Skip to main content

On the Finite Volume Variational Method Based on the Logarithmic Derivative of the Wave Function

  • Chapter
Wavefunctions and Mechanisms from Electron Scattering Processes

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 35))

  • 131 Accesses

Abstract

One of the well known and widely used methods to study the collision problems is the R matrix developed in nuclear physics by Wigner and Eisenbud (1) and applied to atomic physics by Burke et al. (2) and to molecular physics by several authors (3–7). This method is based on the expansion of the continuum wave function on several known functions and the separation of the coordinate space into an internal (interaction) and external (asymptotic) regions. The technique of expanding the wave function is widely used in bound calculations and the R matrix borrows some computational techniques from this field. The separation of the coordinate space into two regions is common to all collision methods but in R matrix the size of the internal region is smaller than in other methods. The main advantage of the R matrix is that the functions used in the expansion are calculated only once. The disadvantage is that the R matrix, written as an expansion in terms of these functions at each continuum energy, converges slowly with the number of functions retained in the expansion. To speed this convergence different corrections can be added to the R matrix (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).

    Article  CAS  Google Scholar 

  2. P.G. Burke, A. Hibbert and W.D. Robb, J. Phys. B4, 153 (1971).

    Google Scholar 

  3. B.I. Schneider, Phys. Rev. A11, 1957 (1975).

    Google Scholar 

  4. P.G. Burke, I. Mackey and I. Shimamura, J. Phys. B10, 2497 (1977).

    Google Scholar 

  5. Т.K. Holley, S. Chung, C.C. Lin and E.T.P. Lee, Phys. Rev. A26, 1852 (1982).

    Google Scholar 

  6. P.G. Burke, C.J. Noble and S. Salvani, J. Phys. B16, L113 (1983).

    Google Scholar 

  7. D.J. Zvijac, E.J. Heller and J.С Light, J. Phys. B8, 1016 (1975).

    Google Scholar 

  8. U. Fano and CM. Lee, Phys. Rev. Lett. 31, 1573 (1973);

    Article  CAS  Google Scholar 

  9. C.M. Lee, Phys. Rev. A10, 584 (1974).

    Google Scholar 

  10. Ch. Jungen, Invited papers of the XII ICPEAC, Gatlinburg, Tennessee, 1981, edited by S. Datz (North Holland, Amsterdam, 1982), p. 455.

    Google Scholar 

  11. G. Raseev and H. Le Rouzo, Phys. Rev. A27, 268 (1983).

    Google Scholar 

  12. J.L. Jackson, Phys. Rev. 83, 301 (1951).

    Article  CAS  Google Scholar 

  13. R.K. Nesbet, Variational Methods in Electron Atom Scattering Theory, Plenum

    Google Scholar 

  14. Press, 1980.

    Google Scholar 

  15. R.K. Nesbet, J. Phys. B14, L415 (1981).

    Google Scholar 

  16. C.H. Greene, Phys. Rev. A to be published.

    Google Scholar 

  17. H. Le Rouzo and G. Raseev, Phys. Rev. A28 (1983) in press.

    Google Scholar 

  18. W. Kohn, Phys. Rev. 74, 1763 (1948).

    Article  CAS  Google Scholar 

  19. C.B. Moler and G.W. Stewart, Siam J. Numer, Anal. 10, 241 (1973).

    Article  Google Scholar 

  20. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University Press,

    Google Scholar 

  21. London, 1965).

    Google Scholar 

  22. M.R.H. Rudge, J. Phys. B6, 1788 (1973);

    Google Scholar 

  23. 8, 940 (1975);

    CAS  Google Scholar 

  24. 9, 2357 (1976);

    CAS  Google Scholar 

  25. 13, 3717 (1980).

    CAS  Google Scholar 

  26. G. Raseev, Comput. Phys. Comm. 20, 267 (1980).

    Article  CAS  Google Scholar 

  27. P.G. Burke and K.T. Taylor, J. Phys. B8, 2620 (1975).

    Google Scholar 

  28. С. Bloch, Nucl. Phys. 4, 503 (1957).

    Article  Google Scholar 

  29. A.M. Lane and D. Robson, Phys. Rev. 151, 774 (1966).

    Article  CAS  Google Scholar 

  30. H.F. Schaefer, J. Chem. Phys. 52, 6241 (1970);

    Article  CAS  Google Scholar 

  31. W.H. Miller, CA. Slocomb and H.F. Shaefer, ibid 56, 1347 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raşeev, G. (1984). On the Finite Volume Variational Method Based on the Logarithmic Derivative of the Wave Function. In: Gianturco, F.A., Stefani, G. (eds) Wavefunctions and Mechanisms from Electron Scattering Processes. Lecture Notes in Chemistry, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46502-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46502-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13347-6

  • Online ISBN: 978-3-642-46502-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics