Transformation and Oncogenicity by Adenoviruses

  • A. J. van der Eb
  • R. Bernards
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 110)


Adenoviruses have attracted considerable attention since it was discovered by Trentin et al. (1962) and Huebner et al. (1962) that certain species (formerly called serotypes; Wigand et al. 1982) are oncogenic when injected into newborn hamsters. Since then, adenoviruses have been used extensively as a model for studies on tumor induction in vivo and cell transformation in vitro. Together with the small papovaviruses, they have played an important role in fundamental cancer research and have provided invaluable tools for studies on the organization and expression of eukaryotic genes. The introduction of new techniques of DNA sequencing, molecular cloning, and DNA transfection in the past few years have further contributed to a rapid development of adenovirus research in all its diverse aspects.


Early Region Adenovirus Type Human Adenovirus Human Adenovirus Type Avian Adenovirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleström P, Akusjärvi G, Perricaudet M, Mathews MB, Klessig DF, Pettersson U (1980) The gene for polypeptide IX of adenovirus type 2 and its unspliced messenger RNA. Cell 19: 671–681PubMedCrossRefGoogle Scholar
  2. Babiss LE, Ginsberg HS, Fischer PB (1983) Cold-sensitive expression of transformation by a hostrange mutant of type 5 adenovirus. Proc Natl Acad Sci USA 80: 1352–1356PubMedCrossRefGoogle Scholar
  3. Bellet AJD, Younghusband HB (1972) Replication of the DNA of chick embryo lethal orphan virus. J Mol Biol 72: 691–709CrossRefGoogle Scholar
  4. Beltz GA, Flint SJ (1979) Inhibition of Hela cell protein synthesis during adenovirus infection: restriction of cellular messenger RNA sequences to the nucleus. J Mol Biol 131: 353–373PubMedCrossRefGoogle Scholar
  5. Berk AJ, Sharp PA (1977) Ultraviolet mapping of adenovirus 2 early promoters. Cell 12: 45–55PubMedCrossRefGoogle Scholar
  6. Berk AJ, Sharp PA (1978) Structure of adenovirus 2 early mRNAs. Cell 14: 695–711PubMedCrossRefGoogle Scholar
  7. Berk AJ, Lee F, Harrison T, Williams J, Sharp PA (1979) Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 1935–1944CrossRefGoogle Scholar
  8. Bernards R, Houweling A, Schrier PI, Bos JL, Van der Eb AJ (1982) Characterization of cells transformed by Ad5/Ad12 hybrid early region 1 plasmids. Virology 120: 422–432PubMedCrossRefGoogle Scholar
  9. Bernards R, Schrier PI, Bos JL, Van der Eb AJ (1983a) Role of adenovirus types 5 and 12 early region lb tumor antigens in oncogenic transformation. Virology 127: 45–54PubMedCrossRefGoogle Scholar
  10. Bernards R, Schrier PI, Houweling A, Bos JL, Van der Eb AJ, Zijlstra M, Melief CJM (1983b) Tumorgenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature 305: 776–779PubMedCrossRefGoogle Scholar
  11. Bernards R, Vaessen MJ, Sussenbach JS, Van der Eb AJ (1983e) Construction and characterization of an adenovirus type 5/adenovirus type 12 recombinant virus. Virology 131: 30–38PubMedCrossRefGoogle Scholar
  12. Bos JL, ten Wolde-Kraamwinkel HC (1983) The Elb promoter of Ad12 in mouse L tk-cells is activated by adenovirus region Ela. EMBO J 2: 73–76Google Scholar
  13. Bos JL, Polder LJ, Bernards R, Schrier PI, Van den Elsen PJ, Van der Eb AJ, Van Ormondt H (1981) The 2.2 kb Elb mRNA of human Ad12 and Ads codes for two tumor antigens starting at different AUG triplets. Cell 27: 121–131PubMedCrossRefGoogle Scholar
  14. Bos JL, Jochemsen AG, Bernards R, Schrier PI, Van Ormondt H, Van der Eb AJ (1983) Deletion mutants of region Ela of Ad12 El plasmids: Effect on oncogenic transformation. Virology 129: 393–400PubMedCrossRefGoogle Scholar
  15. Branton PE, Lassam NJ, Graham FL, Mak S, Bailey ST (1979) T antigen-related protein kinase activity in cells infected and transformed by human adenoviruses. Cold Spring Harbor Symp Quant Biol 44: 487–491Google Scholar
  16. Branton PE, Lassam NJ, Downey JF, Yee S-P, Graham FL, Mak S, Bailey ST (1981) Protein kinase activity immunoprecipitated from adenovirus-infected cells by sera from tumor-bearing hamsters. J Virol 37: 601–608PubMedGoogle Scholar
  17. Byrd P, Brown KW, Gallimore PH (1982) Malignant transformation of human embryo retinoblasts by cloned adenovirus 12 DNA. Nature 298: 69–71PubMedCrossRefGoogle Scholar
  18. Carlock LR, Jones NC (1981) Transformation-defective mutant of adenovirus type 5 containing a single altered Ela mRNA species. J Virol 40: 657–664PubMedGoogle Scholar
  19. Chow LT, Roberts JM, Lewis JB, Broker TR (1977) A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA:DNA hybrids. Cell 11: 819–836PubMedCrossRefGoogle Scholar
  20. Chow LT, Broker TR, Lewis JB (1979) Complex splicing patterns of RNAs from the early regions of adenovirus 2. J Mol Biol 134: 265–303PubMedCrossRefGoogle Scholar
  21. Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA 75: 2021–2024PubMedCrossRefGoogle Scholar
  22. Cook JL, Lewis AM (1979) Host response to adenovirus 2-transformed hamster embryo cells. Cancer Res 39: 1455–1461PubMedGoogle Scholar
  23. Cook JL, Lewis AM, Kirkpatrick CH (1979) Age-related and thymus-dependent rejection of adenovirus 2-transformed cell tumors in the Syrian hamster. Cancer Res 39: 3335–3340PubMedGoogle Scholar
  24. De Jong JC, Wigand R, Kidd AH, Wadell G, Kapsenberg G, Muzerie CJ, Wermenbol AG, Firtzlaff RG (1983) Candidate adenoviruses 40 and 41: fastidious adenoviruses from human infantile stool. J Med Virol 11: 215–231PubMedCrossRefGoogle Scholar
  25. De Leo AB, Jay G, Apella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76: 2420–2424CrossRefGoogle Scholar
  26. Dijkema R, Dekker BMM, Van der Feltz MJM, Van der Eb AJ (1979) Transformation of primary rat kidney cells by fragments of weakly oncogenic adenoviruses. J Virol 32: 943–950PubMedGoogle Scholar
  27. Dijkema R, Dekker BMM, Van Ormondt H (1982) Gene organization of the transforming region of adenovirus type 7 DNA. Gene 18: 143–156PubMedCrossRefGoogle Scholar
  28. Doerfler W (1969) Non-productive infection of baby hamster kidney cells with adenovirus type 12. Virology 38: 587–606PubMedCrossRefGoogle Scholar
  29. Doerfler W, Gahlmann R, Stabel S, Deuring R, Lichtenberg U, Schulz M, Leisten R (1983) On the mechanism of recombination between adenoviral and cellular DNAs: the structure of junction sites. In: Doerfler W (ed) The molecular biology of adenoviruses 1. Current Topics in Microbiology and Immunology Vol 109. Springer Berlin Heidelberg New York Tokyo, pp 193–228Google Scholar
  30. Esche H, Siegman B (1982) Expression of early viral gene products in adenovirus type 12-infected and -transformed cells. J Gen Virol 60: 99–113PubMedCrossRefGoogle Scholar
  31. Esche H, Mathews MB, Lewis JB (1980) Proteins and messenger RNAs of the transforming region of wild-type and mutant adenoviruses. J Mol Biol 142: 399–417PubMedCrossRefGoogle Scholar
  32. Feldman LT, Nevins JR (1983) Localization of the adenovirus El a protein, a positive acting transcriptional factor in infected cells. Mol Cell Biol 3: 829–838PubMedGoogle Scholar
  33. Fischer PB, Boersig MR, Graham GM, Weinstein IB (1983) Production of growth factors by type 5 adenovirus-transformed rat embryo cells. J Cell Phys 114: 365–370CrossRefGoogle Scholar
  34. Flint SJ, Sharp PA (1976) Adenovirus transcription. V. Quantitation of viral RNA sequences in adenovirus 2 infected and transformed cells. J Mol Biol 106: 749–771PubMedCrossRefGoogle Scholar
  35. Freeman AE, Black PH, Vanderpool JH, Henby PH, Auston JB, Huebner RJ (1967) Transformation of primary rat embryo cells by adenovirus type 2. Proc Natl Acad Sci USA 58: 1205–1212PubMedCrossRefGoogle Scholar
  36. Frost E, Williams J (1978) Mapping temperature-sensitive and host-range mutations of adenovirus type 5 by marker rescue. Virology 91: 39–50PubMedCrossRefGoogle Scholar
  37. Gallimore PH (1974) Interactions of adenovirus type 2 with rat embryo cells: permissiveness, transformation and in vitro characterization of adenovirus type 2-transformed rat embryo cells. J Gen Virol 25: 263–273PubMedCrossRefGoogle Scholar
  38. Gallimore PH, Sharp PA, Sambrook J (1974) Viral DNA in transformed cells: II. A study of the sequences of adenovirus 2 DNA in nine lines of transformed rat cells using specific fragments of the viral genome. J Mol Biol 89: 49–72PubMedCrossRefGoogle Scholar
  39. Gallimore PH, McDougall JK, Chen LB (1977) In vitro traits of adenovirus-transformed cell lines and their relevance to tumorigenicity in nude mice. Cell 10: 669–678PubMedCrossRefGoogle Scholar
  40. Galos RS, Williams J, Shenk T, Jones N (1980) Physical location of host-range mutations of adenovirus type 5: deletion and marker rescue mapping. Virology 104: 510–513PubMedCrossRefGoogle Scholar
  41. Garon CF, Berry K, Hierholzer JC, Rose J (1973) Mapping of base sequence heterologies between genomes from different adenovirus serotypes. Virology 54: 414–426PubMedCrossRefGoogle Scholar
  42. Graham FL, Van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus DNA. Virology 52: 456–467PubMedCrossRefGoogle Scholar
  43. Graham FL, Abrahams PJ, Mulder C, Heijneker HL, Warnaar SO, de Vries FAJ, Fiers W, Van der Eb AJ (1974a) Studies on in vitro transformation by DNA and DNA fragments of human adenoviruses and simian virus 40. Cold Spring Harbor Symp Quant Biol 39: 637–650CrossRefGoogle Scholar
  44. Graham FL, Van der Eb AJ, Heijneker HL (1974b) Size and location of the transforming region in human adenovirus type 5 DNA. Nature 251: 687–691PubMedCrossRefGoogle Scholar
  45. Graham FL, Smiley J, Russell WC, Nairu R (1977) Characterization of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36: 59–72PubMedCrossRefGoogle Scholar
  46. Graham FL, Harrison T, Williams J (1978) Defective transforming capacity of adenovirus type 5 host-range mutants. Virology 86: 10–21PubMedCrossRefGoogle Scholar
  47. Green M, Pina M, Kimes RC, Wensink PC, MacHattie LA, Thomas CA Jr (1967) Adenovirus DNA. T. Molecular weight and conformation. Proc Natl Acad Sci USA 57: 1302–1309PubMedCrossRefGoogle Scholar
  48. Green M, Mackey JK, Wold WSM, Rigden P (1979) Thirty-one human adenovirus serotypes (Adl—Ad31) form five groups ( A—E) based upon DNA genome homologies. Virology 93: 481–492PubMedCrossRefGoogle Scholar
  49. Green M, Wold WSM, Brackmann K, Cartas MA (1980) Studies of early proteins and transformation proteins of human adenoviruses. Cold Spring Harbor Symp Quant Biol 44: 457–470PubMedCrossRefGoogle Scholar
  50. Halbert DN, Raskas HJ (1982) Tryptic and chymotryptic methionine peptide analysis of the in vitro translation products specified by the transforming region of adenovirus type 2. Virology 116: 406–418PubMedCrossRefGoogle Scholar
  51. Halbert DN, Spector DJ, Raskas HJ (1979) In vitro translation products specified by the transforming region of adenovirus type 2. J Virol 31: 621–629PubMedGoogle Scholar
  52. Harrison T, Graham F, Williams J (1977) Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77: 319–329PubMedCrossRefGoogle Scholar
  53. Harter ML, Lewis JB (1978) Adenovirus type 2 early proteins synthesized in vitro and in vivo: identification in infected cells of the 38000- to 50000-molecular-weight protein encoded by the left end of the adenovirus type 2 genome. J Virol 26: 736–749PubMedGoogle Scholar
  54. Ho Y-S, Galos R, Williams J (1982) Isolation of type 5 adenovirus mutants with a cold-sensitive host range phenotype: genetic evidence of an adenovirus transformation maintenance function. Virology 122: 109–124PubMedCrossRefGoogle Scholar
  55. Houweling A, Van den Elsen PJ, Van der Eb AJ (1980) Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105: 537–550PubMedCrossRefGoogle Scholar
  56. Huebner RJ (1967) Adenovirus-directed tumor and T antigens. In: Pollard M (ed) Perspectives in virology Vol 5. Academic, New York, pp 147–167Google Scholar
  57. Huebner RJ, Rowe WP, Lane WT (1962) Oncogenic effects in hamsters of human adenovirus type 12 and 18. Proc Natl Acad Sci USA 48: 2051–2058PubMedCrossRefGoogle Scholar
  58. Hull CN, Johnson IS, Culbertson CG, Reimer CB, Wright HF (1965) Oncogenicity of the simian adenovirus. Science 150: 1044–1046PubMedCrossRefGoogle Scholar
  59. Ishibashi M, Yasue H, Fujinaga K, Kawamata J (1980) The oncogenicity of avian adenoviruses. I. An unusually large number of viral DNA molecules in some tumors and virus-specific T-antigenic proteins. Virology 106: 349–360PubMedCrossRefGoogle Scholar
  60. Jochemsen H (1981) Studies on the transforming genes and their products of human adenovirus types 12 and 5. Thesis, University of Leiden, NetherlandsGoogle Scholar
  61. Jochemsen H, Daniels GSG, Lupker JH, Van der Eb AJ (1980) Identification and mapping of early gene products of adenovirus type 12, Virology 105: 551–563PubMedCrossRefGoogle Scholar
  62. Jochemsen H, Hertoghs JJL, Lupker JH, Davis A, Van der Eb AJ (1981) In vitro synthesis of adenovirus type 5 T antigens. II. Translation of virus-specific RNA from cells transformed by fragments of adenovirus type 5 DNA. J Virol 37: 530–534PubMedGoogle Scholar
  63. Jochemsen H, Daniels GSG, Hertoghs JJL, Schrier PI, Van den Elsen PJ, Van der Eb AJ (1982) Identification of adenovirus type 12 gene products involved in transformation and oncogenesis. Virology 122: 15–28PubMedCrossRefGoogle Scholar
  64. Johansson ME, Uhnoo I, Kidd AH, Madeley CR, Wadell G (1980) Direct identification of enteric adenovirus, a candidate new serotype associated with infantile gastroenteritis. J Clin Microbiol 12: 95–100PubMedGoogle Scholar
  65. Jones N, Shenk T (1979a) Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689PubMedCrossRefGoogle Scholar
  66. Jones N, Shenk T (1979b) An adenovirus type 5 early gene functions regulates expression of other early viral genes. Proc Natl Acad Sci USA 76: 3665–3669PubMedCrossRefGoogle Scholar
  67. Katze MG, Persson H, Phillipson L (1981) Control of adenovirus early gene expression: a post-transcriptional control mediated by region El a products. Mol Cell Biol 1: 807–813PubMedGoogle Scholar
  68. Kimura G, Itagaki S, Summers J (1975) Rat cell line 3Y1 and its virogenic polyoma and SV40 transformed derivatives. Int J Cancer 15: 694–706PubMedCrossRefGoogle Scholar
  69. Kimura T, Sawada Y, Shinawawa M, Shimizu Y, Shiroki K, Shimojo H, Sugisaki H, Takanami M, Uemizu Y, Fujinaga K (1981) Nucleotide sequence of the transforming region E1B of adenovirus 12 DNA: structure and gene organization, and comparison with those of adenovirus type 5 DNA. Nucleic Acids Res 9: 6571–6589PubMedCrossRefGoogle Scholar
  70. Lai Fatt RB, Mak S (1982) Mapping of an adenovirus function involved in the inhibition of DNA degradation. J Virol 42: 969–977PubMedGoogle Scholar
  71. Lane D, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278: 261–263PubMedCrossRefGoogle Scholar
  72. Lassam NJ, Bayley ST, Graham FL (1979a) Tumor antigens of human Ad5 in transformed cells and in cells infected with transformation-defective host-range mutants. Cell 18: 781–791PubMedCrossRefGoogle Scholar
  73. Lassam NJ, Bayley ST, Graham FL, Branton PE (1979b) Immunoprecipitation of protein kinase activity from adenovirus 5-infected cells using antiserum directed against tumour antigens. Nature 277: 241–243PubMedCrossRefGoogle Scholar
  74. Laver WG, Younghusband HB, Wrigley NG (1971) Purification and properties of chick embryo lethal orphan virus (an avian adenovirus) Virology 45: 598–614PubMedGoogle Scholar
  75. Levinthal JD, Peterson W (1965) In vitro transformation and immunofluorescence with human adenovirus 12 in rat and rabbit kidney cells. Fed Proc 24: 174Google Scholar
  76. Lewis AM, Cook JL (1982) Spectrum of tumorigenic phenotypes among adenovirus 2-, adenovirus 12- and simian virus 40-transformed Syrian hamster cells defined by host cellular immune — tumor cell interactions. Cancer Res 42: 939–944PubMedGoogle Scholar
  77. Lewis AM, Rabson AS, Levine AS (1974) Studies on non-defective Ad2-SV40 hybrid viruses: transformation of hamster kidney cells by adenovirus 2 and the non-defective hybrid viruses. J Virol 13: 1291–1301PubMedGoogle Scholar
  78. Linzer DIH, Levine AJ (1979) Characterization of a 54 kdalton cellular SV40 tumor antigen present in SV40 transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43–52PubMedCrossRefGoogle Scholar
  79. Luka J, Jörnvall H, Klein G (1980) Purification and biochemical characterization of the Epstein-Barr virus-determined nucleic antigen and an associated protein with a 53000-dalton subunit. J Virol 35: 592–602PubMedGoogle Scholar
  80. Lupker JH, Davis A, Jochemsen H, Van der Eb AJ (1981) In vitro synthesis of adenovirus type 5 T antigens. I. Translation of early region 1-specific RNA from lytically infected cells. J Virol 37: 524–529PubMedGoogle Scholar
  81. Mackey J, Wold W, Rigden P, Green M (1979) Transforming region of group A. B and C adenoviruses: DNA homology studies with twenty-nine human adenovirus serotypes. J Virol 29: 1056–1064PubMedGoogle Scholar
  82. Mak I, Mak S (1983) Transformation of rat cells by cyt mutants of adenovirus type 12 and mutants of adenovirus type 5. J Virol 45: 1107–1117PubMedGoogle Scholar
  83. Malette P, Yee S-P, Branton PE (1983) Studies on the phosphorylation of the 58000 dalton early region 1B protein of human adenovirus type 5. J Virol 64: 1069–1078CrossRefGoogle Scholar
  84. Matsuo T, Wold WSM, Hashimoto S, Rankin A, Symington J, Green M (1982) Polypeptides encoded by the transforming region E1b of human adenovirus 2. Immunoprecipitation from transformed and infected cells and cell-free translation of E1b-specific mRNA. Virology 118: 456–465PubMedCrossRefGoogle Scholar
  85. McAllister RM, Nicolson MO, Lewis AM Jr, MacPherson I, Huebner RJ (1969a) Transformation of rat embryo cells by adenovirus type 1. J Gen Virol 4: 29–36PubMedCrossRefGoogle Scholar
  86. McAllister RM, Riggs JL, Reed G, MacPherson I (1969b) Transformation of rodent cells by simian adenovirus SA-7. Proc Exp Biol Med 131: 1442–1445Google Scholar
  87. Montell C, Fisher EF, Caruthers MH, Berk AJ (1982) Resolving the functions of overlapping viral genes by site-specific mutagenesis at mRNA splice site. Nature 295: 380–384PubMedCrossRefGoogle Scholar
  88. Nevins JR (1981) Mechanism of activation of early viral transcription by the adenovirus E1A gene products. Cell 26: 213–220PubMedCrossRefGoogle Scholar
  89. Nevins JR, Ginsberg HS, Blanchard JM, Wilson MC, Darnell JE (1979) Regulation of the primary expression of early adenovirus transcription units. J Virol 32: 727–733PubMedGoogle Scholar
  90. Norrby E, Bartha A, Boulanger P, Dreizin RS, Ginsberg HS, Kalter SS, Kawamura H, Rowe HP, Russell WC, Schlesinger RW, Wigand R (1976) Adenoviridae. Intervirology 7: 117Google Scholar
  91. Paraskeva C, Brown KW, Gallimore PH (1982) Adenovirus-cell interaction early after infection. In vitro characteristics and tumorigenicity of adenovirus type 2-transformed rat liver epithelial cells. J Gen Virol 58: 73–81PubMedCrossRefGoogle Scholar
  92. Persson H, Monstein H-J, Akusjärvi G, Phillipson L (1981) Adenovirus early gene products may control viral mRNA accumulation and translation in vivo. Cell 23: 485–496PubMedCrossRefGoogle Scholar
  93. Persson H, Katze MG, Phillipson L (1982) An adenovirus tumor antigen associated with membranes in vivo and in vitro. J Virol 42: 905–917PubMedGoogle Scholar
  94. Petterson U, Virtanen A, Perricaudet M, Akusjärvi G (1983) The messenger RNAs from the transforming region of human adenoviruses. In: Doerfler W (ed) The molecular biology of adenoviruses 1. Current Topics in Microbiology and Immunology Vol. 109. Springer Berlin Heidelberg New York Tokyo, pp 107–123Google Scholar
  95. Pina N, Green M (1965) Biochemical studies on adenovirus multiplication. IX. Chemical and base composition analysis of 28 human adenoviruses. Proc Natl Acad Sci USA 54: 547–551PubMedCrossRefGoogle Scholar
  96. Ponomareva TI, Grodnitskaya NA, Goldberg EE, Chaplygina NM, Naroditsky BS, Tichonenko TI (1979) Biological activity of intact and cleared DNA of the simian adenovirus 7. Nucleic Acids Res 6: 3119–3131PubMedCrossRefGoogle Scholar
  97. Pope JH, Rowe WP (1964) Immunofluorescent studies of adenovirus 12 tumors and of cells transformed or infected by adenoviruses. J Exp Med 120: 577–588PubMedCrossRefGoogle Scholar
  98. Raska K, Gallimore PH (1982) An inverse relation of the oncogenic potential of adenovirus trans- formed cells and their sensitivity to killing by syngeneic natural killer cells. Virology 123: 8–18PubMedCrossRefGoogle Scholar
  99. Raska K, Morongiello MP, Föhring B (1980) Adenovirus type 12 tumor antigen. III. Tumorigenicity and immune response to syngeneic rat cells transformed with virions and isolated transforming fragment of adenovirus 12 DNA. Int J Cancer 26: 74–86CrossRefGoogle Scholar
  100. Riccardi RP, Jones RL, Cepko CL, Sharp PA, Roberts BE (1981) Expression of early adenovirus genes requires a viral encoded acidic polypeptide. Proc Natl Acad Sci USA 78: 6121–6125CrossRefGoogle Scholar
  101. Ross SR, Levine AJ, Galos RS, Williams J, Shenk T (1980) Early viral proteins in HeLa cells infected with adenovirus type 5 host-range mutants. Virology 103: 475–492PubMedCrossRefGoogle Scholar
  102. Rowe DT, Graham FL (1981) Complementation of adenovirus type 5 host-range mutants by adenovirus type 12 in coinfected HeLa and BHK-21 cells. J Virol 38: 191–197PubMedGoogle Scholar
  103. Rowe DT, Graham FL (1983) Transformations of rodent cells by DNA extracted from transformation defective adenovirus mutants. J Virol 46: 1039–1044PubMedGoogle Scholar
  104. Rowe DT, Graham FL, Branton PE (1983a) Intracellular localization of adenovirus type 5 tumor antigens in productively infected cells. Virology 129: 456–468PubMedCrossRefGoogle Scholar
  105. Rowe DT, Yee S-P, Otis J, Graham FL, Branton PE (1983b) Characterization of human adenovirus type 5 early region 1A polypeptides using antitumor serum specific for the carboxy terminus. Virology 127: 253–271PubMedCrossRefGoogle Scholar
  106. Ruben M, Bacchetti S, Graham FL (1982) Integration and expression of viral DNA in cells transformed by host-range mutants of adenovirus type 5. J Virol 41: 674–685PubMedGoogle Scholar
  107. Sambrook J, Botchan M, Gallimore P, Orzanne B, Pettersson U, Williams J, Sharp PA (1975) Viral DNA sequences in cells transformed by simian virus 40, adenovirus type 2 and adenovirus type 5. Cold Spring Harbor Symp Quant Biol 39: 615–632PubMedCrossRefGoogle Scholar
  108. Sarnow P, Ho YS, Williams J, Levine AJ (1982) Adenovirus E1B-55kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54kd cellular protein in transformed cells. Cell 28: 387–394PubMedCrossRefGoogle Scholar
  109. Sawada Y, Yamashita T, Kanda F, Sekikawa K, Fujinaga K (1981) Mapping of restriction fragments and transforming ability of adenovirus 31. Tumor Res 16: 7–17Google Scholar
  110. Schrier PI, Van den Elsen PJ, Hertoghs JJL, Van der Eb AJ (1979) Characterization of tumor antigens in cells transformed by fragments of adenovirus type 5 DNA. Virology 99: 372–385PubMedCrossRefGoogle Scholar
  111. Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, Van der Eb AJ (1983) Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305: 771–775PubMedCrossRefGoogle Scholar
  112. Sekikawa K, Shiroki K, Shimojo H, Ojima S, Fujinaga K (1978) Transformation of a rat cell line by an adenovirus 7 DNA fragment. Virology 88: 1–7PubMedCrossRefGoogle Scholar
  113. Sharp PA, Pettersson U, Sambrook J (1974a) Viral DNA in transformed cells. I. A study of the sequences of adenovirus 2 DNA in a line of transformed rat cells using specific fragments of the viral genome. J Mol Biol 86: 709–726PubMedCrossRefGoogle Scholar
  114. Sharp PA, Gallimore PH, Flint SJ (1974b) Mapping of adenovirus 2 RNA sequences in lytically infected cells and transformed cell lines. Cold Spring Harbor Symp Quant Biol 39: 457–474CrossRefGoogle Scholar
  115. Shenk T, Jones N, Colby W, Fowlkes D (1979) Functional analysis of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cold Spring Harbor Symp Quant Biol 44: 367–375CrossRefGoogle Scholar
  116. Shiroki K, Handa H, Shimojo H, Yano H, Ojima S, Fujinaga K (1977) Establishment and characterization of rat cell lines transformed by restriction endonuclease fragments of adenovirus 12 DNA. Virology 82: 462–471PubMedCrossRefGoogle Scholar
  117. Shiroki K, Shimojo H, Maeta Y, Hamada C (1979a) Tumor-specific transplantation and surface antigen in cells transformed by the adenovirus 12 DNA fragments. Virology 98: 188–191CrossRefGoogle Scholar
  118. Shiroki K, Shimojo H, Sawada Y, Uemizu Y, Fujinaga K (1979b) Incomplete transformation of rat cells by a small fragment of adenovirus 12 DNA. Virology 95: 127–136PubMedCrossRefGoogle Scholar
  119. Shiroki K, Maruyama K, Saito I, Fukui Y, Shimojo H (1981) Incomplete transformation of rat cells by a deletion mutant of adenovirus type 5. J Virol 38: 1048–1054PubMedGoogle Scholar
  120. Shiroki K, Maruyama K, Saito I, Fukui Y, Yazaki K, Shimojo H (1982) Dependence of tumor-forming capacities of cells transformed by recombinants between adenovirus types 5 and 12 on expression of early region 1. J Virol 42: 708–718PubMedGoogle Scholar
  121. Shiroki K, Saito I, Maruyama K, Shimojo H (1983) Isolation of a non-defective recombinant between adenovirus type 5 and early region 1A of adenovirus type 12. J Virol 46: 632–637PubMedGoogle Scholar
  122. Signas C, Katze MG, Persson H, Phillipson L (1982) An adenovirus glycoprotein is tightly bound to class I transplantation antigens. Nature 299: 175–178PubMedCrossRefGoogle Scholar
  123. Smith AE, Smith R, Griffin B, Fried M (1979) Protein kinase activity associated with polyoma virus middle T. Cell 18: 915–924PubMedCrossRefGoogle Scholar
  124. Solnick D (1981) An adenovirus mutant defective in splicing RNA from early region 1A. Nature 291: 508–510PubMedCrossRefGoogle Scholar
  125. Solnick D, Anderson MA (1982) Transformation-deficient adenovirus mutant defective in expression of region ElA but not region E1B. J Virol 42: 106–113PubMedGoogle Scholar
  126. Starzinski-Powitz A, Schultz M, Esche H, Mukai N, Doerfier W (1982) The adenovirus 12 mouse cell system: permissivity and analysis of integration patterns of viral DNA in tumor cells. EMBO J 1: 493–497PubMedGoogle Scholar
  127. Strizhachenko NM, Graevskaya NA, Karmysheva VY, Syurin VN (1975) Studies on virus-specific antigenicity of tumour cells transformed by bovine adenovirus type 3. Arch Geschwulst Forsch 45: 324–334Google Scholar
  128. Strohl WA (1969) The response of BHK21 cells to infection with adenovirus 12. I. Cell killing and T antigen synthesis as correlated with viral genome function. Virology 39: 642–652PubMedCrossRefGoogle Scholar
  129. Sugisaki H, Sugimoto K, Takanami M, Shiroki K, Saito I, Shimojo H, Sawada Y, Uemizu Y, Uesugi S, Fujinaga K (1980) Structure and gene organization in the transforming HindIII-G fragment of Ad12. Cell 20: 777–786PubMedCrossRefGoogle Scholar
  130. Takemori N (1972) Genetic studies with tumorigenic adenoviruses III. Recombination in adenovirus type 12. Virology 47: 157–167PubMedCrossRefGoogle Scholar
  131. Takemori N, Riggs JL, Aldrich C (1968) Genetic studies with tumorigenic adenoviruses I. Isolation of cytocidal (cyt) mutants of adenovirus type 12. Virology 36: 575–586PubMedCrossRefGoogle Scholar
  132. Takiff HE, Straus SE, Garron CF (1981) Propagation and in vitro studies of previously non-cultivable enteral adenoviruses in 293 cells. Lancet II: 832–834Google Scholar
  133. Trentin JJ, Yabe Y, Taylor G (1962) The quest for human cancer viruses. Science 137: 835–841PubMedCrossRefGoogle Scholar
  134. Van den Elsen PJ (1982) Studies on the contribution of early regions Ela and E1b of human adenoviruses in cell transformation. Thesis, University of Leiden, NetherlandsGoogle Scholar
  135. Van den Elsen PJ, de Pater S, Houweling A, Van der Veer J, Van der Eb AJ (1982) The relationship between region Ela and E1b of human adenoviruses in cell transformation. Gene 18: 175–185Google Scholar
  136. Van den Elsen PJ, Houweling A, Van der Eb AJ (1983a) Expression of region E1b of human adenoviruses in the absence of region Ela is not sufficient for complete transformation. Virology 128: 377–390PubMedCrossRefGoogle Scholar
  137. Van den Elsen PJ, Klein B, Dekker BMM, Van Ormondt H, Van der Eb AJ (1983b) Analysis of virus-specific mRNAs present in cells transformed with restriction fragments of adenovirus type 5 DNA. J Gen Virol 64: 1079–1090PubMedCrossRefGoogle Scholar
  138. Van den Elsen Pi, Houweling A, Van der Eb AJ (1983e) Morphological transformation of human adenoviruses is determined to a large extent by gene products of region El a. Virology 131: 242–246PubMedCrossRefGoogle Scholar
  139. Van der Eb AJ, Van Kesteren LW, Van Bruggen EFJ (1969) Structural properties of adenovirus DNAs. Biochim Biophys Acta 182: 530–541PubMedGoogle Scholar
  140. Van der Eb AJ, Mulder C, Graham FL, Houweling A (1977) Transformation with specific fragments of adenovirus DNAs. I. Isolation of specific fragments with transforming activity of adenovirus 2 and 5 DNA. Gene 2: 115–132PubMedCrossRefGoogle Scholar
  141. Van der Eb AJ, Van Ormondt H, Schrier PI, Lupker JH, Jochemsen H, Van den Elsen PJ, DeLeys RJ, Maat J, Van Beveren CP, Dijkema R, de Waard A (1979) Structure and function of the transforming genes of human adenoviruses and SV40. Cold Spring Harbor Symp Quant Biol 44: 383–399Google Scholar
  142. Van der Eb AJ, Bernards R, Van den Elsen PJ, Bos JL, Schrier PI (1983) Studies on the role of adenovirus El genes in transformation and oncogenesis In: Harris CC, Autrup HN (eds) Human carcinogenesis. Academic, New York, pp 631–655Google Scholar
  143. Van Ormondt H, Maat J, Van Beveren CP (1980) The nucleotide sequence of the transforming early region El of adenovirus type 5 DNA. Gene 11: 299–309PubMedCrossRefGoogle Scholar
  144. Van Venrooij WJ, Sillekens PTG, Van Ekelen CAG, Reinders RJ (1981) On the association of mRNA with cytoskeleton in uninfected and adenovirus-infected human KB cells. Exp Cell Res 135: 79–91PubMedCrossRefGoogle Scholar
  145. Wadell G, Hammerskjöld M-L, Winberg G, Varsanyi TW, Sundell G (1980) Genetic variability of adenoviruses. Ann NY Acad Sci 354: 16–42PubMedCrossRefGoogle Scholar
  146. Wigand R, Bartha A, Dreizin RS, Esche H, Ginsberg HS, Green M, Hierholzer JC, Kalter SS, McFerran JB, Pettersson U, Russell WC, Wadell G (1982) Adenoviridae, second report. Intervirology 18: 169–176PubMedCrossRefGoogle Scholar
  147. Williams JF (1973) Oncogenic transformation of hamster embryo cells in vitro by adenovirus type 5. Nature 243: 162–163PubMedCrossRefGoogle Scholar
  148. Wilson M, Fraser N, Darnell J (1979) Mapping of RNA initiation sites by high doses of UV irradiation. Evidence of three independent promoters within the left 11% of the Ad2 genome. Virology 94: 175–184PubMedCrossRefGoogle Scholar
  149. Yano S, Ojima S, Fujinaga K, Shiroki K, Shimojo H (1977) Transformation of a rat cell line by an adenovirus type 12 DNA fragment. Virology 82: 214–220PubMedCrossRefGoogle Scholar
  150. Yasue H, Ishibashi M (1982) The oncogenicity of avian adenoviruses. III. In situ DNA hybridization of tumor line cells localized a large number of a virocellular sequence in few chromosomes. Virology 116: 99–115PubMedCrossRefGoogle Scholar
  151. Yee S-P, Rowe DT, Tremblay ML, McDermott M, Branton PE (1983) Identification of human adenovirus early region 1 products using antisera against synthetic peptides corresponding to the predicted carboxy termini. J Virol 46: 1003–1013PubMedGoogle Scholar
  152. Younghusband HB, Tyndall C, Bellett AJD (1979) Replication and interaction of virus DNA and cellular DNA in mouse cells infected by a human adenovirus. J Gen Virol 45: 455–467PubMedCrossRefGoogle Scholar
  153. Zur Hausen H (1968) Chromosomal aberrations and cloning efficiency in adenovirus type 12-infected hamster cells. J Virol 2: 915–917PubMedGoogle Scholar
  154. Zur Hausen H, Sokol F (1969) Fate of adenovirus type 12 genomes in non-permissive cells. J Virol 4: 255–263Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1984

Authors and Affiliations

  • A. J. van der Eb
    • 1
  • R. Bernards
    • 1
  1. 1.Department of Medical BiochemistrySylvius LaboratoriesLeidenThe Netherlands

Personalised recommendations