Skip to main content

Biochemical Characteristics of the Sodium Pump: Indications for a Half-of-Sites Reactivity of (Na+ + K+)-ATPase

  • Conference paper
Myocardial Failure

Abstract

(Na+ + K+)-activated ATPase is the biochemical equivalent of the sodium pump of mammalian cell membranes (1, 2). The enzyme transformes the energy, which is obtained from the hydrolysis of 1 mol ATP to ADP and phosphate, into the vectorial transport of 3 mol Na+ out of the cell and of 2 mol K+ into the cell. This stoichiometry has been obtained with the intact system of the red blood cell (3, 4) and after reconstitution of the sodium pump by incorporating the purified enzyme into liposomes (5). The transport of cations seems to occur via the Na+ - dependent formation of a phosphorylated intermediate, whose hydrolysis is activated by the presence of K+ (2). More recently it has been proposed that the active transport of Na+ and K+ occurs through reciprocating conformational changes of two chemically identical subunits (6, 7) showing half-of-the sites reactivity (7). If this assumption were right, one should find a negative cooperativity of the ATP and ouabain binding sites and of the substrate dependency of (Na+ + K+)-ATPase. This finding is demonstrated in this report.

Supported by the Deutsche Forschungsgemeinschaft.

The authors thank Mrs. Christine Halbwachs for her diligent and skilful technical assistence in these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skou, J. C. The (Na+ + K+) -activated enzyme system and its rela -tionship to transport of sodium and potassium. Quart. Rev. Biophys. 7, 401–434 (1975)

    Article  Google Scholar 

  2. Glynn, I. M., Karlish, S. J. D.: The sodium pump. Ann. Rev. Physiol. 37, 13–55 (1975)

    Article  CAS  Google Scholar 

  3. Sen, A. K., Post, R. L.: Stoichiometry and localization of adenosine triphosphate dependent sodium and potassium transport in the erythrocyte. J. biol. Chem. 329, 345–352 (1964)

    Google Scholar 

  4. Whittam, R., Ager, M. E.: The connexion between active cation transport and metabolism in erythrocytes. Biochem. J. 97, 214227 (1965)

    Google Scholar 

  5. Hilden, S., Hokin, L. E.: Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias. J. biol. Chem. 250, 6296–6303 (1975)

    PubMed  CAS  Google Scholar 

  6. Stein, W. D., Lieb, W. R., Karlish, S. J. D., Eilam, Y.: A model for the active transport of sodium and potassium ions as mediated by a tetrameric enzyme. Proc. nat. Acad. Sci. (Wash.) 70, 275278 (1973)

    Google Scholar 

  7. Repke, K. R. H., Schön, R.: Flip-flog model of (Na, K) ATPase function. Acta biol. med. germ. 31, K 19-K 30 (1973)

    Google Scholar 

  8. Schoner, W., v. Ilberg, C., Kramer, R., Seubert, W.: On the mechanism of Na+ and K+ stimulated hydrolysis of adenosine triphosphate. 1. Purification and properties of a Na+ and K+ activated ATPase from ox brain. Europ. J. Biochem. 1, 334.-343 (1967)

    Google Scholar 

  9. Schoner, W., Bausch, R., Kramer, R.: On the mechanism of Na+ and K+-stimulated hydrolysis of adenosine triphosphate. 2. Comparison of nucleotide specificities of Na+–and K+ -activated ATPase and Na+ -dependent phosphorylation of cell membranes. Europ. J. Biochem. 7, 102–110 (1968)

    Article  PubMed  CAS  Google Scholar 

  10. Erdmann, E., Schoner, W.: Ouabain-receptor interactions in (Na+ + K+)-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. Biochim. biophys. Acta 307, 386–398 (1973)

    CAS  Google Scholar 

  11. Kaniike, K., Erdmann, E., Schoner, W.: ATP binding to (Nat + K+)-activated ATPase. Biochim. biophys. Acta 298, 901–905 (1973)

    CAS  Google Scholar 

  12. Patzelt-Wenczler, R., Schoner, W.: Disulfide of thioinosine triphosphate, an ATP-analog inactivating (Na+ + K+) -ATPase. Biochim. biophys. Acta 403, 538–543 (1975)

    CAS  Google Scholar 

  13. Faust, U., Fasold, H., Ortanderl, F. Synthesis of a protein-reactive ATP analog and its application for the affinity labeling of rabbit-muscle actin. Europ. J. Biochem. 43, 273–279 (1974)

    CAS  Google Scholar 

  14. Glynn, J. M., Chappell, J. B.: A simple method for the preparation of 32 P-labelled adenosine triphosphate of high specific activity. Biochem. J. 90, 147–149 (1964)

    PubMed  CAS  Google Scholar 

  15. Patzelt-Wenczler, R., Pauls, H., Erdmann, E., Schoner, W.: Evidence for a sulfhydryl group in the ATP-binding site of (Nat + K+)-activated ATPase. Europ. J. Biochem. 53, 301–311 (1975)

    Article  CAS  Google Scholar 

  16. Bond, G. H., Bader, H., Post, R. L.: Acetylphosphate as a substitute for ATP in (Nat + K+)-dependent ATPase. Biochim. biophys. Acta 241, 57–67 (1971)

    CAS  Google Scholar 

  17. Hegyvary, C.: Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase. J. biol. Chem. 246, 5234–5240 (1971)

    PubMed  CAS  Google Scholar 

  18. Norby, J. G., Jensen, J.: Binding of ATP to brain microsomal ATPase. Determination of the ATP-binding capacity and the dissociation constant of the enzyme-ATP complex as a function of K+-concentration. Biochim. biophys. Acta 233, 104–116 (1971)

    CAS  Google Scholar 

  19. Jensen, J., Norby, J. G.: On the specificity of the ATP binding site of (Na+ + K+) -activated ATPase from brain microsomes. Biochim. biophys. Acta 233, 395–403 (1971)

    CAS  Google Scholar 

  20. Weideman, M. J., Erdelt, H., Klingenberg, M.: Adenine nucleotide translocation of mitochondria. Identification of carrier sites. Europ. J. Biochem. 16, 313–335 (1970)

    Article  Google Scholar 

  21. Kaniike, K., Erdmann, E., Schoner, W.: Study on the differential modifications of (Na+ + K+) -ATPase and its partial reactions by dimethylsulfoxide. Biochim. biophys. Acta 352, 275–286 (1974)

    CAS  Google Scholar 

  22. Erdmann, E., Schoner, W.: Ouabain-receptor interactions in (Nat + K+) -ATPase preparations. H. Effect of cations and nucleotide on rate constants and dissociation constants. Biochim. biophys. Acta 330, 302–315 (1973)

    CAS  Google Scholar 

  23. Erdmann, E., Schoner, W.: Ouabain-receptor interactions in (Na+ + K+) -ATPase preparations. IV. The molecular structure of different cardioactive steriods and other substances and their affinity to the glycoside receptor. Naunyn Schmiedeberg’ s Arch. Pharmacol. 283, 335–356 (1974)

    CAS  Google Scholar 

  24. Hansen, O., Skou, J. C.: A study on the influence of the concentration of Mg2, Pi, K+, Na+ and tris on (Mg + Pi)-supported gStrophanthin binding to (Na+ + K+)-activated ATPase from ox brain. Biochim. biophys. Acta 311, 51–66 (1973)

    CAS  Google Scholar 

  25. Hansen_ O.: Non-uniform populations of g-strophanthin binding sites of (Na+ + K+)-activated ATPase. Apparent conversion to uniformity by K+. Biochim. biophys. Acta 433, 383–392 (1976)

    CAS  Google Scholar 

  26. Froehlich, J. P., Albers, R. W., Koval, G. J., Goebel, R., Berman, M.: Evidence for a new intermediate state in the mechanism of (Na+ + K+)-adenosine triphosphatase. J. biol. Chem. 251, 21862188 (1976)

    Google Scholar 

  27. Gache, C., Rossi, B., Lazdunski, M.: (Na+ + K+)-activated adenosinetriphosphatase of axonal membranes, cooperativity and control. Steady-state analysis. Europ. J. Biochem. 65• 293–306 (1976)

    Google Scholar 

  28. Repke, K. R. H., Schön, R., Henke, W., Schönfeld, W., Streckenbach, W., Dittrich, F.: Experimental and theoretical of the flip-flop model of (Na, K)-ATPase function. Ann. N. Y. Acad. Sci. 242, 203–219 (1974)

    Article  PubMed  CAS  Google Scholar 

  29. Levitzky, A., Koshland, D. E. Jr.: The role of negative cooperativity and half-of-the-sites reactivity in enzyme regulation. Curr. Top. cell. Regul. 10, 2–40 (1976)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schoner, W., Pauls, H., Patzelt-Wenczler, R. (1977). Biochemical Characteristics of the Sodium Pump: Indications for a Half-of-Sites Reactivity of (Na+ + K+)-ATPase. In: Riecker, G., et al. Myocardial Failure. International Boehringer Mannheim Symposia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46352-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46352-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08225-5

  • Online ISBN: 978-3-642-46352-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics