Skip to main content

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 3))

Abstract

Erythromycin is an antibiotic which inhibits the growth of many Gram- positive and some Gram-negative organisms and is especially successful against group A streptococcal, staphylococcal, and pneumococcal infections. The bacteriostatic action of erythromycin is a result of the antibiotic’s ability to selectively inhibit protein synthesis in the susceptible bacteria, but not in the host mammalian tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adoutte, A., and J. Beisson: Cytoplasmic inheritance of erythromycin resistant mutations in Paramecium aurelia. Mol. Gen. Genetics 108, 70 (1970).

    Article  CAS  Google Scholar 

  • Ahmed, A.: Altered ribosomes in spiramycin-resistant mutants of Bacillus subtilis. Biochim. Biophys. Acta 166, 218 (1968).

    PubMed  CAS  Google Scholar 

  • AMA Drug Evaluations, 1st ed., 1971, American Medical Association.

    Google Scholar 

  • Apirion, D.: Three genes that affect Escherichia coli ribosomes. J. Mol. Biol. 30, 255 (1967).

    PubMed  CAS  Google Scholar 

  • Arora, K. L., J. Majer, M. Chevallier, and J. W. Corcoran: Comparative effects of erythromycin on gram-positive and negative bacteria in relation to its mode of action. Abstract No. 147. Interscience Conference on Antimicrobial Agents and Chemotherapy, Atlantic City, 1971.

    Google Scholar 

  • Ballesta, J. P. G., V. Montejo, and D. Vazquez: Reconstitution of the 50S ribosome subunit. Localization of activities related to the peptidyl transferase centre. FEBS Letters 19, 75 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Beale, G. H.: A note on the inheritance of erythromycin-resistance in Paramecium aurelia. Genet. Res. 14, 341 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Beattie, D. S.: The synthesis of mitochondrial proteins. Sub-Cell. Biochem. 1, 1 (1971).

    CAS  Google Scholar 

  • Borst, P., and L. A. Grivell: Mitochondrial ribosomes. FEBS Letters 13, 73 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D., and M. L. Brock: Similarity in mode of action of chloramphenicol and erythromycin. Biochim. Biophys. Acta 33, 274 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Bunn, C. L., C. H. Mitchell, H. B. Lukins, and A. W. Linnane: Biogenesis of mitochondria, XVIII. A new class of cytoplasmically determined antibiotic resistant mutants in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S. 67, 1233 (1970).

    Article  CAS  Google Scholar 

  • Cannon, M., and K. Burns: Modes of action of erythromycin and thiostrepton as inhibitors of protein synthesis. FEBS Letters 18, 1 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Celma, M. L., R. E. Monro, and D. Vazquez: Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes. FEBS Letters 6, 273 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Celma, M. L., R. E. Monro, and D. Vazquez: Substrate and antibiotic binding sites at the peptidyl transferase centre of E. coli ribosomes: Binding of UACCA-Leu to 50S subunits. FEBS Letters 13, 247 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Celmer, W. D.: Macrolide stereochemistry. II. Configurational assignments at certain centers in various macrolide antibiotics. J. Am. Chem. Soc. 87, 1799 (1965 a).

    Article  PubMed  CAS  Google Scholar 

  • Celmer, W. D.: Macrolide stereochemistry. III. A configurational model for macrolide antibiotics. J. Am. Chem. Soc. 87, 1801 (1965b).

    Article  PubMed  CAS  Google Scholar 

  • Celmer, W. D.: Biogenetic, constitutional, and stereochemical unitary principles in macrolide antibiotics. Antimicrobial Agents Chemotherapy 1965, 144.

    Google Scholar 

  • Celmer, W. D.: Stereochemical problems in macrolide antibiotics. In: Symposium on antibiotics, p. 413, ed. by S. Rakhit. London: Butterworths 1971.

    Google Scholar 

  • Černá, J., J. Jonák, and I. Rychlík: Effects of macrolide antibiotics on the ribosomal peptidyl transferase in cell-free systems derived from Escherichia coli B and erythromycin-resistant mutant of Escherichia coli B. Biochim. Biophys. Acta 240, 109 (1971).

    PubMed  Google Scholar 

  • Cerna, J., and I. Rychlík: Cross-resistance of Escherichia coli B ribosomes to inhibition of the puromycin reaction by erythromycin, spiramycin and chloramphenicol. Biochim. Biophys. Acta 157, 436 (1968).

    PubMed  CAS  Google Scholar 

  • Černá, J., and I. Rychlík: The effect of antibiotics on the substrate binding to the acceptor and donor site of ribosomal peptidyl transferase of an erythromycin-resistant mutant of Escherichia coli. Biochim. Biophys. Acta 287, 292 (1972).

    PubMed  Google Scholar 

  • Černá, J., I. Rychlík, and P. Pulkrábek: The effect of antibiotics on the coded binding of peptidyl- tRNA to the ribosome and on the transfer of the peptidyl residue to puromycin. Eur. J. Biochem. 9, 27 (1969).

    Article  PubMed  Google Scholar 

  • Chabbert, Y.: Antagonisme in vitro entre l’erythromycine et la spiramycine. Ann. Inst. Pasteur 90, 787 (1956).

    CAS  Google Scholar 

  • Chang, F. N., and B. Weisblum: The specificity of lincomycin binding to ribosomes. Biochemistry 6, 836 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. K.: The chemistry of erythromycin. I. Acid degradation products. Antibiot. & Chemotherapy 3, 663 (1953).

    CAS  Google Scholar 

  • Coleman, V. R., J. B. Gunnison, and E. Jawetz: Participation of erythromycin and carbomycin in combined antibiotic action in vitro. Proc. Soc. Exptl. Biol. Med. 83, 668 (1953).

    CAS  Google Scholar 

  • Corcoran, J. W.: The biosynthesis of erythromycin. Lloydia 27, 1 (1964).

    CAS  Google Scholar 

  • Corcoran, J. W.: Erythromycin and the bacterial ribosome: A study of the mechanism of sensitivity and resistance to macrolide antibiotics and lincomycin in Bacillus subtilis 168. In: Drug action and drug resistance in bacteria: Macrolide antibiotics and lincomycin, p. 177, Mitsuhashi, S., ed. Tokyo, Japan: Univ. of Tokyo Press 1971.

    Google Scholar 

  • Corcoran, J. W., and M. Chick: Biochemistry of the macrolide antibiotics. In: Biosynthesis of antibiotics, J. F. Snell, ed., p. 159. New York: Academic Press 1966.

    Google Scholar 

  • Corcoran, J. W., T. Kaneda, and J. C. Butte: Propionate incorporation into a unique branched fatty acid. Federation Proc. 19, 227 (1960a).

    Google Scholar 

  • Corcoran, J. W., T. Kaneda, and J. C. Butte: Actinomycete antibiotics. I. The biological incorporation of propionate into the macrocyclic lactone of erythromycin. J. Biol. Chem. 235, PC 29, (1960b).

    CAS  Google Scholar 

  • Cundliffe, E.: Antibiotics and polyribosomes. II. Some effects of lincomycin, spiramycin, and streptogramin A in vivo. Biochemistry 8, 2063 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe, E.: The mode of action of fusidic acid. Biochem. Biophys. Res. Commun. 46, 1794 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe, E. and K. McQuillen: Bacterial protein synthesis: The effects of antibiotics. J. Mol. Biol. 30, 137 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Dekio, S., R. Takata, S. Osawa, K. Tanaka, and M. Tamaki: Genetic studies of the ribosomal proteins in Escherichia coli. IV. Pattern of the alteration of ribosomal protein components in mutants resistant to spectinomycin or erythromycin in different strains of Escherichia coli. Mol. Gen. Genetics 107, 39 (1970).

    Article  CAS  Google Scholar 

  • Djerassi, C., O. Halpern, D. I. Wilkinson, and E. J. Eisenbraun: Macrolide antibiotics. VIII. The absolute configuration of certain centers in neomethymycin, erythromycin, and related antibiotics. Tetrahedron 4, 369 (1958).

    Article  Google Scholar 

  • Ellis, R. J., and M. R. Hartley: Sites of synthesis of chloroplasts proteins. Nature New Biol. 233, 193 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Muñoz, R., R. E. Monro, R. Torres-Piñedo, and D. Vazquez: Substrate- and antibiotic- binding sites at the peptidyl-transferase centre of Escherichia coli ribosomes. Studies on the chloramphenicol, lincomycin and erythromycin sites. Eur. J. Biochem. 23, 185 (1971).

    Article  PubMed  Google Scholar 

  • Fernandez-Muñoz, R., and D. Vazquez: Quantitative binding of 14C-erythromycin to E. coli ribosomes. J. Antibiotics (Tokyo) 26, 107 (1973).

    Article  Google Scholar 

  • Finland, M., C. Wilcox, S. S. Wright, and E. M. Purcell: Cross-resistance to antibiotics: Effect of exposures of bacteria to carbomycin or erythromycin in vitro. Proc. Soc. Exptl. Biol. Med. 81, 725 (1952).

    CAS  Google Scholar 

  • Firkin, F. C., and A. W. Linnane: Phylogenetic differences in the sensitivity of mitochondrial protein synthesizing systems to antibiotics. FEBS Letters 2, 330 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Flynn, E. H., M. V. Sigal, Jr., P. F. Wiley, and K. Gerzon: Erythromycin. I. Properties and degradation studies. J. Am. Chem. Soc. 76, 3121 (1954).

    Article  CAS  Google Scholar 

  • Friedman, S. M., T. Kaneda, and J. W. Corcoran: Antibiotic glycosides. V. A comparison of 2-methylmalonate and propionate as precursors of the C21 branched chain lactone in erythromycin. J. Biol. Chem. 239, 2386 (1964).

    PubMed  CAS  Google Scholar 

  • Fukaya, K., and O. Kitamoto: Studies on tissue distribution of several new antibiotics. In: Progress in antimicrobial and anticancer chemotherapy (Proceedings of the 6th International Congress of Chemotherapy), vol. I, p. 503. Tokyo: University of Tokyo Press 1970.

    Google Scholar 

  • Fusillo, M. H., H. E. Noyes, E. J. Pulaski, and J. Y. S. Tom: Antimicrobial spectrum and cross- resistance studies of erythromycin and carbomycin. Antibiot. & Chemotherapy 3, 581 (1953).

    CAS  Google Scholar 

  • Garrod, L. P.: The erythromycin group of antibiotics. Brit. Med. J. 1957, 57.

    Google Scholar 

  • Garrod, L. P., and P. M. Waterworth: Behaviour in vitro of some new antistaphylococcal antibiotics. Brit. Med. J. 1956, 61.

    Google Scholar 

  • Gingold, E. B., G. W. Saunders, H. B. Lukins, and A. W. Linnane: Biogenesis of mitochondria. X. Reassortment of the cytoplasmic genetic determinants for respiratory competence and erythromycin resistance in Saccharomyces cerevisiae. Genetics 62, 735 (1969).

    PubMed  CAS  Google Scholar 

  • Goldthwaite, C., D. Dubnau, and I. Smith: Genetic mapping of antibiotic resistance markers in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S. 65, 96 (1970).

    Article  CAS  Google Scholar 

  • Grisebach, H., H. Achenbach, and U. C. Grisebach: Zur Biogenese des Erythromycins. Naturwissenschaften 47, 206 (1960a).

    Article  CAS  Google Scholar 

  • Grisebach, H., H. Achenbach u. W. Hofheinz: Untersuchungen zur Biogenese des Erythromycins. I. Mitt.: Der Aufbau des Lactonringes. Z. Naturforsch. 15b, 560 (1960b).

    CAS  Google Scholar 

  • Grisebach, H., and W. Hofheinz: Biosynthesis of the macrolide antibiotics. J. Roy. Inst. Chem. 88, 332 (1964).

    Google Scholar 

  • Guy, L. R., and J. S. Chapman: Susceptibility in vitro of unclassified mycobacteria to commonly used antimicrobials. Am. Rev. Respirat. Diseases 84, 746 (1961).

    CAS  Google Scholar 

  • Hahn, F. E.: Erythromycin and oleandomycin. In: Antibiotics. I. Mode of action, D. Gottlieb and P. D. Shaw, eds., p. 378. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Haight, T. H., and M. Finland: Resistance of bacteria to erythromycin. Proc. Soc. Exptl. Biol. Med. 81, 183 (1952).

    CAS  Google Scholar 

  • Hansen, A., and J. W. Corcoran: Alteration in a ribosomal protein in Bacillus subtilis 168 associated with sensitivity to erythromycin. Federation Proc. 28, 725 (1969).

    Google Scholar 

  • Harris, D. R., S. G. McGeachin, and H. H. Mills: The structure and stereochemistry of erythromycin A. Tetrahedron Letters 11, 679 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Herner, A. E., I. H. Goldberg, and L. B. Cohen: Stabilization of N-acetylphenylalanyl transfer ribonucleic acid binding to ribosomes by sparsomycin. Biochemistry 8, 1335 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Herrell, W. E.: Hazards of antibiotic therapy. J. Am. Med. Assoc. 168, 1875 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Hill, R. N.: The effects of antibiotics on the interaction of T-factor, aminoacyl-tRNA and ribosomes. J. Gen. Microbiol. 58, viii (1969).

    Google Scholar 

  • Hofheinz, W., u. H. Grisebach: X. Mitt.: Über das Vorkommen von L-Mycarose in Erythromycin C. Z. Naturforsch. 17b, 852 (1962).

    CAS  Google Scholar 

  • Hudson, D. G., G. M. Yoshihara, and W. M. M. Kirby: Spiramycin, clinical and laboratory studies. Arch. Internal Med. 97, 57 (1956).

    Article  CAS  Google Scholar 

  • Hung, P. P., C. L. Marks, and P. L. Tardrew: The biosynthesis and metabolism of erythromycins by Streptomyces erythreus. J. Biol. Chem. 240, 1322 (1965).

    PubMed  CAS  Google Scholar 

  • Igarashi, K., H. Ishitsuka, and A. Kaji: Comparative studies on the mechanism of action of lincomycin, streptomycin, and erythromycin. Biochem. Biophys. Res. Commun. 37, 499 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, K., H. Ishitsuka, Y. Kuriki, and A. Kaji: Use of antibiotics in studies of protein synthesis. Progr. in Antimicrob. and Anticancer Chemother. 2, 445 (1970).

    CAS  Google Scholar 

  • Jayaraman, J., and I. H. Goldberg: Localization of sparsomycin action to the peptide-bond-forming step. Biochemistry 7, 418 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Jones, W. F., R. L. Nichols, and M. Finland: Development of resistance and cross-resistance in vitro to erythromycin, carbomycin, spiramycin, oleandomycin and streptogramin. Proc. Soc. Exptl. Biol. Med. 93, 388 (1956).

    CAS  Google Scholar 

  • Kaempfer, R.: Ribosomal subunit exchange during protein synthesis. Proc. Natl. Acad. Sci. U.S. 61, 106 (1968).

    Article  CAS  Google Scholar 

  • Kaneda, T., J. C. Butte, S. B. Taubman, and J. W. Corcoran. Actinomycete antibiotics. III. The biogenesis of erythronolide, the C21 branched lactone in erythromycin. J. Biol. Chem. 237, 322 (1962).

    PubMed  CAS  Google Scholar 

  • Krembel, J., and D. Apirion: Changes in ribosomal proteins associated with mutants in a locus that affects Escherichia coli ribosomes. J. Mol. Biol. 33, 363 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Kroon, A. M., and H. DeVries: Mitochondriogenesisin animal cells: Studies with different inhibitors. In: Autonomy and biogenesis of mitochondria and chloroplasts, p. 318. North Holland 1971.

    Google Scholar 

  • Kubota, K., A. Okuyama, and N. Tanaka: Differential effects of antibiotics on peptidyl transferase reactions. Biochem. Biophys. Res. Commun. 47, 1196 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Lai, C. J., and B. Weisblum: Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus. Proc. Natl. Acad. Sci. U.S. 68, 856 (1971).

    Article  CAS  Google Scholar 

  • Lamb, A. J., G. D. Clark-Walker, and A. W. Linnane: The biogenesis of mitochondria. 4. The differentiation of mitochondrial and cytoplasmic protein synthesizing systems in vitro by antibiotics. Biochim. Biophys. Acta 161, 415 (1968).

    PubMed  CAS  Google Scholar 

  • Linnane, A. W., and J. M. Haslam: The biogenesis of yeast mitochondria. In: Current topics in cellular regulation, vol. 2, p. 101, B. L. Horecker and E. R. Stadtman, eds. New York: Academic Press 1970.

    Google Scholar 

  • Linnane, A. W., A. J. Lamb, C. Christodoulou, and H. B. Lukins. The biogenesis of mitochondria, VI. Biochemical basis of the resistance of Saccharomyces cerevisiae toward antibiotics which specifically inhibit mitochondrial protein synthesis. Proc. Natl. Acad. Sci. U.S. 59, 1288 (1968 a).

    Article  CAS  Google Scholar 

  • Linnane, A. W., G. W. Saunders, E. B. Gingold, and H. B. Lukins: The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S. 59, 903 (1968b).

    Article  CAS  Google Scholar 

  • Lutz, A., O. Grooten et J. Hofferer: Evolution et modifications de la resistance des staphylocoques pathogenes à six anibiotiques usuels de 1950 à 1956. L’action comparée in vitro de l’erythromycine, de la magnamycine, de la spiramycine, de la novobiocine (albamycine) et de l’oléandomycine. Ann. Inst. Pasteur 92, 778 (1957).

    CAS  Google Scholar 

  • Mao, J. C.-H.: Protein synthesis in a cell-free extract from Staphylococcus aureus. J. Bacteriol. 94, 80 (1967 a).

    PubMed  CAS  Google Scholar 

  • Mao, J. C.-H.: The stoichiometry of erythromycin binding to ribosomal particles of Staphylococcus aureus. Biochem. Pharmacol. 16, 2441 (1967b).

    Article  PubMed  CAS  Google Scholar 

  • Mao, J. C.-H.: Mode of action of erythromycin. In: Drug action and drug resistance in bacteria, vol. 1, Mitsuhashi, S., ed. p. 153. Tokyo, Japan: Univ. of Tokyo Press 1971.

    Google Scholar 

  • Mao, J. C.-H., and M. Putterman: Accumulation in gram-positive and gram-negative bacteria as a mechanism of resistance to erythromycin. J. Bacteriol. 95, 1111 (1968).

    PubMed  CAS  Google Scholar 

  • Mao, J. C.-H., and M. Putterman: The intermolecular complex of erythromycin and ribosome. J. Mol. Biol. 44, 347 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Mao, J. C.-H., M. Putterman, and R. G. Wiegand: Biochemical basis for the selective toxicity of erythromycin. Biochem. Pharmacol. 19, 391 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Mao, J. C.-H., and E. E. Robishaw: Effects of macrolides on peptide-bond formation and translocation. Biochemistry 10, 2054 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Mao, J. C.-H., and E. E. Robishaw: Erythromycin-a peptidyl-transferase effector. Biochemistry 11, 4864 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Mao, J. C.-H., and P. L. Tardrew: Demethylation of erythromycins by rabbit tissues in vitro. Biochem. Pharmacol. 14, 1049 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Mao, J. C.-H., and R. G. Wiegand: Mode of action of macrolides. Biochim. Biophys. Acta 157, 404 (1968).

    PubMed  CAS  Google Scholar 

  • Martin, J. R., and A. W. Goldstein: Final steps in erythromycin biosynthesis. In: Progress in antimicrobial and anticancer chemotherapy (Proceedings of the 6th International Congress of Chemotherapy), vol. I, p. 199. Tokyo: University of Tokyo Press, 1970.

    Google Scholar 

  • Martin, J. R., T. J. Perun, and R. L. Girolami: Studies on the biosynthesis of the erythromycins. I. Isolation and structure of an intermediate glycoside, 3-α-L-Mycarosylerythronolide B. Biochemistry 5, 2852 (1966).

    CAS  Google Scholar 

  • Martin, J. R., and W. Rosenbrook: Studies on the biosynthesis of the erythromycins. II. Isolation and structure of a biosynthetic intermediate, 6-deoxyerythronolide B. Biochemistry 6, 435 (1967).

    CAS  Google Scholar 

  • Martin, W. J., and W. E. Wellman: Clinically useful antimicrobial agents: Untoward reactions. Post-grad. Med. 42, 397 (1967).

    Google Scholar 

  • Mathieu, N., et M. Faguet: Activité in vitro de la spiramycine en association avec la tétracycline, l’erythromycine, la pénicilline, la streptomycine sur la multiplication de Staphylococcus aureus etudiée au microbiophotomètre. Ann. Inst. Pasteur 94, 69 (1958).

    CAS  Google Scholar 

  • McAlpine, T. S., and J. W. Corcoran: Enzymatic O-methylation of erythromycin C as the final step in the biogenesis of erythromycin A. Federation Proc. 30, 1168 (1971).

    Google Scholar 

  • McGuire, J. M., R. L. Bunch, R. C. Anderson, H. E. Boaz, E. H. Flynn, H. M. Powell, and J. W. Smith: “Ilotycin”, a new antibiotic. Antibiot. & Chemotherapy 2, 281 (1952).

    CAS  Google Scholar 

  • Mets, L. J., and L. Bogorad: Mendelian and uniparental alterations in erythromycin binding by plastid ribosomes. Science 174, 707 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. L.: Elongation factors EF Tu and EF G interact at related sites on ribosomes. Proc. Natl. Acad. Sci. U.S. 69, 752 (1972).

    Article  CAS  Google Scholar 

  • Modolell, J., D. Vazquez, and R. E. Monro: Ribosomes, G-factor and siomycin. Nature 230, 109 (1971).

    Article  CAS  Google Scholar 

  • Molavi, A., and L. Weinstein: In vitro activity of erythromycin against atypical mycobacteria. J. Infect. Diseases 123, 216 (1971).

    Article  CAS  Google Scholar 

  • Monro, R. E.: Catalysis of peptide bond formation by 50S ribosomal subunits from Escherichia coli. J. Mol. Biol. 26, 147 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Monro, R. E.: Protein synthesis: Uncoupling of polymerization from template control. Nature 223, 903 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Monro, R. E., J. Černá, and K. A. Marcker: Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc. Natl. Acad. Sci. U.S. 61, 1042 (1968).

    Article  CAS  Google Scholar 

  • Monro, R. E., R. Fernandez-Muñoz, M. L. Celma, A. Jimenez, E. Battaner, and D. Vazquez. Antibiotics acting on the peptidyl transferase center of ribosomes. In: Progress in antimicrobial and anticancer chemotherapy, vol. II, p. 473. Tokyo: University of Tokyo Press 1970.

    Google Scholar 

  • Monro, R. E., and D. Vazquez: Ribosome-catalysed peptidyl transfer: Effects of some inhibitors of protein synthesis. J. Mol. Biol. 28, 161 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Okubo, H., and Y. Fujimoto: Distribution of antibiotics in the body. In: Progress in antimicrobial and anticancer chemotherapy (Proceedings of the 6th International Congress of Chemotherapy), vol. I, p. 495. Tokyo: University of Tokyo Press 1970.

    Google Scholar 

  • Oleinick, N. L., and J. W. Corcoran: Two types of erythromycin binding to ribosomes of Bacillus subtilis. Federation Proc. 26, 285 (1967).

    Google Scholar 

  • Oleinick, N. L., and J. W. Corcoran: Two types of binding of erythromycin to ribosomes from antibiotic-sensitive and -resistant Bacillus subtilis 168. J. Biol. Chem. 244, 727 (1969).

    PubMed  CAS  Google Scholar 

  • Oleinick, N. L., and J. W. Corcoran: Evidence of a limited access of erythromycin A to functional polysomes and its action on bacterial translocation. In: Progress in antimicrobial and anticancer chemotherapy, vol. I, p. 202. Tokyo: University of Tokyo Press 1970.

    Google Scholar 

  • Oleinick, N. L., J. M. Wilhelm, and J. W. Corcoran: Nonidentity of the site of action of erythromycin A and chloramphenicol on Bacillus subtilis ribosomes. Biochim. Biophys. Acta 155, 290 (1968).

    PubMed  CAS  Google Scholar 

  • Otaka, E., T. Itoh, S. Osawa, K. Tanaka, and M. Tamaki: Peptide analyses of a protein component, 50–8, of 50S ribosomal subunit from erythromycin resistant mutants of Escherichia coli and Escherichia freundii. Mol. Gen. Genetics 114, 14 (1971).

    Article  Google Scholar 

  • Otaka, E., H. Teraoka, M. Tamaki, K. Tanaka, and S. Osawa: Ribosomes from erythromycinresistant mutants of Escherichia coli Q 13. J. Mol. Biol. 48, 499 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Perun, T. J.: The chemistry and conformation of erythromycin. In: Drug action and drug resistance in bacteria: 1. Macrolide antibiotics and lincomycin, p. 123, ed. by S. Mitsuhashi. Tokyo: University of Tokyo Press, 1971.

    Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes, XI. Antibiotic effects on phenylalanyl-oligonucleotide binding to ribosomes. Proc. Natl. Acad. Sci. U.S. 64, 709 (1969).

    Article  CAS  Google Scholar 

  • Pestka, S.: Inhibitors of ribosome functions. Ann. Rev. Microbiol. 25, 487 (1971a).

    Article  CAS  Google Scholar 

  • Pestka, S.: Ribosomal inhibitors of translocation and transpeptidation. Proc. symp. molecular mechanisms of antibiotic action on protein biosynthesis and membranes. (1971b) Granada, Spain, eds. E. Muñoz, F. Ferrandiz, D. Vazquez. Berlin-Heidelberg-New York: Springer 1971 b.

    Google Scholar 

  • Pestka, S.: Studies on transfer ribonucleic acid-ribosome complexes. XIX. Effect of antibiotics on peptidyl puromycin synthesis on polyribosomes from Escherichia coli. J. Biol. Chem. 247, 4669 (1972).

    PubMed  CAS  Google Scholar 

  • Pestka, S.: Effect of antibiotics on peptidyl puromycin formation on polyribosomes and a model of ribosome function. Proc. of the VIIth International Congress of Chemotherapy, Prague, Czechoslovakia, 1973 (in press).

    Google Scholar 

  • Pestka, S., and N. Brot: Studies on the formation of transfer ribonucleic acid-ribosome complexes. XV. Effect of antibiotics on steps of bacterial protein synthesis: Some new ribosomal inhibitors of translocation. J. Biol. Chem. 246, 7715 (1971).

    PubMed  CAS  Google Scholar 

  • Pulkrábek, P., J. Černá, and I. Rychlík: Synthesis of tRNA-bound lysine peptides in the presence of puromycin or of antibiotics inhibiting ribosomal transpeptidation. Collection Czech. Chem. Commun. 35, 2973 (1970).

    Google Scholar 

  • Rodriguez-Lopez, M., and D. Vazquez: Comparative studies on cytoplasmic ribosomes from algae. Life Sci. 7, 327 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Richman, N., and J. W. Bodley: Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G. Proc. Natl. Acad. Sci. U.S. 69, 686 (1972).

    Article  CAS  Google Scholar 

  • Rychlik, I.: Release of lysine peptides by puromycin from polylysyl-transfer ribonucleic acid in the presence of ribosomes. Biochim. Biophys. Acta 114, 425 (1966).

    PubMed  CAS  Google Scholar 

  • Rychlík, I., S. Chládek, and J. Žemlička: Release of peptide chains from the polylysyl-tRNA- ribosome complex by cytidyl-(3′→5′)-2′(3′)-O-glycyladenosine. Biochim. Biophys. Acta 138, 640 (1967).

    Google Scholar 

  • Sager, R., and Z. Ramanis: A genetic map of non-Mendelian genes in Chlamydomonas. Proc. Natl. Acad. Sci. U.S. 65, 593 (1970).

    Article  CAS  Google Scholar 

  • Saito, T., M. Oshima, M. Shimizu, M. Hashimoto, and S. Mitsuhashi: Macrolide resistance in Staphylococcus aureus. In: Progress in antimicrobial and anticancer chemotherapy, vol. II, p. 572. Tokyo: University of Tokyo Press 1970.

    Google Scholar 

  • Saito, T., M. Shimizu, and S. Mitsuhashi: Macrolide resistance in Staphylococci. In: Drug action and drug resistance in bacteria: Macrolide antibiotics and lincomycin, p. 239, Mitsuhashi, S., ed. Tokyo, Japan: Univ. of Tokyo Press 1971.

    Google Scholar 

  • Schlessinger, D., C. Gurgo, L. Luzzatto, and D. Apirion: Polyribosome metabolism in growing and nongrowing Escherichia coli. Cold Spring Harbor Symp. Quant. Biol. 34, 231 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Smith, I., W. Colli, and M. Oishi: Studies on the physical linkage of antibiotic resistance markers to ribosomal RNA genes in Bacillus subtilis. J. Mol. Biol. 62, 111 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Smith, I., C. Goldthwaite, and D. Dubnau: The genetics of ribosomes in Bacillus subtilis. Cold Spring Harbor Symp. Quant. Biol. 34, 85 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Spizek, J., M. Chick, and J. W. Corcoran: Biogenetic relationship of the erythromycins and the lactone of erythromycin B. Antimicrobial Agents Chemotherapy 1965 138.

    Google Scholar 

  • Tago, K., and M. Nagano: Mechanism of inhibition of protein synthesis by leucomycin. In: Progress in antimicrobial and anticancer chemotherapy (Proceedings of the 6 th International Congress of Chemotherapy), vol. I, p. 199. Tokyo: University of Tokyo Press 1970.

    Google Scholar 

  • Takata, R., S. Osawa, K. Tanaka, H. Teraoka, and M. Tamaki: Genetic studies of the ribosomal proteins in Escherichia coli V. Mapping of erythromycin resistance mutations which lead to alteration of a 50 S ribosomal protein component. Mol. Gen. Genetics 109, 123 (1970).

    Article  CAS  Google Scholar 

  • Tanaka, K., M. Tamaki, R. Takata, and S. Osawa: Low affinity for chloramphenicol of erythromycin resistant Escherichia coli ribosomes having an altered protein component. Biochem. Biophys. Res. Commun. 46, 1979 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., and H. Teraoka: Binding of erythromycin to Escherichia coli ribosomes. Biochim. Biophys. Acta 114, 204 (1966).

    PubMed  CAS  Google Scholar 

  • Tanaka, K., and H. Teraoka: Effect of erythromycin on polylysine synthesis directed by polyadenylic acid in an Escherichia coli cell-free system. J. Biochem. (Tokyo) 64, 635 (1968).

    CAS  Google Scholar 

  • Tanaka, K., H. Teraoka, T. Nagira, and M. Tamaki: [14C] Erythromycin-ribosome complex formation and non-enzymatic binding of aminoacyl-transfer RNA to ribosome-messenger RNA complex. Biochim. Biophys. Acta 123, 435 (1966).

    PubMed  CAS  Google Scholar 

  • Tanaka, K., H. Teraoka, and M. Tamaki: Peptidyl puromycin synthesis: Effect of several antibiotics which act on 50S ribosomal subunits. FEBS Letters 13, 65 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., H. Teraoka, M. Tamaki, E. Otaka, and S. Osawa: Erythromycin-resistant mutant of Escherichia coli with altered ribosomal protein component. Science 162, 576 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., H. Teraoka, M. Tamaki, R. Takata, and S. Osawa: Phenotypes represented by a mutational change in a 50S ribosomal protein component, 50–8, in Escherichia coli. Mol. Gen. Genetics 114, 9(1971).

    Article  Google Scholar 

  • Tanaka, N., T. Kinoshita, and H. Masukawa: Mechanism of inhibition of protein synthesis by fusidic acid and related steroidal antibiotics. J. Biochem. 65, 459 (1969).

    PubMed  CAS  Google Scholar 

  • Taubeneck, U.: Susceptibility of Proteus mirabilis and its stable L-forms to erythromycin and other macrolides. Nature 196, 195 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Taubman, S. B., N. R. Jones, F. E. Young, and J. W. Corcoran: Sensitivity and resistance to erythromycin in Bacillus subtilis 168: the ribosomal binding of erythromycin and chloramphenicol. Biochim. Biophys. Acta 123, 438 (1966).

    PubMed  CAS  Google Scholar 

  • Taubman, S. B., A. G. So, F. E. Young, E. W. Davie, and J. W. Corcoran: Effect of erythromycin on protein-biosynthesis in Bacillus subtilis. Antimicrobial Agents Chemotherapy 1963, 395.

    Google Scholar 

  • Taubman, S. B., F. E. Young, and J. W. Corcoran: Antibiotic glycosides, IV. Studies on the mechanism of erythromycin resistance in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S. 50, 955 (1963).

    Article  CAS  Google Scholar 

  • Teraoka, H.: A reversible change in the ability of Escherichia coli ribosomes to bind to erythromycin. J. Mol. Biol. 48, 511 (1970a).

    Article  PubMed  CAS  Google Scholar 

  • Teraoka, H.: Reversal of the inhibitory action of chloramphenicol on the ribosomal peptidyl transfer reaction by erythromycin. Biochim. Biophys. Acta 213, 535 (1970b).

    PubMed  CAS  Google Scholar 

  • Teraoka, H., M. Tamaki, and K. Tanaka: Peptidyl transferase activity of Escherichia coli ribosomes having an altered protein component in the 50S subunit. Biochem. Biophys. Res. Commun. 38, 328 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Teraoka, H., and K. Tanaka: An alteration in ribosome function caused by equimolar binding of erythromycin. Biochim. Biophys. Acta 232, 509 (1971 a).

    PubMed  CAS  Google Scholar 

  • Teraoka, H., and K. Tanaka: Reaction of puromycin with N-acetylphenylalanyl-tRNA on ribosomes reassociated from Escherichia coli ribosomal subunits. In: Molecular mechanisms of antibiotic action on protein synthesis and membranes, Proceedings, Symposium, Granada, Spain, 1971b, Elsevier, Amsterdam.

    Google Scholar 

  • Teraoka, H., K. Tanaka, and M. Tamaki: The comparative study on the effects of chloramphenicol, erythromycin, and lincomycin on polylysine synthesis in an Escherichia coli cell-free system. Biochim. Biophys. Acta 174, 776 (1969).

    PubMed  CAS  Google Scholar 

  • Thomas, D. L., and D. Wilkie: Inhibition of mitochondrial synthesis in yeast by erythromycin: cytoplasmic and nuclear factors controlling resistance. Genet. Res. 11, 33 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. Y., and D. H. Williamson: Products of mitochondrial protein synthesis in yeast. Nature New Biol. 233, 196 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Traut, R. R., and R. E. Monro: The puromycin reaction and its relation to protein synthesis. J. Mol. Biol. 10, 63 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Vary, M. J., P. R. Stewart, and A. W. Linnane: Biogenesis of mitochondria. XVII. The role of mitochondrial and cytoplasmic ribosomal protein synthesis in the oxygen-induced formation of yeast mitochondrial enzymes. Arch. Biochem. Biophys. 141, 430 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, D.: Binding of chloramphenicol to ribosomes. The effect of a number of antibiotics. Biochim. Biophys. Acta 114, 277 (1966a).

    PubMed  CAS  Google Scholar 

  • Vazquez, D.: Antibiotics affecting chloramphenicol uptake by bacteria. Their effect on amino acid incorporation in a cell-free system. Biochim. Biophys. Acta 114, 289 (1966b).

    PubMed  CAS  Google Scholar 

  • Vazquez, D.: Binding to ribosomes and inhibitory effect on protein synthesis of the spiramycin antibiotics. Life Sci. 6, 845 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, D., and R. E. Monro: Effects of some inhibitors of protein synthesis on the binding of aminoacyl tRNA to ribosomal subunits. Biochim. Biophys. Acta 142, 155 (1967).

    PubMed  CAS  Google Scholar 

  • Villa, V. D., H. Morimoto, and H. O. Halvorson: Mitochondrial and cytoplasmic ribosomal proteins in erythromycin resistant and sensitive yeast strains. Federation Proc. 31, A456 (1972).

    Google Scholar 

  • Vogel, Z., T. Vogel and D. Elson: The effect of erythromycin on peptide bond formation and the termination reaction. FEBS Letters 15, 249 (1971 a).

    Article  PubMed  CAS  Google Scholar 

  • Vogel, Z., T. Vogel, A. Zamir, and D. Elson: Correlation between the peptidyl transferase activity of the 50S ribosomal subunit and the ability of the subunit to interact with antibiotics. J. Mol. Biol. 60, 339 (1971b).

    Article  PubMed  CAS  Google Scholar 

  • Wawszkiewicz, E. J., and F. Lynen: Propionyl-Co A dependent H14CO3 exchange into methyl- malonyl-Co A in extracts of Streptomyces erythraeus. Biochem. Z. 340, 213 (1964).

    PubMed  CAS  Google Scholar 

  • Weaver, J., and P. A. Pattee: Inducible resistance to erythromycin in Staphylococcus aureus. J. Bacteriol. 88, 574 (1964).

    PubMed  CAS  Google Scholar 

  • Weisblum, B.: Antibiotic inhibitors of protein synthesis which are antagonizable by erythromycin. Federation Proc. 28, 466 (1969).

    Google Scholar 

  • Weisblum, B., and J. Davies: Antibiotic inhibitors of the bacterial ribosome. Bacteriol. Rev. 32, 493 (1968).

    PubMed  CAS  Google Scholar 

  • Weisblum, B., and V. Demohn: Erythromycin-inducible resistance in Staphylococcus aureus: Survey of antibiotic classes involved. J. Bacteriol. 98, 447 (1969).

    PubMed  CAS  Google Scholar 

  • Weisblum, B., S. Siddhikol, C. J. Lai, and V. Demohn: Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. J. Bacteriol. 106, 835 (1971).

    PubMed  CAS  Google Scholar 

  • Welch, H., W. A. Randall, R. J. Reedy, and J. Kramer: Bacterial spectrum of erythromycin, carbomycin, chloramphenicol, aureomycin, and terramycin. Antibiot. & Chemotherapy 2, 693 (1952).

    CAS  Google Scholar 

  • Wiley, P. F., R. Gale, C. W. Pettinga, and K. Gerzon: Erythromycin. XII. The isolation, properties and partial structure of erythromycin C. J. Am. Chem. Soc. 79, 6074 (1957 c).

    Article  CAS  Google Scholar 

  • Wiley, P. F., K. Gerzon, E. H. Flynn, M. W. Sigal, Jr., O. Weaver, U. C. Quarck, R. R. Chauvette, and R. Monahan: Erythromycin X. Structure of erythromycin. J. Am. Chem. Soc. 79, 6062 (1957 a).

    Article  CAS  Google Scholar 

  • Wiley, P. F., M. W. Sigal, Jr., O. Weaver, R. Monahan, and K. Gerzon: Erythromycin. XI. Structure of erythromycin B. J. Am. Chem. Soc. 79, 6070 (1957b).

    Article  CAS  Google Scholar 

  • Wiley, P. F., and O. Weaver: Erythromycin. VII. The structure of cladinose. J. Am. Chem. Soc. 78, 808 (1956).

    Article  CAS  Google Scholar 

  • Wilhelm, J. M.: Antibiotic action and protein synthesis in Bacillus subtilis. Thesis, Case Western Reserve University, 1968.

    Google Scholar 

  • Wilhelm, J. M., and J. W. Corcoran: Antibiotic glycosides. VI. Definition of the 50S ribosomal subunit of Bacillus subtilis 168 as a major determinant of sensitivity to erythromycin A. Biochemistry 6, 2578 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm, J. M., N. L. Oleinick, and J. W. Corcoran: Interaction of antibiotics with ribosomes: Structure-function relationships and a possible common mechanism for the antibacterial action of the macrolides and lincomycin. Antimicrobial Agents Chemotherapy 1968, 236.

    Google Scholar 

  • Williams, K. L., and L. M. Birt: Sensitivity to erythromycin of mitochondrial protein synthesis in isolated flight muscle mitochondria of the blowfly Lucilla. FEBS Letters 22, 327 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, A. D., and F. E. Hahn: Erythromycin: Mode of action. Science 143, 1445 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, A. D., and F. E. Hahn: Mode of action of chloramphenicol. IX. Effects of chloramphenicol upon a ribosomal amino acid polymerizing system and its binding to bacterial ribosome. Biochim. Biophys. Acta 95, 146 (1965).

    PubMed  CAS  Google Scholar 

  • Woodward, R. B.: Struktur und biogenese der makrolide. Eine neue Klasse von Naturstoffen. Angew. Chem. 69, 50 (1957).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oleinick, N.L. (1975). The Erythromycins. In: Corcoran, J.W., Hahn, F.E., Snell, J.F., Arora, K.L. (eds) Mechanism of Action of Antimicrobial and Antitumor Agents. Antibiotics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46304-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46304-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46306-8

  • Online ISBN: 978-3-642-46304-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics