313. Bellion E, Hersh LB (1972) Arch Biochem Biophys 153: 368

    Article  PubMed  CAS  Google Scholar 

  314. Salem AR, Hacking AJ, Quayle JR (1973) Biochem J 136: 89

    PubMed  CAS  Google Scholar 

  315. Johnson PA, Quayle JR (1965) Biochem J 95: 859

    PubMed  CAS  Google Scholar 

  316. Kemp MB, Quayle JR (1966) Biochem J 99: 41

    PubMed  CAS  Google Scholar 

  317. Anthony C (1975) Sci Prog (Oxford) 62: 167

    CAS  Google Scholar 

  318. Taylor S (1977) FEMS Microbiol Lett 2: 305

    Article  CAS  Google Scholar 

  319. Hazeu W, de Bruyn JC, Van Dijken JP (1983) Arch Microbiol 135: 205

    Article  CAS  Google Scholar 

  320. Fujii T, Asada Y, Tonomura K (1974) Agr Biol Chem 38: 1121

    Article  CAS  Google Scholar 

  321. Fujii T, Tonomura K (1973) Agr Biol Chem 37: 447

    Article  CAS  Google Scholar 

  322. Kato N, Ohashi H, Hori T, Tani Y, Ogata K (1977) Agr Biol Chem 41: 1133

    Article  CAS  Google Scholar 

  323. Yamada H. Tani Y. Kato N, Sakazawa C (1983) Microbiology 139

    Google Scholar 

  324. Kato N, Higuchi T, Sakazawa C, Nishizawa T, Tani Y, Yamada H (1982) Biochim Biophys Acta 715: 143

    Article  PubMed  CAS  Google Scholar 

  325. Sahm H, Roggenkamp R, Wagner F (1975) J Gen Microbiol 88: 218

    PubMed  CAS  Google Scholar 

  326. Hazev W, Batenburg-van den Vegte WH, Nieuwdorp PJ (1975) Experientia 31: 926

    Google Scholar 

  327. Van Dijken JP, Otto R, Harder W (1975) Arch Microbiol 106: 221

    Article  PubMed  Google Scholar 

  328. Fukui S, Tanaka A, Kawamoto S, Yusahara S, Tanaka A, Osumi M, Imaizumi F (1975) Eur J Biochem 59: 561

    Article  PubMed  CAS  Google Scholar 

  329. Fukui S, Tanaka A, Kawamoto S, Yusahara S, Terashimi Y, Osumi M (1975) J Bacteriol 123: 317

    PubMed  CAS  Google Scholar 

  330. Veenhuis M, van Dijken JP, Harder W (1976) Arch Microbiol 111: 123

    Article  PubMed  CAS  Google Scholar 

  331. Tanaka A, Yasuhura S, Kawamoto S, Fukui S, Osumi M (1976) J Bacteriol 126: 919

    PubMed  CAS  Google Scholar 

  332. Van Dijken JP, Harder W, Beardsmore AJ, Quayle JR (1978) FEMS Microbiol Lett 4:97 333

    Article  Google Scholar 

  333. Sahm H (1975) Arch Microbiol 105: 179

    Article  PubMed  CAS  Google Scholar 

  334. Fujii T, Tonomura K (1975) Agr Biol Chem 39: 2325

    Article  CAS  Google Scholar 

  335. Roggenkamp R, Sahm H, Wagner F (1974) FEBS Lett 41: 283

    Article  PubMed  CAS  Google Scholar 

  336. Colby J, Zatman LJ (1975) Biochem J 148: 505

    PubMed  CAS  Google Scholar 

  337. Colby J, Zatman LJ (1975) Biochem J 148: 513

    PubMed  CAS  Google Scholar 

  338. Ben-Bassat A, Goldberg I (1980) Biochim Biophys Acta 611: 1

    PubMed  CAS  Google Scholar 

  339. Ben-Bassat A, Goldberg I (1977) Biochim Biophys Acta 497: 586

    Article  PubMed  CAS  Google Scholar 

  340. Sokolov AP, Trotsenko YA (1977) Mikrobiologiya 46: 1119

    CAS  Google Scholar 

  341. Stirling DI, Dalton H (1978) J Gen Microbiol 107: 19

    PubMed  CAS  Google Scholar 

  342. Ben-Bassat A, Goldberg I, Mateles RI (1980) J Gen Microbiol 116: 213

    PubMed  CAS  Google Scholar 

  343. Samuelov N, Goldberg I (1982) Biotech Bioeng 24: 731

    Article  CAS  Google Scholar 

  344. Higgins IJ, Best DJ, Hammond RC, Scott D (1981) Microbiol Rev 45: 556

    PubMed  CAS  Google Scholar 

  345. Wilkinson TG, Topiwala HH, Hamer G (1974) Biotech Bioeng 16: 41

    Article  CAS  Google Scholar 

  346. Goldberg I, Rock JS, Ben-Bassat A, Mateles RI (1976) Biotech Bioeng 18: 1657

    Article  CAS  Google Scholar 

  347. Rock JS, Goldberg I, Ben-Bassat A, Mateles RI (1976) Agr Biol Chem 40: 2129

    Article  CAS  Google Scholar 

  348. Samuelov N, Goldberg I (1982) Biotech Bioeng 24: 2605

    Article  CAS  Google Scholar 

  349. Schneider JD, Wendlandt KD, Bruehl E, Mirschel G, Jenapharm VEB (1983) Z Allg Mikrobiol 23: 33

    Article  PubMed  CAS  Google Scholar 

  350. Wasungu KM, Simard RE (1981) Baker’s yeast production from ethanol by the “Zulauf” process. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 439

    Google Scholar 

  351. Ristroph DL, Watteeuw CW, Armiger WB, Humphrey AW (1977) J Ferment Technol 55: 599

    CAS  Google Scholar 

  352. Prokop A, Votruba J, Sobotka M, Panos J (1978) Biotech Bioeng 20: 1523

    Article  CAS  Google Scholar 

  353. Du Preez JC, Toerien DF, Lategan PM (1981) Eur J Appl Microbiol Biotechnol 13: 45

    Article  Google Scholar 

  354. Loureiro-Dias MC, Peinado JM (1982) Biotech Lett 11: 721

    Article  Google Scholar 

  355. Leao C, van Uden N (1982) Biotech Bioeng 24: 2601

    Article  CAS  Google Scholar 

  356. Leao C, van Uden N (1984) Biotech Bioeng 26: 403

    Article  CAS  Google Scholar 

  357. Mor JR, Fiechter A (1968) Biotech Bioeng 10: 159

    Article  CAS  Google Scholar 

  358. Murray DG (1974) Act Rep Res Dir Assoc Mil Food Packaging Syst 26: 95

    CAS  Google Scholar 

  359. McAbee MK (1974) Chem Eng News 9: 11

    Google Scholar 

  360. Masuda Y (1974) Econ Eng Rev 6: 54

    CAS  Google Scholar 

  361. Masuda Y, Nakanishi N, Sakakura Y (1976) Hydrocarbon Processing 55: 113

    CAS  Google Scholar 

  362. Anon (1976) Eur Chem News 14: 53

    Google Scholar 

  363. Anon (1980) Eur Chem News 28: 20

    Google Scholar 

  364. Gaden EL Jr (1974) Substrates for SCP production. In: Davis P (ed) Single cell protein. Academic Press, London, p 47

    Google Scholar 

  365. Callihan CD, Clemmer JE (1979) Biomass from cellulosic materials. In: Rose AH (ed) Economic microbiology, vol 4. Microbial biomass. Academic Press, London, p 271

    Google Scholar 

  366. Forage AJ, Righelato RC (1979) Biomass from carbohydrates. In: Rose AH (ed) Economic microbiology, vol 4. Microbial biomass. Academic Press, London, p 289

    Google Scholar 

  367. Rhodes A, Fletcher DL (1975) Principles of industrial microbiology. Pergamon Press, Oxford

    Google Scholar 

  368. Burrows S (1979) Baker’s yeast. In: Rose AH (ed) Economic microbiology, vol 4. Microbial biomass. Academic Press, London, p 32

    Google Scholar 

  369. Oura E (1974) Biotech Bioeng 16: 1197

    Article  CAS  Google Scholar 

  370. Dellweg H, Bronn WK, Hartmeier W (1977) Kem Kemi 4: 611

    CAS  Google Scholar 

  371. Wang HY, Cooney CL, Wang DIC (1977) Biotech Bioeng 16: 69

    Article  Google Scholar 

  372. Burrows S (1970) Baker’s yeast. In: Rose AH, Harrison JS (eds) The yeasts 3. Academic Press, New York, p 349

    Google Scholar 

  373. Reed G, Peppler HJ (1973) Yeast technology. Avi Publishing Company, Westport, CT

    Google Scholar 

  374. Harrison JS (1967) Process Biochem 2: 41

    CAS  Google Scholar 

  375. Sato T (1966) Baker’s yeast. Korin-Shoin Publisher, Tokyo

    Google Scholar 

  376. Anon (1975) Feedstuffs, March 31, 4

    Google Scholar 

  377. Rolz C (1975) Utilization of cane and coffee processing by-products as microbial protein substrates. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 273

    Google Scholar 

  378. Espinosa R, Maldonado O, Menchu JF, Rolz C (1977) Biotech Bioeng Symp 7: 35

    CAS  Google Scholar 

  379. Jurgensen MF, Patton JT (1979) Process Biochem 14: 2

    CAS  Google Scholar 

  380. Romantschuk H (1975) The Pekilo process: protein from spent sulfite liquor. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 344

    Google Scholar 

  381. Drews SM (1975) Sonderheft Berichte der Landwirtschaft 192: 755

    Google Scholar 

  382. Vananuvat P, Kinsella JE (1975) J Food Sci 40: 336

    Article  CAS  Google Scholar 

  383. Moebus O, Teuber M (1983) General aspects of production of biomass by yeast fermentation from whey and permeate. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 124

    Google Scholar 

  384. Moresi M, Sebastiani E (1979) Eur J Appl Microbiol Biotechnol 8: 63

    Article  CAS  Google Scholar 

  385. Moresi M, Nacca C, Nardi R, Palleschi C (1979) Eur J Appl Microbiol Biotechnol 8: 49

    Article  CAS  Google Scholar 

  386. Vrignaud Y (1971) Rev Inst Pasteur Lyon 4: 147

    CAS  Google Scholar 

  387. Meyrath J, Bayer K (1979) Biomass from whey. In: Rose AH (ed) Economic microbiology, vol 4. Microbial biomass. Academic Press, London, p 208

    Google Scholar 

  388. Greenberg NA, Mahoney RR (1981) Process Biochem 16: 2

    CAS  Google Scholar 

  389. Prenosil JE, Stucker E, Hediger T, Bourne JR (1984) Biotechnology 2: 441

    Article  CAS  Google Scholar 

  390. Wasserman AE (1960) J Dairy Sci 43: 1231

    Article  CAS  Google Scholar 

  391. Amundson CH (1967) Amer Dairy Rev 29: 22

    CAS  Google Scholar 

  392. Lembke A, Moebus O, Grasshoff O, Reuter H (1975) Sonderheft Berichte der Landwirtschaft 192: 571

    Google Scholar 

  393. Vringnaud Y (1976) Die österreichische Milchwirtschaft 31: 405

    Google Scholar 

  394. Moebus O, Kiesbye P, Teuber M (1977) Kiel Milchwirtsch Forschungsber 29: 131

    CAS  Google Scholar 

  395. Skogman H (1976) Production of symba yeast from potato wastes. In: Birch GG, Parker KJ, Worgan JT (eds) Food from waste. Applied Science, London, p 167.

    Google Scholar 

  396. Kirk TK (1971) Ann Rev Phytopathol 9: 185

    Article  CAS  Google Scholar 

  397. Nimz H (1974) Angew Chem 86: 336

    Article  CAS  Google Scholar 

  398. Adler E (1977) Wood Sci Technol 11: 169

    Article  CAS  Google Scholar 

  399. Crawford DL (1981) Biotech Bioeng Symp 11: 275

    CAS  Google Scholar 

  400. Detroy RW, Hasseltine CW (1978) Process Biochem 13: 2

    CAS  Google Scholar 

  401. Ban S, Glanser-Slojan M (1979) Biotech Bioeng 21: 1917

    Article  CAS  Google Scholar 

  402. Humphrey AW, Moreira A, Armiger W, Zabriskie D (1977) Biotech Bioeng Symp 7: 45

    CAS  Google Scholar 

  403. Fan LT, Gharpuray MM, Lee YH (1981) Biotech Bioeng Symp 11: 29

    CAS  Google Scholar 

  404. Fan LT, Lee YH, Gharpuray MM (1983) Adv Biochem Eng 23: 157

    Google Scholar 

  405. Millett MA, Baker AJ, Satter LD (1976) Biotech Bioeng Symp 6: 125

    CAS  Google Scholar 

  406. Han YW (1978) Adv Appl Microbiol 23: 119

    Article  PubMed  CAS  Google Scholar 

  407. Horton GL, Rivers DB, Emert GH (1980) Ind Eng Chem Prod Res Dev 19: 422

    Article  CAS  Google Scholar 

  408. Ladisch MR, Ladisch CM, Tsao GT (1978) Science 201: 25

    Article  Google Scholar 

  409. Cowling EB, Kirk TK (1976) Biotech Bioeng Symp 6: 95

    CAS  Google Scholar 

  410. Fan LT, Lee YH, Beardmore DH (1981) Biotech Bioeng 23: 419

    Article  CAS  Google Scholar 

  411. Gharpuray MM, Lee YH, Fan LT (1983) Biotech Bioeng 25: 157

    Article  CAS  Google Scholar 

  412. Rexen F (1983) Principles for pre-treatment of cellulose substrates. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 2

    Google Scholar 

  413. Bungay HR (1983) Prospects in the United States for using lignocellulosic materials. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 15

    Google Scholar 

  414. Goldstein IS (1976) Biotech Bioeng Symp 6: 293

    CAS  Google Scholar 

  415. Roberts RS, Sondhi DK, Bery MK, Colcord AR, Oeil DJ (1980) Biotech Bioeng 10: 125

    CAS  Google Scholar 

  416. Knappert D, Grethlein H, Converse A (1980) Biotech Bioeng 22: 1449

    Article  CAS  Google Scholar 

  417. Gaden EL Jr, Mandels MH, Reese ET, Spano LA (eds) (1976) Enzymatic conversion of cellulosic materials: technology and applications. Biotech Bioeng Symp 6. John Wiley & Sons, New York

    Google Scholar 

  418. Brown RD JR, Jurasek L (eds) (1979) Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis. Adv Chem Series 181. American Chemical Society, Washington, DC

    Google Scholar 

  419. Lee YH, Fan LT (1980) Adv Biochem Eng 18: 102

    Google Scholar 

  420. Lee YH, Fan LT, Fan LS (1980) Adv Biochem Eng 17: 132

    Google Scholar 

  421. Kosaric N, Ng DCM, Russell I, Stewart GC (1980) Adv Appl Microbiol 26: 147

    Article  CAS  Google Scholar 

  422. Ghose TK (1978) Microbial technology in the provision of energy and chemicals from renewable resources, submitted to the Fermentation Commission IUPAC RO 171975

    Google Scholar 

  423. Montenecourt BS, Kelleher TJ, Eveleigh DE, Pettersson LG (1980) Biotech Bioeng Symp 10: 15

    CAS  Google Scholar 

  424. Montenecourt BS (1983) Strain improvement for the production of microbial enzymes for biomass conversion. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 30

    Google Scholar 

  425. Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo K, Innis M (1983) Biotechnology 1: 691

    Article  CAS  Google Scholar 

  426. Shoemaker S, Watt K, Tsitovsky G, Cox R (1983) Biotechnology 1: 687

    Article  CAS  Google Scholar 

  427. Sprey B, Lambert C (1983) Cellulases: delicate exoproteins. Demonstration of multienzyme complexes within the culture liquid of Trichoderma reesei. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 50

    Google Scholar 

  428. Paice MG, Desrochers D, Rho D, Jurasek L, Roy C, Rollin CF, de Miguel E, Yaguchi M (1984) Biotechnology 2: 535

    Article  CAS  Google Scholar 

  429. Gum EK Jr, Brown RD Jr (1977) Biochim Biophys Acta 492: 225

    PubMed  CAS  Google Scholar 

  430. Labudova I, Farkas V (1983) Biochim Biophys Acta 744: 135

    Article  CAS  Google Scholar 

  431. Fan LT, Lee YH (1983) Biotech Bioeng 25: 2707

    Article  CAS  Google Scholar 

  432. Lee YH, Fan LT (1982) Biotech Bioeng 24: 2383

    Article  CAS  Google Scholar 

  433. Lee YH, Fan LT (1983) Biotech Bioeng 25: 939

    Article  CAS  Google Scholar 

  434. Woodward J, Whaley K, Zachry GS, Wohlpart DL (1981) Biotech Bioeng Symp 11: 619

    CAS  Google Scholar 

  435. Ghose TK, Das K (1971) Adv Biochem Eng 1: 55

    Article  CAS  Google Scholar 

  436. Howell JA, Stuck JD (1975) Biotech Bioeng 17: 873

    Article  CAS  Google Scholar 

  437. Bisset F, Sternberg D (1978) Appl Environ Microbiol 35: 750

    Google Scholar 

  438. Ryu DDY, Mandels M (1980) Enzyme Microbiol Technol 9: 91

    Article  Google Scholar 

  439. Sternberg D, Vijayakumar P, Reese ET (1976) Can J Microbiol 23: 139

    Article  Google Scholar 

  440. Allen A, Sterberg D (1980) Biotech Bioeng Symp 10: 189

    CAS  Google Scholar 

  441. Klei HE, Sundstron DW, Goughlin RW, Ziolkowski K (1981) Biotech Bioeng Symp 11: 593

    CAS  Google Scholar 

  442. Jain D, Ghose TK (1984) Biotech Bioeng 26: 340

    Article  CAS  Google Scholar 

  443. Takagi M, Abe S, Suzuki S, Emert GH, Yata N (1977) Proc Bioconversion Symp Indian Inst Technol Delhi 551

    Google Scholar 

  444. Kilian SG, Prior BA, Lategan PM (1983) Eur J Appl Microbiol Biotechnol 18: 369

    Article  CAS  Google Scholar 

  445. Kilian SG, Prior BA, Potgieter HJ, du Preez JC (1983) Eur J Appl Microbiol Biotechnol 17: 281

    Article  CAS  Google Scholar 

  446. Kilian SG, Prior BA, Pretorius IS, du Preez JC, Venter JJ, Potgieter HJ (1983) Eur J Appl Microbiol Biotechnol 17: 334

    Article  CAS  Google Scholar 

  447. Avgerinos GC, Fang HY, Biocic I, Wang DIC (1981) A novel, single-step microbial conversion of cellulosic biomass the ethanol. In: Moo-Young M (ed) Advances in biotechnology II. Perga-mon Press, Toronto, p 119

    Google Scholar 

  448. Peitersen N (1975) Biotech Bioeng 17: 1291

    Article  CAS  Google Scholar 

  449. Callihan CD, Dunlap CE U.S. Environmental Protection Agency, Rep SW-24C. PB 203–630

    Google Scholar 

  450. Callihan CD, Dunlap CE U.S. Environmental Protection Agency, PB 223–873

    Google Scholar 

  451. Han YW (1982) J Ferment Technol 60: 99

    CAS  Google Scholar 

  452. Ek M, Eriksson KE (1975) Appl Polym Symp 28: 197

    CAS  Google Scholar 

  453. Viesturs UE, Apsite AF, Laukevics JJ, Ose VP, Bekers MJ, Tengerdy RP (1981) Biotech Bioeng Symp 11: 359

    CAS  Google Scholar 

  454. Mishra MM, Yadav KS, Kapoor KK (1981) Zbt Bakt II Abt 136: 603

    CAS  Google Scholar 

  455. Kristensen TP (1978) Eur J Appl Microbiol Biotechnol 5: 155

    Article  Google Scholar 

  456. Aguirre F, Maldonado O, Rolz C, Mench JF, Espinosa R, de Cabrera S (1976) Chemtech 6: 636

    CAS  Google Scholar 

  457. Imrie FKE, Vlitos AJ (1975) Production of fungal protein from carob (Ceratonia siliqua L). In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 223

    Google Scholar 

  458. Forage AJ, Righelato RC (1978) Prog Ind Microbiol 14: 60

    Google Scholar 

  459. Pirt SJ (1975) Principles of microbe and cell cultivation. Scientific Publications, Blackwell, London

    Google Scholar 

  460. Jones RP, Greenfield PF (1984) Process Biochem 19: 48

    CAS  Google Scholar 

  461. Scott R (1983) Design and evaluation of experiments to provide scale-up information from the ICI single cell protein process. In Biotech 83. Online Publications Ltd, Northwood, England, p 235

    Google Scholar 

  462. Monod J (1949) Ann Rev Microbiol 3: 371

    Article  CAS  Google Scholar 

  463. Wang DIC, Cooney CL, Demain AL, Dunhill P, Humphrey AE, Lilly MD (1979) Fermentation and enzyme technology. John Wiley & Sons, New York

    Google Scholar 

  464. Monod J (1950) Ann Inst Pasteur, Paris 79: 390

    CAS  Google Scholar 

  465. Novick A, Szilard L (1950) Proc Nati Acad Sci 36: 708

    Article  CAS  Google Scholar 

  466. Herbert D, Elsworth R, Telling RC (1956) J Gen Microbiol 14: 601

    PubMed  CAS  Google Scholar 

  467. Holme T (1962) Adv Appl Microbiol 4: 101

    Article  PubMed  CAS  Google Scholar 

  468. Malek I, Fencl Z (eds) (1966) Theoretical and methodological basis of continuous culture by microorganisms. Academy of Science, Prague, Czechoslovak

    Google Scholar 

  469. Tempest DW (1970) Methods in Microbiol 2: 259

    Article  CAS  Google Scholar 

  470. Pirt SJ (1972) J Appl Chem Biotech 22: 55

    Article  CAS  Google Scholar 

  471. Dean ACR (1962) Proc Roy Soc 13: 580

    Google Scholar 

  472. Dean ACR, Pirt SJ, Tempest DW (eds) (1972) Environmental control of cell synthesis and function. Academic Press, New York

    Google Scholar 

  473. Jannasch JW, Mateles RI (1974) Adv Microbiol Physiol 11: 165

    Article  Google Scholar 

  474. Cooney CL (1979) Ann NY Acad Sci 79: 295

    Article  Google Scholar 

  475. Tempest DW, Neijssel OM (1981) The utility of chemostat cultures in studies of microbial physiology. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 185

    Google Scholar 

  476. Goldberg I, Er-el Z (1981) Process Biochem 10: 2–8

    Google Scholar 

  477. Mateles RI, Battat E (1974) Appl Microbiol 28: 901

    PubMed  CAS  Google Scholar 

  478. Aiba S, Humphrey AE, Millis NF (1973) Biochemical Engineering. Academic Press, New York

    Google Scholar 

  479. Herbert D (1961) Soc Chem Ind Monograph 12: 21

    Google Scholar 

  480. Harrison DEF (1971) Rep Prog Appl Chem 570

    Google Scholar 

  481. Ryu DY, Mateles RI (1968) Biotech Bioeng 10: 385

    Article  Google Scholar 

  482. Young TB, Brady DF, Bungay III HR (1970) Biotech Bioeng 12: 747

    Article  CAS  Google Scholar 

  483. Young TB, Bungay HR (1973) Biotech Bioeng 15: 377

    Article  CAS  Google Scholar 

  484. Harrison DEF, Topiwala HH (1974) Adv Biochem Eng 3: 167

    CAS  Google Scholar 

  485. Koplov HM, Cooney CL (1979) Adv Biochem Eng 12: 1

    Google Scholar 

  486. Sikyta B (1983) Methods in industrial microbiology. Ellis Horwood Limited, Chichester, England

    Google Scholar 

  487. Rokem JS, Goldberg I (1984) The application of continuous culture in the study of the biological utilization of Ci-compounds. In: Dean ACR, Ellwood DC, Evans CGT (eds) Continuous culture 8: Biotechnology, medicine and the environment. Ellis Horwood Limited, Chichester, England, p 251

    Google Scholar 

  488. Smirnova ZS, Gorskaya LA, Dibtsov VP, Osokina NV (1977) Culture development conditions as selection factor for various types of bacteria from mixed methane-oxidizing culture in a continuous process. In: Skryabin GK, Ivanov MV, Kandratjeva EN, Zavarzin GA, Trotsenko YA, Nesterov AI (eds) Microbial growth on C1-compounds. Abstracts of the international symposium. USSR Academy of Science, Puschino, USSR, p 179

    Google Scholar 

  489. Bungay HR, Clesceri LS, Andrianas NA (1981) Auto-selection of a very rapidly growing microorganism. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 235

    Google Scholar 

  490. Dibstov VP, Lalov VV, Grigorian AN (1980) Effects of temperature and pH on the growth of methane-oxidizing cultures. In: Tonge GM (ed) Microbial growth on C1-compounds. Abstracts of the international symposium. Sheffield, England, p 102

    Google Scholar 

  491. Snedecor B, Cooney CL (1974) Appl Microbiol 27: 1112

    PubMed  CAS  Google Scholar 

  492. Minami K, Yamamura M, Shimizu S, Ogawa K, Sekine N (1978) J Gen Appl Microbiol 25: 155

    Article  Google Scholar 

  493. Hazeu W, Batenburg-van der Vegte WH, de Bruyn JC (1980) Arch Microbiol 124: 211

    Article  CAS  Google Scholar 

  494. Goldberg I, Cooney CL (1981) Appl Environ Microbiol 41: 148

    PubMed  CAS  Google Scholar 

  495. Goto S. Yamamoto M. Tsuchyiaya M. Kondo O. Okamoto R. Takamatsu A (1978) J Ferment Technol 56: 516

    Google Scholar 

  496. Kapultsevich YG, Tretyakova VP (1977) Yeast selection on methanol media. In: Skryabin GK, Ivanov MV, Kondratjeva EN, Zavarzin GA, Trotsenko YA, Nesterov AI (eds) Microbial growth on C1-compounds. Abstracts of the international symposium. USSR Academy of Science, Pus-chino, USSR, p 166

    Google Scholar 

  497. Papoutsakis E, Hirt W, Lin HCL (1981) Biotech Bioeng 23: 235

    Article  CAS  Google Scholar 

  498. Linton JD, Vokes J (1978) FEMS Microbiol Lett 4: 125

    Article  CAS  Google Scholar 

  499. Smith AJ, Moore DS (1977) Bacteriol Rev 41: 419

    PubMed  CAS  Google Scholar 

  500. Egli Th, Kappeli O, Fiechter A (1982) Arch Microbiol 131: 1

    Article  CAS  Google Scholar 

  501. Egli Th, Kappeli O, Fiechter A (1982) Arch Microbiol 131: 8

    Article  CAS  Google Scholar 

  502. Eggeling L, Sahm H (1981) Arch Microbiol 130: 362

    Article  CAS  Google Scholar 

  503. Eggeling L, Sahm H (1981) Growth of Hansenula polymorpha on mixed substrates and regulation of alcohol oxidase synthesis. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 267

    Google Scholar 

  504. Hazeu W, Donker RA (1983) Biotechnol Lett 5: 399

    Article  CAS  Google Scholar 

  505. Dostalek M, Haggstrom L, Molin N (1972) Optimization of biomass production from methanol. In: Terui G (ed) Fermentation technology today. Society Fermentation Technology, Kyoto, Japan, p 497

    Google Scholar 

  506. Haggstrom L (1977) App] Environ Microbiol 33: 567

    CAS  Google Scholar 

  507. Yamane T, Kishimoto M, Yoshida F (1976) J Ferment Technol 54: 229

    Google Scholar 

  508. Yano T, Kobayashi T, Shimizu (1978) J Ferment Technol 56: 416

    CAS  Google Scholar 

  509. Kuhn HJ (1975) Einfluß der Temperatur auf das Wachstum von B. cladotenax. Thesis No 6435, ETH, Zürich

    Google Scholar 

  510. Kuhn HJ, Friedrich U, Fiechter A (1975) Eur J Appl Microbiol Biotechnol 6: 341

    Article  Google Scholar 

  511. Summers RJ, Boudreaux DP, Srinivasan VR (1979) Appl Environ Microbiol 38: 66

    PubMed  CAS  Google Scholar 

  512. Chalfan Y, Mateles RI (1972) Appl Microbiol 23: 135

    PubMed  CAS  Google Scholar 

  513. Kim JH, Ryu DY (1976) J Ferment Technol 54: 427

    CAS  Google Scholar 

  514. Tsuchiya Y, Nishio N, Nagai S (1980) Eur J Appl Microbiol Biotechnol 9: 121

    Article  CAS  Google Scholar 

  515. Goldberg I, Sneh E, Battat E, Klein D (1980) Biotech Lett 2: 419

    Article  CAS  Google Scholar 

  516. Nagai S, Nishizawa Y, Aiba S (1973) J Gen Appl Microbiol 19: 221

    Article  CAS  Google Scholar 

  517. Edwards MF, Wilkinson WL (1972) Chem Eng 265: 328

    Google Scholar 

  518. Goma G, Moletta R, Maugeri F (1981) Importance and usefulness of the content of maintenance in SCP production. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 453

    Google Scholar 

  519. Solomon BO, Erickson LE (1981) Process Biochem 16: 44

    CAS  Google Scholar 

  520. Nagai S, Aiba S (1972) J Gen Microbiol 73: 531

    PubMed  CAS  Google Scholar 

  521. Nagai S, Mori T, Aiba S (1973) J Appl Chem Biotechnol 23: 549

    Article  CAS  Google Scholar 

  522. Allais JJ, Baratti J (1983) J Ferment Technol 61: 339

    CAS  Google Scholar 

  523. Jara P, Allais JJ, Baratti J (1983) Eur J Appl Microbiol Biotechnol 17: 19

    Article  CAS  Google Scholar 

  524. Levine DM, Cooney CL (1973) Appl Microbiol 26: 982

    PubMed  CAS  Google Scholar 

  525. Van Dijken JP, Otto R, Harder W (1976) Arch Microbiol 111: 137

    Article  PubMed  Google Scholar 

  526. Rokem (Rock) JS, Goldberg I, Mateles RI (1978) Biotech Bioeng 20: 1557

    Google Scholar 

  527. Nyeste L, Kirchknopf L, Bathory J, Kassem M, Hollo J (1981) Biomass production from methanol by means of a bacterium. 1. Kinetic data. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 425

    Google Scholar 

  528. Stouthamer AH (1977) Energetic aspects of the growth of microorganisms. In: Haddock BA, Hamilton WA (eds) 27th Symposium of the society of general microbiology. Cambridge University Press, Cambridge, England, p 285

    Google Scholar 

  529. Stouthamer AH (1979) Int Rev Biochem 21: 1

    CAS  Google Scholar 

  530. Hellingwerf KJ, Lolkema JS, Otto R, Neijssel OM, Stouthamer AH, Harder W, van Dam K, Westerhoff HV (1982) FEMS Microbiol Lett 15: 7

    Article  CAS  Google Scholar 

  531. Van Dijken JP, Harder W (1975) Biotech Bioeng 17: 15

    Article  Google Scholar 

  532. Anthony C (1978) J Gen Microbiol 104: 91

    CAS  Google Scholar 

  533. Goldberg I, Mateles RI (1975) Appl Microbiol 122: 47

    CAS  Google Scholar 

  534. Papoutsakis E, Lim HC, Tsao GT (1978) A1ChE J 24: 406

    Article  CAS  Google Scholar 

  535. Herbert D (1976) Stoichiometric aspects of microbial growth. In: Dean ACR, Ellwood DC, Evans CGT, Melling J (eds) Continuous culture 6. Applications and new fields. Ellis Horwood Publishers, Chichester, England, p 1

    Google Scholar 

  536. Payne WJ (1970) Ann Rev Microbiol 24: 17

    Article  CAS  Google Scholar 

  537. Bell GH (1972) Process Biochem 7: 21

    CAS  Google Scholar 

  538. Linton JD, Stephenson RJ (1978) FEMS Microbiol Lett 3: 95

    Article  CAS  Google Scholar 

  539. Pirt SJ (1965) Proc R Soc Lond (Biol) 163: 224

    Article  CAS  Google Scholar 

  540. Verstraete W, Voets JP (1978) Z Allg Mikrobiol 18: 135

    Article  PubMed  CAS  Google Scholar 

  541. Pirt SJ (1982) Arch Microbiol 133: 300

    Article  PubMed  CAS  Google Scholar 

  542. Stouthamer AH, Bettenhausen C (1973) Biochim Biophys Acta 301: 53

    PubMed  CAS  Google Scholar 

  543. Pipyn P, Verstraete W (1978) Biotech Bioeng 20: 1883

    Article  CAS  Google Scholar 

  544. Miura Y, Okazaki M, Komemushi S, Sakata T, Shiroza T, Abana S (1971) J Ferment Technol 57: 124

    Google Scholar 

  545. Mateles RI (1971) Biotech Bioeng 13: 581

    Article  CAS  Google Scholar 

  546. Cooney CL, Wang DIC, Mateles RI (1969) Biotech Bioeng 11: 769

    Article  Google Scholar 

  547. Abbott BJ, Clamen A (1973) Biotech Bioeng 15: 117

    Article  CAS  Google Scholar 

  548. Anderson C, LeGrys GA, Solomons GL (1982) The Chem Eng February 43

    Google Scholar 

  549. Charles M (1978) Adv Biochem Eng 8: 1

    CAS  Google Scholar 

  550. Liu MS, Branion RMR, Duncan DW (1973) Biotech Bioeng 15: 213

    Article  CAS  Google Scholar 

  551. Haggstrom MH, Dostalek M (1981) Eur J Appl Microbiol Biotechnol 12: 107

    Article  Google Scholar 

  552. Morinaga Y, Yamanaka S, Yoshimura M, Makinami K, Hirose Y (1979) Agr Biol Chem 43: 2453

    Article  CAS  Google Scholar 

  553. MacLennan DG, Ousby JC, Vasey RB, Cotton NT (1971) J Gen Microbiol 69: 355

    Google Scholar 

  554. Harrison DEF (1972) J Appl Chem Biotechnol 22: 417

    Article  CAS  Google Scholar 

  555. Harrison DEF (1973) Crit Rev Microbiol 2: 185

    Article  CAS  Google Scholar 

  556. Harrison DEF (1976) In: Rose H, Tempest DW (eds) Advances in microbial physiology. Academic Press, p 243

    Google Scholar 

  557. Puhar E, Prave P, Fiechter A (1981) Second european congress of biotechnology. Eastbourne, England, p 84

    Google Scholar 

  558. Puhar E, Lorencez I, Fiechter A (1983) Eur J Appl Microbiol Biotechnol 18: 131

    Article  CAS  Google Scholar 

  559. Swartz JR (1979) Ph D Thesis, MIT

    Google Scholar 

  560. Swartz JR, Cooney CL (1981) Appl Environ Microbiol 41: 1206

    PubMed  CAS  Google Scholar 

  561. Pilat P, Prokop A (1976) J Appl Chem Biotechnol 26: 445

    Article  CAS  Google Scholar 

  562. Chen SL, Gutmanis F (1976) Biotech Bioeng 18: 1455

    Article  CAS  Google Scholar 

  563. Battat E, Goldberg I, Mateles RI (1974) Appl Microbiol 28: 906

    PubMed  CAS  Google Scholar 

  564. Babij T, Ralph BJ, Pickard PAD (1975) The effect of methanol concentration and carbon dioxide on yield of biomass of Pseudomonas TB582. In: The Organizing Committee (eds) Microbial growth on C1-compounds, proceedings of the international symposium. The Society of Fermentation Technology, Kyoto, Japan.

    Google Scholar 

  565. Hansford GS, Humphrey AE (1966) Biotech Bioeng 8: 85

    Article  CAS  Google Scholar 

  566. Ryu DDY (1967) Ph D Thesis, MIT, Cambridge, MA

    Google Scholar 

  567. Luscombe B (1974) J Gen Microbiol 83: 197

    Google Scholar 

  568. Brooks JD, Meers JL (1973) J Gen Microbiol 77: 513

    CAS  Google Scholar 

  569. Senior PJ, Windass J (1980) Biotechnol Lett 2: 205

    Article  CAS  Google Scholar 

  570. Sherwood M (1980) Chem Ind 20: 921

    Google Scholar 

  571. Ashley MHJ (1981) Continuous sterilization of media. A publication of John Brown Engineers and Constructors Limited, England

    Google Scholar 

  572. Harrison DEF (1978) Adv Appl Microbiol 24: 129

    Article  CAS  Google Scholar 

  573. PAG, Revised PAG Guidelines (1980) Food Nut Bull 15: 59

    Google Scholar 

  574. Hong B, Choi NH, Fan LT (1983) Sequential utilization of mixed sugars by Clostridium acetobutylicum. In: Reilly PJ (ed) Proceeding of the thirteenth annual biochemical engineering symposium. State University, Iowa, IA, p 1

    Google Scholar 

  575. Lamb SC, Garver JC (1980) Biotech Bioeng 22: 2097

    Article  CAS  Google Scholar 

  576. Lamb SC, Garver JC (1980) Biotech Bioeng 22: 2119

    Article  CAS  Google Scholar 

  577. Hamer G, Heden CG, Carenberg CO (1967) Biotech Bioeng 9: 499

    Article  CAS  Google Scholar 

  578. Linton JD, Drozd JW (1982) Microbial interactions and communities in biotechnology. In: Bull AT, Slater JH (eds) Microbial interactions and communities I. Academic Press, London, p 357

    Google Scholar 

  579. Harrison DEF (1976) Chemtech 6: 570

    CAS  Google Scholar 

  580. Linton JD, Buckee JC (1977) J Gen Microbiol 101: 219

    Google Scholar 

  581. Malashenko YR, Romanovskaya VA, Bogachenko VN, Kryshtab TP (1974) Mikrobiologiya 43: 290

    Google Scholar 

  582. Harrison DEF, Wilkinson TG, Wren SJ, Harwood JH (1975) Mixed bacterial cultures as a basis for continuous production of single cell protein from C1 compounds. In: Dean ACR, Ellwood DC, Evans CTG, Mellingo J (eds) Continuous culture 6. Application and new fields. Ellis Harwood Publishers, Chichester, England, p 122

    Google Scholar 

  583. Cremieux A, Chevalier J, Combet M, Dumenil G, Parlovar D, Ballerini D (1977) Eur J Appl Microbiol 4: 1

    Article  Google Scholar 

  584. Parshina SN, Kapultsevich YG, Sterkin VE, Glazunov AV (1982) Mikrobiologiya 51: 575

    CAS  Google Scholar 

  585. Jones GL, Loveless JE, Novak AJ (1975) Technical memorandum TM 116. Water Research Centre, Stevenage Herts, England, p 1

    Google Scholar 

  586. Otto R, Hugenholtz J, Konings WN, Veldkamp H (1980) FEMS Microbiol Lett 9: 85

    Article  CAS  Google Scholar 

  587. Akaki M (1965) J Ferment Technol 43: 365

    Google Scholar 

  588. Malashenko YR, Romanovskaya VA, Bogachenko VN, Khotyan LV, Voloshin NV (1973) Mikrobiologiya 42: 403

    CAS  Google Scholar 

  589. Romanovskaya VA, Malashenko YR, Sokolov IG, Kryshtab TP (1976) The competitive inhibition of the microbial oxidation of methane by ethane. In: Schlegel HG, Gotschalk G, Pfennig N (eds) Microbial production and utilization of gases. E. Goltze KG, Göttingen, p 345

    Google Scholar 

  590. Drozd JW, Khosrovi B, Down J, Bailey ML, Barnes LJ, Linton JD (1980) Biomass production from natural gas. In: Sikyta BS, Fend Z, Polacek V (eds) Proceedings of the 7th international continuous culture symposium. Czechoslovak Academy of Science, Prague, p 505

    Google Scholar 

  591. Drozd JW, McCarthy PW (1981) Mathematical model of microbial hydrocarbon oxidation. In: Dalton HD (ed) Proceedings of the 3rd international symposium on microbial growth on C1-compounds. Sheffield, England, p 360

    Google Scholar 

  592. Wilkinson TG, Hamer G (1979) J Chem Biotechnol 29: 56

    CAS  Google Scholar 

  593. Evans GH (1968) Industrial production of single-cell protein from hydrocarbons. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 243

    Google Scholar 

  594. Horowitz A, Gutnick D, Rosenberg E (1975) Appl Microbiol 30: 10

    PubMed  CAS  Google Scholar 

  595. Hopwood DA (1981) Scientific American 245: 67

    Article  Google Scholar 

  596. Mateles RI (1979) Proc GIAM-V 315

    Google Scholar 

  597. Baltzis BC, Fredrickson AG (1983) Biotech Bioeng 25: 2419

    Article  CAS  Google Scholar 

  598. Pais R, Humphrey AE (1977) Biotech Bioeng 19: 1375

    Article  Google Scholar 

  599. Slater JH, Bull AT (1978) Interactions between microbial populations. In: Bull AT, Meadow PM (eds) Companion to microbiology. Longman, London, p 181

    Google Scholar 

  600. Rokem JS, Goldberg I, Mateles RI (1980) J Gen Microbiol 116: 225

    PubMed  CAS  Google Scholar 

  601. Kuenen JG, Boonstra J, Schroder HGJ, Veldkamp H (1977) Microbial Ecology 3: 119

    Article  CAS  Google Scholar 

  602. Kuenen JS, Gottschal JC (1982) Competition among chemolithotrophs and methylotrophs and their interactions with heterotrophic bacteria. In: Bull AT, Slater JH (eds) Microbial interactions in communities I. Academic Press, London, p 153

    Google Scholar 

  603. Gottschal JC, de Vries S, Kuenen JG (1979) Arch Microbiol 121: 241

    Google Scholar 

  604. Dostalek M, Mohn N (1975) Studies of biomass production of methanol oxidizing bacteria. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 385

    Google Scholar 

  605. Linton JD, Harrison DEF, Bull AT (1975) J Gen Microbiol 90: 237

    PubMed  CAS  Google Scholar 

  606. MacLennan DG, Ousby JC, Owen TR, Steer DC (1974) British Patent 1. 370. 892

    Google Scholar 

  607. Harrison DEF (1981) Mixed cultures in industrial processes. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 15

    Google Scholar 

  608. Harrison DEF, Harwood JH, Wren SJ (1974) British Patent 1. 450. 412

    Google Scholar 

  609. Wren SJ, Harwood JH, Harrison DEF (1974) Proc Soc Gen Microbiol 2: 14

    Google Scholar 

  610. Wren SJ, Harrison DEF (1976) Proc Soc Gen Microbiol 4: 29

    Google Scholar 

  611. Wilkinson TG, Hamer G (1973) J Appl Bacteriol 36: 309

    Article  PubMed  CAS  Google Scholar 

  612. Wilkinson TG, Hamer G (1972) J Appl Bacteriol 35: 577

    Article  Google Scholar 

  613. Lee YK (1981) The use of algal-bacterial mixed cultures in the photosynthetic production of biomass. In: Bushell ME, Slater JH (eds) Mixed culture fermentations. Academic Press, London, p 151

    Google Scholar 

  614. Hamer G (1982) Biotech Bioeng 24: 511

    Article  CAS  Google Scholar 

  615. Hamer G (1983) Anal NY Acad Sci 413: 322

    Article  Google Scholar 

  616. Labuza TP (1975) Cell collection: recovery and drying for SCP manufacture. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 69

    Google Scholar 

  617. Wang DIC (1968) Cell recovery. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 217

    Google Scholar 

  618. Dunnill P, Lilly MD (1975) Protein extraction and recovery from microbial cells. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. Cambridge, MA, p 179

    Google Scholar 

  619. Viehweg H, Schugerl K (1983) Eur J Appl Microbiol Biotechnol 17: 96

    Article  Google Scholar 

  620. Hedenskog G, Mogren H (1973) Biotech Bioeng 15: 129

    Article  CAS  Google Scholar 

  621. Wiseman A (1969) Process Biochem 4: 62

    Google Scholar 

  622. Mitsuda H, Yasumoto K, Nakamura H (1969) Chem Eng Prog Sym Series 65: 93

    CAS  Google Scholar 

  623. Berend J, Simovitch E, 011ian A, Rosenberg A (1979) Feasibility study. Tahal Consulting Engineers Ltd, Israel

    Google Scholar 

  624. Spicer A (1972) Tropical Sci 13: 239

    Google Scholar 

  625. Moo-Young M, Daugulis AJ, Chahal DC, Macdonald DG (1979) Process Biochem 14: 38

    CAS  Google Scholar 

  626. Lewis CW (1976) J Appl Chem Biotechnol 26: 568

    Article  CAS  Google Scholar 

  627. Anon (1977) Process Biochem 12: 30

    Google Scholar 

  628. Anon (1982) New Scientist, May 495

    Google Scholar 

  629. Tonge GM (1980) Instrumentation and control in fermentation: the application of computers and computer controlled mass spectrometry. A paper distributed in the 6th International Fermentation Symposium, July, London Canada

    Google Scholar 

  630. Viikari L, Linko M (1977) Process Biochem 12: 17

    CAS  Google Scholar 

  631. Solomons GL, Scammell GW (1976) USA Patent 3. 937. 654

    Google Scholar 

  632. Newmark P (1980) Nature (London) 287: 6

    Google Scholar 

  633. Margaritis A, Wallace JB (1984) Biotechnology 2: 447

    Article  CAS  Google Scholar 

  634. Margaritis A, Sheppard JD (1981) Biotech Bioeng 23: 2117

    Article  Google Scholar 

  635. Shah YT, Kelkar BG, Godbole SP, Deckwer WD (1982) A1ChE J 28: 353

    Article  CAS  Google Scholar 

  636. Prave P (1977) Angew Chem Int Ed Engl 16: 205

    Article  PubMed  CAS  Google Scholar 

  637. Dobry DD, Jost J (1977) Ann Rep Ferment Process 1: 95

    CAS  Google Scholar 

  638. Weigand WA (1978) Ann Rep Ferment Process 2: 43

    CAS  Google Scholar 

  639. Roels JA (1982) J Chem Technol Biotechnol 32: 59

    Article  Google Scholar 

  640. Pungor E Jr, Schaefer E, Weaver JC, Cooney CL (1981) Direct monitoring of a fermentation in a computer-mass spectrometer-fermentor system. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 393

    Google Scholar 

  641. Kobayashi T, Yano T, Shimizu S (1981) Automatic control of dissolved oxygen concentration with microcomputer. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 413

    Google Scholar 

  642. Nestaas E, Wang DIC (1981) A new sensor, the “filtration probe”, to monitor and control antibiotic fermentations. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 433

    Google Scholar 

  643. Heinzle E, Bolzern O, Dunn IJ, Bourne JR (1981) A porous membrane-carrier gas measurement system for dissolved gases and volatiles in fermentation systems. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 439

    Google Scholar 

  644. Tannen LP, Nyiri LK (1979) Microbial Technol 2: 331

    CAS  Google Scholar 

  645. Armiger WB, Humphrey AE (1979) Microbial Technol 2: 375

    CAS  Google Scholar 

  646. Cooney CL (1979) Biotech Bioeng Symp 9: 1

    Google Scholar 

  647. Bernard A, Cordonnier M, Lebeault JM (1983) Process Biochem 18: 2

    CAS  Google Scholar 

  648. Zabriskie DW (1976) Ph D Thesis. University of Pennsylvania, Philadelphia

    Google Scholar 

  649. Wang NH (1976) Ph D Thesis, MIT, Cambridge, MA

    Google Scholar 

  650. Armiger WB (1977) PhD Thesis. University of Pennsylvania, Philadelphia

    Google Scholar 

  651. Nanba A, Hirota F, Nagai S (1981) J Ferment Technol 59: 383

    CAS  Google Scholar 

  652. Woehrer W, Hampel W, Roehr M (1981) Ethanol-and RQ-based computer control in fed batch culture of baker’s yeast. In: Moo-Young M (ed) Advances in biotechnology I. Pergamon Press, Toronto, p 419

    Google Scholar 

  653. Collmer A, Wilson DB (1983) Biotechnology 1: 594

    Article  CAS  Google Scholar 

  654. Gilkes NR, Kilburn DG, Longsford ML, Miller RC Jr, Wakarchuk WW, Warren RAJ, Whittle DJ, Wong WKR (1984) J Gen Microbiol 130: 1377

    CAS  Google Scholar 

  655. Ho NWY, Stevis P, Rosenfeld S, Huang JJ, Tsao GT (1983) Biotech Bioeng Symp 13: 245

    CAS  Google Scholar 

  656. Lawlis VB. Dennis MS. Chen F.Y. Smith DH. Henner DJ (1984) Appl Environ Microbiol 47: 15

    Google Scholar 

  657. Stewart BJ, Leatherwood JM (1976) J Bacteriol 128: 609

    PubMed  CAS  Google Scholar 

  658. Hitchner EV, Leatherwood JM (1980) Appl Environ Microbiol 39: 382

    PubMed  CAS  Google Scholar 

  659. Ghosh VK, Ghose TK, Gopalkrishnan KS (1981) Biotech Bioeng 24: 241

    Article  Google Scholar 

  660. Fennington G, Nevbaver D, Stutzenberger F (1984) Appl Environ Microbiol 47: 201

    PubMed  CAS  Google Scholar 

  661. Van Uden N, Cabeca-Silva C, Madeira-Lopes A, Spencer-Martins I (1979) Biotech Bioeng 22: 655

    Google Scholar 

  662. Chakrabarty AM, Friello DA (1974) U.S. Patent 3.923. 603

    Google Scholar 

  663. Chakrabarty AM (1976) Ann Rev Genet 10: 7

    Article  PubMed  CAS  Google Scholar 

  664. Portis AL, Boronin AM, Skryabin GK (1983) Appl Biochem Microbiol 19: 262

    Google Scholar 

  665. Windass JD, Worsey MJ, Pioli EM, Pioli D, Barth PT, Atherton KT, Dart EC, Byton D, Powell K, Senior PJ (1980) Nature (London) 287: 396

    Article  CAS  Google Scholar 

  666. Haber CL, Allen LN, Zhao S, Hanson RS (1983) Science 211: 1147

    Article  Google Scholar 

  667. Gottschalk G, Hamilton WA, Harder W, de Leevw A, Neijssel OM, Ratledge C (1984) Microbial physiology and biotechnological innovation in the EEC countries, Portugal and Spain. A report of the Deutsche Gesellschaft für chemisches Apparatewesen e. V., Frankfurt/Main

    Google Scholar 

  668. Moore AT, Nayudu N, Holloway BW (1983) J Gen Microbiol 129: 785

    PubMed  CAS  Google Scholar 

  669. O’Connor ML, Hanson RS (1978) J Gen Microbiol 104: 105

    Google Scholar 

  670. Lindstrom ME (1983) Biotech Bioeng Symp 13: 239

    Google Scholar 

  671. Lindstromonnor ME (1983) Microbiology 1: 155

    Google Scholar 

  672. James AP, Zahab DM (1983) J Gen Microbiol 129: 2489

    Google Scholar 

  673. Maleszka R, James AP, Schneider H (1983) J Gen Microbiol 129: 2495

    CAS  Google Scholar 

  674. Miyasaka Y, Rha C, Sinskey AJ (1980) Biotech Bioeng 22: 2065

    Article  CAS  Google Scholar 

  675. Stewart GG, Russell I (1977) Can J Microbiol 23: 444

    Article  Google Scholar 

  676. Russell I, Stewart GG, Reader HP, Johnston JR, Martin PA (1980) J Inst Brew London 86: 120

    Google Scholar 

  677. Stewart GG, Panchal CJ, Russell I (1983) J Inst Brew London 89: 170

    CAS  Google Scholar 

  678. Stewart GG (1981) Can J Microbiol 27: 973

    Article  CAS  Google Scholar 

  679. Russell I, Stewart GG (1979) J Inst Brew London 85: 95

    Google Scholar 

  680. De Figueroa LI, de Richard MF, de van Broock MR (1984) Biotechnol Lett 6: 171

    Google Scholar 

  681. Spencer JFT, Spencer DM (1983) Ann Rev Microbiol 37: 121

    Article  CAS  Google Scholar 

  682. Minami K, Yamamura M, Shimizu S, Ogawa K, Sekine N (1978) J Ferment Technol 56: 1

    CAS  Google Scholar 

  683. Limtong S, Seki T, Kinoshita S, Taguchi H, Kumnuanta J (1981) Production of cellulase by thermophilic fungus isolated in Thailand. In: Taguchi H (ed) Microbial utilization of renewable resources 2. Osaka University, Osaka, Japan, p 64

    Google Scholar 

  684. Chavanich S, Nilubol N, Hayashida S (1980) Isolation of thermophilic fungi as cellulase-producers. In: Taguchi H (ed) Microbial utilization of renewable resources 1. Osaka University, Osaka, Japan, p 80

    Google Scholar 

  685. Chavanish S, Yoshioka H, Hayashida S (1981) A comparative study of cellulose and xylanase produced by some thermophilic fungi. In: Taguchi H (ed) Microbial utilization of renewable resources 2. Osaka University, Osaka, Japan, p 72

    Google Scholar 

  686. Miller TF, Srinivasan VR (1983) Biotech Bioeng 25: 1509

    Article  CAS  Google Scholar 

  687. Updegraff DM (1971) Biotech Bioeng 13: 77

    Article  CAS  Google Scholar 

  688. Moo-Young M (1977) Process Biochem 12: 6

    Google Scholar 

  689. Stringer DA (1975) ICI protein: manufacture, characteristics, toxicology, and nutritional properties. ICI Report, July

    Google Scholar 

  690. Ericsson M, Ebbinghaus L, Lindblom M (1981) J Chem Technol Biotechnol 31: 33

    Article  CAS  Google Scholar 

  691. Calloway DH, Kumar AM (1969) Appl Microbiol 17: 176

    PubMed  CAS  Google Scholar 

  692. Camargo-Rubio E, Ornelas-Vale A, Casarrubias-Arcos G, Nagai S (1977) J Ferment Technol 55: 56

    CAS  Google Scholar 

  693. Iyengar MS, Baruah JN, Singh HD (1971) Production of single-cell protein from petroleum hydrocarbons. In: Freitas YM, Fernandes F (eds) Global impacts of applied microbiology. University of Bombay, Bombay, India, p 552

    Google Scholar 

  694. Duthie IF (1975) Animal feeding trials with a microfungal protein. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 505

    Google Scholar 

  695. Prokop A, Ratcliffe HD, Fatayer MI, Al-Awadhi N, Khamis A, Murad M, Bond C, Hamdan IY (1984) Biotech Bioeng 26: 1085

    Article  CAS  Google Scholar 

  696. Atkinson B, Mavituna F (1983) Biochemical engineering and biotechnology handbook. Nature Press, New York

    Google Scholar 

  697. Goldberg I, Jensen AP (1977) J Bacteriol 130: 535

    PubMed  CAS  Google Scholar 

  698. Urakami T, Komagata K (1979) J Gen Appl Microbiol 25: 343

    Article  CAS  Google Scholar 

  699. Casalicchio G, Paoletti C, Bernicchia A, Govi G (1975) Mic Ital 1: 21

    Google Scholar 

  700. Shinozaki H, Ishida M (1976) Brain Res 109: 435

    Article  PubMed  CAS  Google Scholar 

  701. Soeder CJ (1977) 11th FEBS Meeting, Kopenhagen

    Google Scholar 

  702. Endozien JC, Udo UV, Young VR, Scrimshaw NS (1970) Nature (London) 228: 180

    Article  Google Scholar 

  703. Sinskey AJ, Tannenbaum SR (1975) Removal of nucleic acids in SCP. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 158

    Google Scholar 

  704. Miller SA (1968) Nutritional factors in single-cell protein. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA. p 79

    Google Scholar 

  705. Weaver TL, Patrick MA, Dugan PA (1975) J Bacteriol 124: 602

    PubMed  CAS  Google Scholar 

  706. Makula RA (1978) J Bacteriol 134: 771

    PubMed  CAS  Google Scholar 

  707. Bird CW, Lynch JM (1974) Chem Soc Rev 3: 309

    Article  CAS  Google Scholar 

  708. De Souza NJ, Nes WR (1968) 162: 363

    Google Scholar 

  709. Reitz RC, Hamilton JG (1968) Comp Biochem Biophys 25: 401

    CAS  Google Scholar 

  710. Bird CW, Lynch JM, Pirt FG, Reid WW, Brooks CJW, Middleditch BS (1971) Nature (London) 230: 473

    Article  CAS  Google Scholar 

  711. Bouvier P, Rohmer M, Benveniste P, Ourisson G (1976) Biochem J 159: 267

    PubMed  CAS  Google Scholar 

  712. Tornabene TG, Kates M, Gelpi E, Oro J (1969) J Lipid Res 10: 294

    PubMed  CAS  Google Scholar 

  713. Kramer JKG, Kushawa SC, Kates M (1972) Biochim Biophys Acta 270: 103

    PubMed  CAS  Google Scholar 

  714. Kushwaha SC, Pugh EL, Kramer JKG, Kates M (1972) Biochim Biophys Acta 260: 492

    PubMed  CAS  Google Scholar 

  715. Goldberg I, Shechter I (1978) J Bacteriol 135: 717

    PubMed  CAS  Google Scholar 

  716. Lee HY, Erickson LE (1984) Biotech Bioeng 26: 758

    Article  CAS  Google Scholar 

  717. Senior PJ, Wright LF, Alderson B (1982) U.S. Patent 4.324. 907

    Google Scholar 

  718. Schlegel HG, Lafferty RM, Krauss I (1970) Arch Microbiol 71: 283

    CAS  Google Scholar 

  719. Trevelyan WE, Harrison JS (1956) Biochem J 63: 23

    PubMed  CAS  Google Scholar 

  720. Bressani R (1968) The use of yeasts in human foods. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 90

    Google Scholar 

  721. Shacklady CA (1974) Process Biochem 9: 9

    CAS  Google Scholar 

  722. Kapsiotis GD (1978) Food Nutr 4: 2

    CAS  Google Scholar 

  723. Mateles RI (1968) Applications of continuous culture. In: Mateles RI, Tannenbaum SR (eds) Single cell protein I. MIT Press, Cambridge, MA, p 208

    Google Scholar 

  724. Schwartzkoff CL, Barford JP (1981) Macromolecular composition of yeast as a function of life cycle. In: Moo-Young M (ed) Advances in biotechnology II. Pergamon Press, Toronto, p 387

    Google Scholar 

  725. Holme T (1957) Acta Chem Scand 11: 762

    Google Scholar 

  726. Wilkinson JF, Munro HLS (1967) The influence of growth limiting conditions on the synthesis of possible carbon and energy storage in Bacillus megaterium. In: Powell EO, Evans CGT, Strange RE, Tempest DW (eds) Microbial physiology and continuous culture. Her Majesty’s Stationary Office, London, p 173

    Google Scholar 

  727. Senior PJ, Beech GA, Ritchie GAF, Dawes EA (1972) Biochem J 128: 1193

    PubMed  CAS  Google Scholar 

  728. Dierstein R, Drews G (1974) Arch Microbiol 99: 117

    Article  PubMed  CAS  Google Scholar 

  729. Cooney CL, Wang DIC, Mateles RI (1976) Appl Environ Microbiol 31: 91

    PubMed  CAS  Google Scholar 

  730. Harder W, Dijkhuizen L (1983) Ann Rev Microbiol 37: 1

    Article  CAS  Google Scholar 

  731. Alroy Y, Tannenbaum SR (1973) Biotech Bioeng 15: 239

    Article  CAS  Google Scholar 

  732. Hou CT, Laskin AI, Patel RN (1978) Appl Environ Microbiol 37: 800

    Google Scholar 

  733. Kanamaru K, Iwamuro Y, Mikami Y, Obi Y, Kisaki T (1982) Agr Biol Chem 46: 2419

    Article  CAS  Google Scholar 

  734. Linton JD, Cripps RE (1978) Arch Microbiol 117: 41

    Article  PubMed  CAS  Google Scholar 

  735. Shaechter M, Maaloe O, Kjeldgaard NO (1958) J Gen Microbiol 19: 592

    Google Scholar 

  736. Ecker RE, Schaechter M (1963) Biochim Biophys Acta 76: 275

    Article  PubMed  CAS  Google Scholar 

  737. Tempest DW, Hunter JR (1965) J Gen Microbiol 41: 267

    PubMed  CAS  Google Scholar 

  738. Rosset R, Julien J, Monier R (1966) J Mol Biol 18: 308

    Article  PubMed  CAS  Google Scholar 

  739. Sykes J, Young TW (1968) Biochim Biophys Acta 169: 103

    PubMed  CAS  Google Scholar 

  740. Brown CM, Rose AH (1969) J Bacterial 97: 261

    Article  CAS  Google Scholar 

  741. Neidhardt FC, Magasanik B (1960) Biochim Biophys Acta 42: 99

    Article  PubMed  CAS  Google Scholar 

  742. Du Preez JC, Lategan PM, Toerien DF (1984) FEMS Microbial Lett 23: 71

    Article  Google Scholar 

  743. Trevelyan WE (1976) J Sci Food Agric 27: 225

    Article  PubMed  CAS  Google Scholar 

  744. Hedenskog G, Mogren H, Enebo L (1970) Biotech Bioeng 12: 947

    Article  CAS  Google Scholar 

  745. Newell JA, Seeley RD, Robbins EA (1975) U.S. Patent 3.867. 255

    Google Scholar 

  746. Shetty KJ, Kinsella JA (1979) Biotech Bioeng 21: 329

    Article  CAS  Google Scholar 

  747. Lewis PN, Lawford HG, Kligerman A, Lawford GR (1982) Biotech Bioeng 4: 441

    CAS  Google Scholar 

  748. Castro AC, Sinskey AJ, Tannenbaum SR (1971) Appl Microbiol 22: 422

    PubMed  CAS  Google Scholar 

  749. Zee JA, Simard RE (1975) Appl Microbiol 29: 59

    PubMed  CAS  Google Scholar 

  750. Bueno GE, Otero MA, Gonzalez AC (1982) Biotechnol Lett 4: 145

    Article  CAS  Google Scholar 

  751. Ohta S, Maul S, Sinskey AJ, Tannenbaum SR (1971) Appl Microbiol 22: 415

    PubMed  CAS  Google Scholar 

  752. Lindblom M, Mogren H (1974) Biotech Bioeng 16: 1123

    Article  CAS  Google Scholar 

  753. Waslien CI, Calloway DH, Morgen S, Costa F (1970) J Food Sci 35: 294

    Article  CAS  Google Scholar 

  754. Maul SB, Sinskey AJ, Tannenbaum SR (1970) Nature (London) 228: 181

    Article  CAS  Google Scholar 

  755. Cronan JE Jr, Gelmann E (1975) Bacteriol Rev 39: 232

    PubMed  CAS  Google Scholar 

  756. Farag RS, Khalil FA, Ali LHM (1983) J Am Oil Chem Soc 60: 795

    Article  CAS  Google Scholar 

  757. Eroshin VK, Krylova NI (1983) Biotech Bioeng 25: 1693

    Article  CAS  Google Scholar 

  758. Zhelifonova VP, Krylova NI, Dedyukhina EG, Eroshin VK (1983) Mikrobiologiya 52: 219

    CAS  Google Scholar 

  759. Jigami Y, Suzuki O, Nakasato S (1979) Lipids 14: 937

    Article  PubMed  CAS  Google Scholar 

  760. Ikemoto S, Katoh K, Komagata K (1978) J Gen Appl Microbiol 24: 41

    Article  CAS  Google Scholar 

  761. Van der Linden AC, Thijsse GJE (1965) Adv Enzymol 27: 469

    PubMed  Google Scholar 

  762. McKenna EJ, Kallio RE (1965) Ann Rev Microbiol 19: 183

    Article  CAS  Google Scholar 

  763. Mishina M, Yanagawa S, Tanaka A, Fukui S (1973) Agr Biol Chem 37: 863

    Article  CAS  Google Scholar 

  764. Raymond RL, Davis JB (1960) Appl Microbiol 8: 329

    PubMed  CAS  Google Scholar 

  765. Davis JB (1964) Appl Microbiol 12: 210

    PubMed  CAS  Google Scholar 

  766. Dunlap KR, Perry JJ (1968) J Bacteriol 96: 318

    PubMed  CAS  Google Scholar 

  767. Fredricks KM (1967) Antonie van Leevwenhoek 33: 41

    Article  CAS  Google Scholar 

  768. Makula RA, Finnerty WR (1968) J Bacteriol 95: 2102

    PubMed  CAS  Google Scholar 

  769. Makula RA, Finnerty WR (1968) J Bacteriol 95: 2108

    PubMed  CAS  Google Scholar 

  770. Edmonds P, Cooney JJ (1969) J Bacteriol 98: 16

    PubMed  CAS  Google Scholar 

  771. McElroy R, Averner M (1978) NASA Technical Memorandum 78491

    Google Scholar 

  772. Peterson GR, Stokes BO, Shubert WW, Rodriguez AM (1983) Enzyme, Microbiol Technol 5: 337

    Article  Google Scholar 

  773. Freeland JC, Gale EF (1947) Biochem J 41: 135

    CAS  Google Scholar 

  774. Zaitseva GN, Belozersky AN (1957) Mikrobiologiya 26: 533

    CAS  Google Scholar 

  775. Sakurada T (1966) Keio J Med 15: 45

    Article  PubMed  CAS  Google Scholar 

  776. Kanazawa T (1964) Plant Cell Physiol 5: 333

    CAS  Google Scholar 

  777. Seoka N (1961) Cold Spring Harbor Symposium on Quantitative Biology 26: 35

    Article  Google Scholar 

  778. Malofeeva IV, Belyanova LP (1970) Mikrobiologiya 39: 82

    CAS  Google Scholar 

  779. Takahashi J, Kobayashi K, Kawabata Y, Yamada K (1963) Agr Biol Chem 27: 836

    CAS  Google Scholar 

  780. Ertola RJ, Lilly MD, Webb FC (1965) Biotech Bioeng 7: 309

    Article  CAS  Google Scholar 

  781. De Zeeuw JR (1968) Genetic and environmental control of protein composition. In: Mateles RI, Tannenbaum SR (eds) Single cell protein. MIT Press, Cambridge, MA, p 181

    Google Scholar 

  782. Alroy Y, Tannenbaum SR (1977) Biotech Bioeng 19: 1145

    Article  CAS  Google Scholar 

  783. Alroy Y, Tannenbaum SR (1977) Biotech Bioeng 19: 1155

    Article  CAS  Google Scholar 

  784. Anon (1984) Biotechnol Newswatch 4: 5

    Google Scholar 

  785. Okanishi M, Gregory KF (1970) Can J Microbiol 16: 1139

    Article  PubMed  CAS  Google Scholar 

  786. Momose H, Gregory KF (1978) Appl Environ Microbiol 35: 641

    PubMed  CAS  Google Scholar 

  787. Shay LK, Wegner EH, Reiter SE (1983) Dev Ind Microbiol 24: 305

    CAS  Google Scholar 

  788. Shay LK, Wegner EH (1984) U.S. Patent 4.439. 525

    Google Scholar 

  789. Gautier F, Bonewald R (1980) Mol Gen Genet 178: 375

    Article  PubMed  CAS  Google Scholar 

  790. Kangas TT, Cooney CL, Gomez RF (1982) Appl Environ Microbiol 43: 629

    PubMed  CAS  Google Scholar 

  791. MacLaren DD (1975) Chemtech 5: 594

    CAS  Google Scholar 

  792. Anon (1983) United Nations University/Protein Advisory Group Revised Guidelines No’s 6, 12, and 15. Food and Nutrition Bulletin 5: 59

    Google Scholar 

  793. Stringer DA (1983) Process engineering of SCP product safety considerations. In: Biotech 83. Proceeding of the international conference on the commercial application and implications of biotechnology. Online Publications Ltd, Norwood, England, p 189

    Google Scholar 

  794. Woodward JC, Short DD (1973) J Nutr 103: 569

    Google Scholar 

  795. Takata T (1969) Hydrocarbon Process 48: 99

    CAS  Google Scholar 

  796. Wenk C (1983) The animal nutritionists dream of a new SCP. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 168

    Google Scholar 

  797. Schoch U, Schlatter Ch (1983) Toxological evaluation of SCP produced from whey. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 173

    Google Scholar 

  798. Young VR, Scrimshaw NS (1975) Clinical studies on the nutritional value of single-cell protein. In: Tannenbaum SR, Wang DIC (eds) Single cell protein II. MIT Press, Cambridge, MA, p 564

    Google Scholar 

  799. Carter GB (1981) New Sci 216, April23

    Google Scholar 

  800. Bull AT (1981) Prospects for biotechnology. In: Microbial aspects of biotechnology. Proceeding of a joint meeting. The Royal Irish Academy, p 2

    Google Scholar 

  801. Dasilva EJ, Shearer W, Taguchi H (1982) Biotechnology in development co-operation: A developing country’s view. In: Annual reports of international center of cooperative research and development in microbial engineering, 5. Osaka University, Osaka, Japan, p 347

    Google Scholar 

  802. Zilinskas R (1984) Biotechnology 2: 686

    Article  Google Scholar 

  803. Durand A, Arnoux P, Teilhard de Chardin O, Chereau D, Boquien CY, Lavios de Anda G (1983) Protein enrichment of sugar beet pulp by solid state fermentation. In: Ferranti MP, Fiechter A (eds) Production and feeding of single cell protein. Applied Science Publishers, London, p 120

    Google Scholar 

  804. Stowell JD, Bateson JB (1983) Economic aspects of industrial fermentations. In: Nisbet LJ, Winstanley DJ (eds) Bioactive microbial products 2. Development and production. Academic Press, London, p 117

    Google Scholar 

  805. Schaffeld G, Sinskey AJ, Rha CK (1982) J Food Sci 47: 2072

    Article  CAS  Google Scholar 

  806. King PP (1982) J Chem Technol Biotechnol 32: 2

    Article  CAS  Google Scholar 

  807. Rolz C (1984) IOBB Newsletter, January 6

    Google Scholar 

  808. Senez JC (1983) Biofutur 19: 39

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldberg, I. (1985). References. In: Single Cell Protein. Biotechnology Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46540-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46540-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46542-0

  • Online ISBN: 978-3-642-46540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics