Skip to main content

Part of the book series: Antibiotics ((1512,volume 5 / 1))

Abstract

Chloramphenicol is a broad-spectrum antibiotic which acts chiefly as a bacteriostatic agent. Chloramphenicol was isolated in 1947 from Streptomyces venezuelae. Soon afterwards, its structure was elucidated and it became the first antibiotic to be synthesized by chemical means (Controulis et al., 1949). The chemical structure of chloramphenicol is given in Fig. 1. It is one of the rare natural compounds which carry a nitro group. Nevertheless, the molecule has a structure which is one of the simplest of the known antibiotics (Rebstock etal., 1949; Dunitz, 1952). Subsequently, a large number of chloramphenicol derivatives was prepared, which exceeds more than 500 compounds (Kolosov et al., 1961). The molecule of chloramphenicol (Fig. 1) is composed of three parts: (I) a p-nitrobenzene moiety, (II) a dichloracetyl moiety, and (III) a 2-amino-propanediol moiety. In more general terms, part I represents an aromatic ring system and part II an aliphatic haloacetyl side-chain. The propanediol moiety possesses two asymmetric carbon atoms (indicated by an asterix in Fig. 1). Accordingly, four stereoisomers of chloramphenicol theoretically exist. The Newman projections of these four stereoisomers are depicted in Fig. 2. Two of these, the D-threo and the L-threo enantiomers, carry the amide side-chain (part II) and the hydroxyl on carbon 1 on opposite sides of the plane of the two asymmetric centers (Fig. 2C and D). The other two stereoisomers, the D-erythro and L-erythro enantiomers, carry the two substituents on the same side of the plane of the two asymmetric centers (Fig. 2 A and B).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apirion, D., Schlessinger, D.: Mapping and complementation of three genes. Specifying 30S ribosomal components in Escherichia Coli. J. Bacteriol. 96, 1431–1432 (1968)

    PubMed  CAS  Google Scholar 

  • Aronson, A.I., Spiegelman, S.: Protein and ribonucleic acid synthesis in a chloramphenicol-inhibited system. Biochim. Biophys. Acta 53, 70–84 (1961)

    Article  PubMed  CAS  Google Scholar 

  • Bald, R., Erdmann, V.A., Pongs, O.: Irreversible binding of chloramphenicol analogues to E. coli ribosomes. FEBS-Lett. 28, 149–152 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Borsock, H., Fischer, E.H., Keighley, G.: Factors affecting protein synthesis in vitro in rabbit reticulocytes. J. Biol. Chem. 299, 1059–1070 (1957)

    Google Scholar 

  • Bustard, T.M., Egan, R.S., Perun, T.J.: Conformational studies on chloramphenicol and related molecules. Tetrahedron 29, 1961–1967 (1973)

    Article  CAS  Google Scholar 

  • Cannon, M.: The puromycin Reaction and its inhibition by chloramphenicol. Eur. J. Biochem. 7, 137–145 (1968)

    Article  PubMed  CAS  Google Scholar 

  • Cerna, J., Rychlik, I.: Cross resistance of Escherichia coli B ribosomes to inhibition of the puromycin reaction by erythromycin, spiramycin and chloramphenicol. Biochim. Biophys. Acta 157, 436–438 (1968)

    PubMed  CAS  Google Scholar 

  • Contreras, A., Barbacid, M., Vazquez, D.: Binding to ribosomes and mode of action of chloramphenicol analogues. Biochim. Biophys. Acta 349, 376–388 (1974)

    PubMed  CAS  Google Scholar 

  • Controulis, M., Rebstock, M.C., Crooks, H.M.: Chloramphenicol (Chloromycetin). J. Am. Chem. Soc. 71, 2463–2468 (1949)

    Article  CAS  Google Scholar 

  • Coutsogeorgopoulos : On the mechanism of action of chloramphenicol in protein synthesis. Biochim. Biophys. Acta 129, 214–217 (1966)

    PubMed  CAS  Google Scholar 

  • Coutsogeorgopoulos: Inhibitors of the reaction between puromycin and polylysyl-RNA in the presence of ribosomes. Biochem. Biophys. Res. Commun. 27, 46–52 (1967)

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe, E., McQuillen, K.: Bacterial protein synthesis: The effects of antibiotics. J. Mol. Biol. 30, 137–146 (1967)

    Article  PubMed  CAS  Google Scholar 

  • Czernilofsky, A.P., Collatz, E.E., Stöffler, G., Kuechler, E.: Proteins at the t-RNA binding sites of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 71, 230–234 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Dunitz, J.D.: The crystal structure of chloramphenicol and bromamphenicol. J. Am. Chem. Soc. 74, 995–999 (1952)

    Article  CAS  Google Scholar 

  • Ehrenstein, G. von, Lipmann, F.: Experiments on hemoglobin biosynthesis. Proc. Natl. Acad. Sci. USA 47, 941–950 (1961)

    Article  CAS  Google Scholar 

  • Eilat, D., Pellegrini, M., Oen, H., Lapidot, Y., Cantor, C.R.: A chemical mapping technique for exploring the location of proteins along the ribosome-bound peptide chain. J. Mol. Biol. 88, 831–840 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.J.: Chloroplast ribosomes : Stereospecificity of inhibition by chloramphenicol. Science 163, 477–478 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Farkas, I., Sicher, J.: The chloramphenicol series. V. analogs containing chlorine in the side chain and oxazolines. Chem. Listy 47, 552–556 (1953)

    CAS  Google Scholar 

  • Fernandez-Munoz, R., Monro, R.E., Torres-Pinedo, R., Vazquez, D.: Substrate- and antibiotic binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Eur. J. Biochem. 23, 185–193 (1971)

    Article  PubMed  CAS  Google Scholar 

  • Freeman, K.B.: Inhibition of Mitochondrial and bacterial Protein synthesis by chloramphenicol. Can. J. Biochem. 48, 479–485 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Gale, E.F., Folkes, J.P.: The assimilation of amino acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus Aureus. Biochem. J. 53, 493–498 (1953)

    PubMed  CAS  Google Scholar 

  • Gardner, R.S., Wahba, A.J., Basilio, C., Miller, R.S., Lengyel, P., Speyer, J.F.: Synthetic polynucleotides and the amino acid code. Proc. Natl. Acad. Sci. USA 48, 2087–2094 (1962)

    Article  PubMed  CAS  Google Scholar 

  • Hahn, F.E.: Relationship between the structure of chloramphenicol and its action upon peptide synthetase. Experientia 24, 856–864 (1968)

    Article  PubMed  CAS  Google Scholar 

  • Hahn, F.E., Gund, P.: A structural model of the chloramphenicol receptor site. In: Drug Receptor Interactions in Antimicrobial Chemotherapy. Drews J., Hahn, F.E. (eds.), Vol. 1, pp. 245–266. Wien, New York: Springer 1975

    Google Scholar 

  • Hahn, F.E., Wisseman, C.L.: Inhibition of adaptive enzyme formation by antimicrobial agents. Proc. Soc. Exp. Biol. Med. 76, 533–535 (1951)

    PubMed  CAS  Google Scholar 

  • Hahn, F.E., Hayes, J.E., Wisseman, C.L., Hopps, H.E., Smadel, J.E.: Mode of action of chloramphenicol. VI. Relation between structure and activity in the chloramphenicol series. Antibiot. Chemother. 6, 531–543 (1956)

    CAS  Google Scholar 

  • Hansch, C., Nakamoto, K., Gorim, P., Denisevich, E.R., Garrett, S.M., Heman-Ackah, Von, C.H.: Structure-activity relationship of Chloramphenicols. J. Med. Chem. 16, 917–923 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Jardetzky, O.: Studies on the mechanism of action of chloramphenicol. I. The conformation of chloramphenicol in solution. J. Biol. Chem. 238, 2498–2508 (1963)

    CAS  Google Scholar 

  • Jardetzky, O., Julian, G.R.: Chloramphenicol inhibition of polyuridylic acid binding to E. coli ribosomes. Nature (London) 201, 397–398 (1964)

    Article  CAS  Google Scholar 

  • Kolosov, M.N., Shemiakin, M.M., Khoklov, A.S., Gurevich, A.I.: Chloramphenicol. In: Khimia Antibiotikow I. USSR: Iedetsto Akademii Navk 1961

    Google Scholar 

  • Kono, M., O’Hara, K., Nagawa, M., Mitsuhashi, S.: Drug Resistance of Staphylococci. XI. Induction of chloramphenicol resistance by its derivatives and analogues. Japan. J. Microbiol. 15, 219–227 (1971)

    CAS  Google Scholar 

  • Kroon, A.M.: Protein Synthesis in heart mitochondria. I. Amino acid incorporation into the protein of isolated beef-heart mitochondria and fractions derived from them by sonic oscillation. Biochim. Biophys. Acta 72, 391–402 (1963)

    Article  PubMed  CAS  Google Scholar 

  • Kucan, Z., Lipmann, F.: Differences in chloramphenicol sensitivity of cell-free amino acid polymerization systems. J. Biol. Chem. 239, 516–520 (1964)

    PubMed  CAS  Google Scholar 

  • Lamborg, M.R., Zamecnik, P.C.: Amino acid incorporation into protein by extracts of E. coli. Biochim. Biophys. Acta 42, 206–211 (1960)

    Article  PubMed  CAS  Google Scholar 

  • Lark, K.G., Lark, C.: Protein required for initiation of DNA Replication. J. Mol. Biol. 20, 9–19 (1966)

    Article  PubMed  CAS  Google Scholar 

  • Lessard, J.L., Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXIII. Chloramphenicol, aminoacyl-oligonucleotides, and Escherichia coli ribosomes. J. Biol. Chem. 247, 6909–6912 (1972)

    PubMed  CAS  Google Scholar 

  • Long, L.M., Troutman, H.D.: Chloromycetin. Synthesis of alphadichloracetamido-beta-hydroxy-p-nitropropiophenone. J. Am. Chem. Soc. 73, 481–482 (1951)

    Article  CAS  Google Scholar 

  • Maxwell, R.E., Nickel, V.S.: The antibacterial activity of the isomers of chloramphenicol. Antibiot. Chemother. 4, 289–295 (1954)

    CAS  Google Scholar 

  • Monro, R.E.: The peptidyl transferase activity of ribosomes. Cold Spring Harbor Symp. Quant. Biol. 34, 357–368 (1969)

    CAS  Google Scholar 

  • Nathans, D., Lipmann, F.: Amino acid transfer from aminoacylribonucleic acids to protein on ribosomes of Escherichia coli. Proc. Natl. Acad. Sci. USA 47, 497–502 (1961)

    Article  PubMed  CAS  Google Scholar 

  • Nierhaus, D., Nierhaus, K.H.: Identification of the chloramphenicol-binding protein in Escherichia coli ribosomes by partial reconstruction. Proc. Natl. Acad. Sci. USA 70, 2224–2228 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg, M.W., Matthaei, J.N.: The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl. Acad. Sci. USA 47, 1588–1602 (1961)

    Article  PubMed  CAS  Google Scholar 

  • Oen, H., Pellegrini, M., Eilat, D., Cantor, C.R.: Identification of 50S proteins at the peptidyl-tRNA binding site of Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 70, 2799–2803 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, S., Suzuki, Y.: Chloramphenicol-, Dihydrostreptomycin-, and Kanamycin-Inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome ‘R’ Nature (London) 208, 1301–1303 (1965)

    Article  CAS  Google Scholar 

  • Osawa, S., Takata, R., Tanoka, K., Tamaki, M.: Chloramphenicol resistant mutants of Bacillus subtilis. Mol. Gen. Genet. 127, 163–173 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini, M., Oen, H., Eilat, D., Cantor, C.R.: The mechanism of covalent reaction of bromacetyl-phenylalanyl-transfer RNA with the peptidyl-transfer RNA binding site of the Escherichia coli ribosome. J. Mol. Biol. 88, 809–829 (1974)

    Article  PubMed  CAS  Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. J. Biol. Chem. 244, 1533–1539 (1969)

    PubMed  CAS  Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. VIII. Survey of the effects of antibiotics on N-acetyl-phenylalanyl-puromycin formation: Possible mechanism of chloramphenicol action. Arch. Biochem. Biophys. 136, 80–88 (1970)

    Article  PubMed  CAS  Google Scholar 

  • Pestka, S.: Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effects of antibiotics on peptidyl Puromycin synthesis on Polyribosomes from Escherichia coli. J. Biol. Chem. 247, 4669–4678 (1972)

    PubMed  CAS  Google Scholar 

  • Pestka, S.: Inhibitors of Protein Synthesis. In: Molecular mechanisms of protein biosynthesis. Weissbach, H., Pestka, S. (eds.), 468 pp. New York: Academic Press 1977

    Google Scholar 

  • Peterson, R.F., Cohen, P.S., Ennis, H.L.: Properties of phage T4 messenger RNA synthesized in the absence of protein synthesis. Virology 48, 201–206 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Pongs, O.: The receptor site for chloramphenicol in vitro and in vivo. In: Drug action at the molecular level. 190 pp. London: MacMillan Press 1977

    Google Scholar 

  • Pongs, O., Messer, W.: The chloramphenicol receptorsite in Escherichia coli. In vivo affinity labeling by monoiodoamphenicol. J. Mol. Biol. 101, 171–184 (1976)

    Article  PubMed  CAS  Google Scholar 

  • Pongs, O., Bald, R., Erdmann, V.A.: Identification of chloramphenicol-binding protein in Escherichia coli ribosomes by affinity labeling. Proc. Natl. Acad. Sci. USA 70, 2229–2233 (1973)

    Article  PubMed  CAS  Google Scholar 

  • Pongs, O., Nierhaus, K.H., Erdmann, V.A., Wittmann, H.G.: Active sites in Escherichia coli ribosomes. FEBS-Lett. Suppl. 40, 28–37 (1974)

    Article  Google Scholar 

  • Pongs, O., Bald, R., Erdmann, V.A., Reinwald, E.: In “Topics in Infectious Diseases. Drug Receptor Interactions in Antimicrobial Chemotherapy” (J. Drews a. F.E. Hahn, eds.). Vol. 1, 179–190. Wien, New York: Springer 1975

    Google Scholar 

  • Rebstock, M.C., Crooks, H.M., Controulis, J., Bartz, Q.R.: Chloramphenicol (Chloromycetin). J. Am. Chem. Soc. 71, 2458–2462 (1949)

    Article  CAS  Google Scholar 

  • Rebstock, M.C., Stratton, C.D., Bambas, L.L.: Some compounds related to Chloromycetin. J. Am.Chem. Soc. 77, 24–26 (1955)

    Article  CAS  Google Scholar 

  • Rendi, R.: The effect of chloramphenicol on the incorporation of labeled amino acids into proteins by isolated subcellular fractions from rat liver. Expt. Cell. Res. 18, 187–189 (1959)

    Article  CAS  Google Scholar 

  • Rendi, R., Ochoa, S.: Effect of chloramphenicol on protein synthesis in cell-free preparations of Escherichia coli. J. Biol. Chem. 237, 3711–3713 (1962)

    PubMed  CAS  Google Scholar 

  • Shaw, W.V.: The enzymatic acetylation of chloramphenicol by R-factor resistant Escherichia coli. J. Biol. Chem. 242, 687–693 (1967)

    PubMed  CAS  Google Scholar 

  • Shemiakin, M.M., Kolosov, M.N., Levitov, M.M., Germanova, K.I., Karpetian, M.G., Svetsov, I., Bamdes, E.M.: Researches into the chemistry of Chloromycetin (Levomycetin). VIII. Dependency of antimicrobial activity of Chloromycetin on its structure and the mechanism of effect of Chloromycetin. Zh. Obsch. Khim. 26, 773–785 (1956)

    Google Scholar 

  • Sinsheimer, R.L., Starman, B., Nagler, C., Guthrie, S.: The process of infection with bacteriophage φX174. I. Evidence for a “replicative form”. J. Mol. Biol. 4, 142–160 (1962)

    Article  PubMed  CAS  Google Scholar 

  • Sinsheimer, R.L., Hutchinson, C.A., Lindquist, B.: In: The Molecular Biology of Viruses. Colter, S.J., Poranchych, W. (eds.), 175 pp. New York: Academic Press 1967

    Google Scholar 

  • So, A.G., Davie, E.W.: The incorporation of amino acids into protein in a cell-free system from yeast. Biochemistry 2, 132–136 (1963)

    Article  PubMed  CAS  Google Scholar 

  • Sonnenberg, N., Wilchek, M., Zamir, A.: Mapping of Escherichia coli ribosomal components involved in peptidyl transferase activity. Proc. Natl. Acad. Sci. USA 70, 1423–1426 (1973)

    Article  Google Scholar 

  • Speyer, J.F., Lengyel, P., Basilio, C., Wahba, A.J., Gardner, R.S., Ochoa, S.: Synthetic polynucleotides and the amino acid code. Cold Spring Harbor Symp. Quant. Biol. 28, 559–568 (1963)

    CAS  Google Scholar 

  • Suzuki, Y., Okamoto, S.: The enzymatic acetylation of chloramphenicol by the multiple drug-resistant Escherichia coli carrying R-Faktor. J. Biol. Chem. 242, 4722–4730 (1967)

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Teraoka, H., Nagira, T., Tamaki, M.: [14C] erythromycin-ribosome complex formation and non-enzymatic binding of aminoacyl-transfer RNA to ribosome-messenger RNA complex. Biochim. Biophys. Acta 123, 435–437 (1966)

    PubMed  CAS  Google Scholar 

  • Taubman, S.B., Jones, N.R., Young, F.E., Coreoran, J.W.: Sensitivity and resistance to erythromycin in bacillus subtilis 168: The ribosomal binding of erythromycin and chloramphenicol. Biochim. Biophys. Acta 123, 438–440 (1966)

    PubMed  CAS  Google Scholar 

  • Telesnina, G.N., Novikova, M.A., Zhdanov, G.L., Kolosov, M.N., Shemiakin, M.M.: The effect of chloramphenicol analogs on protein biosynthesis in a cell-free Escherichia coli B system. Experimenta 23, 427–433 (1967)

    Article  CAS  Google Scholar 

  • Tessman, E.S.: Mutants of bacteriophage S13 blocked in infectious DNA synthesis. J. Mol. Biol. 17, 218–236 (1966)

    Article  PubMed  CAS  Google Scholar 

  • Vázquez, D.: The binding of chloramphenicol by ribosomes from Bacillus megaterium. Biochem. Biophys. Res. Comm. 15, 464–468 (1964)

    Article  PubMed  Google Scholar 

  • Vázquez, D.: Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. Biophys. Acta 114, 277–288 (1965)

    Google Scholar 

  • Vázquez, D.: Ribosomal sites involved in binding of aminoacyl-t-RNA. Life Sci. 6, 845–853 (1967)

    Article  PubMed  Google Scholar 

  • Vázquez, D.: Inhibitors of protein synthesis. FEBS Lett. 40, 63–72 (1974)

    Article  Google Scholar 

  • Weber, H.J.: Stoichiometric measurements of 30S and 50S ribosomal proteins from Escherichia coli. Mol. Gen. Genet. 119, 233–248 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Wintersberger, E.: Proteinsynthese in isolierten Hefe-Mitochondrien. Biochem. Z. 341, 409–419 (1965)

    CAS  Google Scholar 

  • Wisseman, C.L., Smodel, J.E., Hahn, F.E., Hoppe, H.E.: Mode of action of chloramphenicol. I. Action of Chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J. Bacteriol. 67, 662–673 (1954)

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Pongs, O. (1979). Chloramphenicol. In: Hahn, F.E. (eds) Mechanism of Action of Antibacterial Agents. Antibiotics, vol 5 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46403-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46403-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46405-8

  • Online ISBN: 978-3-642-46403-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics