Advertisement

Linear Operators in a Hilbert Space

  • Robert D. Richtmyer
Part of the Texts and Monographs in Physics book series (TMP)

Abstract

The idea of a linear operator or transformation in a Hilbert space ℌ (or a Banach space) is a direct generalization of the idea of a linear transformation in a finite-dimensional space. One point, however, needs emphasis (mainly because it is sometimes ignored, especially in books on quantum mechanics), namely, an operator A cannot be regarded as fully specified until its domain of definition (i.e., the set of those x in ℌ for which Ax is meaningful) has been specified; operators with different domains of definition have to be regarded as different operators. It is customary to require the domain of definition to be a linear set (manifold) in ℌ, for the obvious reason that if A is linear and Ax is defined in a set S, then Ay can be uniquely defined, by linearity, when y is any finite linear combination of elements of S. However, further extensions are not generally unique, except in special circumstances.

Keywords

Linear operators or transformations in a Hilbert space domain range bound Extension Theorem Banach algebras adjoints symmetric, self-adjoint, and unitary operators integral and differential operators symmetric operators with no self-adjoint extension and ones with many simple Sturm-Liouville operators closed and closable operators the graph of an operator radial momentum operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1978

Authors and Affiliations

  • Robert D. Richtmyer
    • 1
  1. 1.Department of Physics and AstrophysicsUniversity of ColoradoBoulderUSA

Personalised recommendations