Skip to main content

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 3))

Abstract

Some aminoglycosides of microbial origin are listed in Table 1. Recently derivatives of these antibiotics, which are effective against resistant organisms,

Table 1 Aminoglycoside antibiotics of microbial origin

have been developed; some of them are described below. Except these, there are many aminosugar-containing antibiotics, which are usually classified to other groups of antibiotics: macrolide, lincomycin, streptothricin, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akita, E., T. Tsuruoka, N. Ezaki, and T. Niida: Studies on antibiotic SF-733, a new antibiotic. II. Chemical structure of antibiotic SF-733. J. Antibiotics (Tokyo) 23, 173 (1970).

    Article  CAS  Google Scholar 

  • Arcamone, F., and F. Bizioli: Isolation and constitution of trehalosamine, a new aminosugar from a streptomycetes. Gazz. Chim. Ital. 87, 896 (1957).

    CAS  Google Scholar 

  • Benveniste, R., and J. Davies: R-Factor mediated gentamicin resistance: a new enzyme which modifies aminoglycosidic antibiotics. FEBS Letters 14, 293 (1971 a).

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, R., and J. Davies: Enzymatic acetylation of aminoglycoside antibiotics by Escherichia coli carrying an R factor. Biochemistry 10, 1787 (1971 b).

    Article  PubMed  CAS  Google Scholar 

  • Bissel, D. M.: Formation of an altered enzyme by Escherichia coli in the presence of neomycin. J. Mol. Biol. 14, 619 (1965).

    Article  Google Scholar 

  • Biswas, D. K., and L. Gorini: The attachment site of streptomycin to the 30S ribosomal subunit. Proc. Natl. Acad. Sci. U.S. 69, 2141 (1972).

    Article  CAS  Google Scholar 

  • Bodley, J. W., and E. M. Davie: A study of the mechanism of ambiguous amino acid coding by poly U: the nature of the products. J. Mol. Biol. 18, 344 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Bollen, A., J. Davies, M. Ozaki, and S. Mizushima: Identification of the ribosomal protein conferring sensitivity to the antibiotic spectinomycin in Escherichia coli. Science 165, 85 (1969 a).

    Article  PubMed  CAS  Google Scholar 

  • Bollen, A., T. Helser, T. Yamada, and J. Davies: Altered ribosomes in antibiotic-resistant mutants of E. coli. Cold Spring Harbor Symp. Quant. Biol. 34, 95 (1969 b).

    Article  PubMed  CAS  Google Scholar 

  • Brzezinska, M., R. Benveniste, J. Davies, P. J. L. Daniels, and J. Weinstein: Gentamicin resistance in strains of Pseudomonas aeruginosa mediated by enzymatic N-acetylation of the deoxystreptamine moiety. Biochemistry 11, 761 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Caskey, C. T.: In: Molecular mechanism of antibiotic action on protein biosynthesis and membranes. Amsterdam: Elsevier Pub. Co. 1972.

    Google Scholar 

  • Chang, F. N., and J. G. Flaks: Topography of the Escherichia coli 30S ribosomal subunit and streptomycin binding. Proc. Natl. Acad. Sci. U.S. 67, 1321 (1970).

    Article  CAS  Google Scholar 

  • Chang, F. N., and J. G. Flaks: The binding of dihydrostreptomycin to E. coli ribosomes: Characteristics and equilibrium of the reaction. Antimicr. Ag. Chemoth. 2, 294 (1972).

    CAS  Google Scholar 

  • Chang, F. N., and J. G. Flaks: The binding of dihydrostreptomycin to E. coli ribosomes: Kinetics of the reaction. Antimicr. Ag. Chemoth. 2, 308 (1972).

    CAS  Google Scholar 

  • Cooper, D. J., R. S. Jaret, and H. Reimann: Structure of sisomicin, a novel unsaturated aminoglycoside antibiotic from Micromonospora inyoensis. Chem. Commun. 285 (1971).

    Google Scholar 

  • Cooper, D. J., H. M. Marigliano, M. D. Yudis, and T. Traubel: Recent developments in the chemistry of gentamicin. J. Infect. Diseases 119, 342 (1969).

    Article  CAS  Google Scholar 

  • Davies, J.: Structure-activity relationships among the aminoglycoside antibiotics: Comparison of the neomycins and hybrimycins. Biochim. Biophys. Acta 222, 674 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Davies, J., M. Brzezinska, and R. Benveniste: R factors: Biochemical mechanisms of resistance to aminoglycoside antibiotics. Ann. N. Y. Acad. Sci. 182, 226 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Davies, J., and B. D. Davis: Misreading of RNA codewords induced by aminoglycoside antibiotics: the effect of drug concentration. J. Biol. Chem. 243, 3312 (1968).

    PubMed  CAS  Google Scholar 

  • Davies, J., W. Gilbert, and L. Gorini: Streptomycin, suppression and the code. Proc. Natl. Acad. Sci. U.S. 51, 883 (1964).

    Article  CAS  Google Scholar 

  • Davies, J., L. Gorini, and B. D. Davis: Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol. Pharmacol. 1, 93 (1965).

    PubMed  CAS  Google Scholar 

  • Davis, B. D.: Use of antibiotics in the study of ribosome action. Antimicr. Ag. Chemoth. 1969, 11.

    Google Scholar 

  • Del Bene, V. E., and W. E. Farrar, Jr.: Tobramycin: In vitro activity and comparison with kanamycin and gentamicin. Antimicr. Ag. Chemoth. 1, 340 (1972).

    Google Scholar 

  • Doi, O., S. Kondo, N. Tanaka, and H. Umezawa: Phosphorylating enzyme from Pseudomonas aeruginosa. J. Antibiotics (Tokyo) 22, 273 (1969).

    Article  CAS  Google Scholar 

  • Doi, O., M. Miyamoto, N. Tanaka, and H. Umezawa: Inactivation and phosphorylation of kanamycin by drug-resistant Staphylococcus aureus. Appl. Microbiol. 16, 1282 (1968 a).

    PubMed  CAS  Google Scholar 

  • Doi, O., M. Ogura, N. Tanaka, and H. Umezawa: Inactivation of kanamycin, neomycin and streptomycin by enzymes obtained in cells of Pseudomonas aeruginosa. Appl. Microbiol. 16, 1276 (1968b).

    PubMed  CAS  Google Scholar 

  • Dunlap, B. E., K. H. Friderici, and F. Rottman: 2′-O-Methyl polynucleotides as templates for cell-free amino acid incorporation. Biochemistry 10, 2581 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Funatsu, G., K. Nierhaus, and B. Wittmann-Liebold: Ribosomal proteins. XXII. Studies on the altered protein S5 from a spectinomycin-resistant mutant of Escherichia coli. J. Mol. Biol. 64, 201 (1972).

    Article  PubMed  CAS  Google Scholar 

  • García-Patrone, M., C. A. Perazzolo, F. Baralle, N. S. González, and I. D. Algranati: Studies on dissociation factor of bacterial ribosomes: Effect of antibiotics. Biochim. Biophys. Acta 246, 291 (1971).

    PubMed  Google Scholar 

  • Gorini, L., and E. Kataja: Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc. Natl. Acad. Sci. U.S. 51, 487 (1964).

    Article  CAS  Google Scholar 

  • Gurgo, C., D. Apirion, and D. Schlessinger: Polyribosome metabolism in Escherichia coli treated with chloramphenicol, neomycin, spectinomycin or tetracycline. J. Mol. Biol. 45, 205 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, K.: Streptomycin resistance in Escherichia coli analyzed by transduction. Genetics 45, 49 (1960).

    PubMed  CAS  Google Scholar 

  • Hatfield, D.: Oligonucleotide-ribosome-AA-sRNA interactions. Cold Spring Harbor Symp. Quant. Biol. 34, 619 (1966).

    Article  Google Scholar 

  • Helser, T. L., J. E. Davies, and J. E. Dahlberg: Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nature New Biol. 233, 12 (1971).

    PubMed  CAS  Google Scholar 

  • Helser, T. L., J. E. Davies, and J. E. Dahlberg: Mechanism of kasugamycin resistance in Escherichia coli. Nature New Biol. 235, 6 (1972).

    PubMed  CAS  Google Scholar 

  • Herr, R. R., T. E. Eble, M. E. Bergy, and H. K. Janke: Isolation and characterization of streptozotocin. Antibiot. Ann. 1959/1960, 236 (1960).

    Google Scholar 

  • Herr, R. R., H. K. Janke, and A. D. Argoudelis: The structure of streptozotocin. J. Am. Chem. Soc. 89, 4808 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Herzog, A.: An effect of streptomycin on the dissociation of Escherichia coli 70S ribosomes. Biochem. Biophys. Res. Commun. 15, 172 (1964).

    Article  CAS  Google Scholar 

  • Herzog, A., A. Ghysen, and A. Bollen: Sensitivity and resistance to streptomycin in relation with factor-mediated dissociation of ribosomes. FEBS Letters 15, 291 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Hichens, M., and K. L. Rinehart: Chemistry of the neomycins. XII. The absolute configuration of deoxystreptamine in the neomycins, paromomycins and kanamycins. J. Am. Chem. Soc. 85, 1547 (1963).

    Article  CAS  Google Scholar 

  • Hoeksema, H., A. D. Argoudelis, and P. F. Wiley: Chemistry of actinospectacin II. The structure of actinospectacin. J. Am. Chem. Soc. 84, 3212 (1962).

    Article  CAS  Google Scholar 

  • Holland, J. J., C. A. Buck, and B. J. MaCarthy: Stimulation of protein synthesis in vitro by partially degraded ribosomal ribonucleic acid and transfer ribonucleic acid. Biochemistry 5, 358 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Horii, S., and Y. Kameda: Structure of the antibiotic validamycin A. J. C. S. Chem. Commun. 747 (1972).

    Google Scholar 

  • Inoue, S., T. Tsuruoka, and T. Niida: The structure of nojirimycin, a piperidinose sugar antibiotic. J. Antibiotics (Tokyo), Ser. A 19, 288 (1966).

    Google Scholar 

  • Ishida, N., K. Kumagai, T. Niida, K. Hamamoto, and T. Shomura: Nojirimycin, a new antibiotic. I. Taxonomy and fermentation. J. Antibiotics (Tokyo), Ser. A 20, 62 (1967).

    CAS  Google Scholar 

  • Ishida, N., K. Kumagai, T. Niida, T. Tsuruoka, and H. Yumoto: Nojirimycin, a new antibiotic. II. Isolation, characterization and biological activity. J. Antibiotics (Tokyo), Ser. A 20, 66 (1967).

    CAS  Google Scholar 

  • Kaji, H., and A. Kaji: Specific binding of sRNA to ribosomes: effect of streptomycin. Proc. Natl. Acad. Sci. U.S. 54, 213 (1965).

    Article  CAS  Google Scholar 

  • Kaji, H., and Y. Tanaka: Binding of dihydrostreptomycin to ribosomal subunits. J. Mol. Biol. 32, 221 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Kawabe, H., F. Kobayashi, M. Yamaguchi, R. Utahara, and S. Mitsuhashi: 3″-Phosphoryldihydrostreptomycin produced by the inactivating enzyme of Pseudomonas aeruginosa. J. Antibiotics (Tokyo), 24, 651 (1971).

    Article  CAS  Google Scholar 

  • Kawaguchi, H., T. Naito, S. Nakagawa, and K. Fujisawa: BB-K8, a new semisynthetic aminoglycoside antibiotic. J. Antibiotics (Tokyo) 25, 695 (1972).

    Article  CAS  Google Scholar 

  • Kobayashi, F., M. Yamaguchi, and S. Mitsuhashi: Activity of lividomycin against Pseudomonas aeruginosa: Its inactivation by phosphorylation induced by resistant strain. Antimicr. Ag. Chemoth. 1, 17 (1972).

    Google Scholar 

  • Koch, K. F., and J. A. Rhodes: Structure of nebramycin factor 6, a new aminoglycosidic antibiotic. Antimicr. Ag. Chemoth. 1970, 313 (1971).

    Google Scholar 

  • Kogut, M., and E. Prizant: Effects of dihydrostreptomycin treatment in vivo on the ribosome cycle in Escherichia coli. FEBS Letters 12, 17 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Kondo, S., E. Akita, and M. Koike: The structure of destomycin A.J. Antibiotics (Tokyo), Ser. A 19, 139 (1966).

    CAS  Google Scholar 

  • Kondo, S., M. Okanishi, R. Utahara, K. Maeda, and H. Umezawa: Isolation of kanamycin and paromamine inactivated by E. coli carrying R factor. J. Antibiotics (Tokyo) 21, 22 (1968).

    Article  CAS  Google Scholar 

  • Kondo, S., M. Sezaki, M. Koike, M. Shimura, E. Akita, K. Satoh, and T. Hara: Destomycins A and B, two new antibiotics produced by a Streptomyces. J. Antibiotics (Tokyo), Ser. A 18, 38 (1965).

    CAS  Google Scholar 

  • Kondo, S., H. Yamamoto, H. Naganawa, H. Umezawa, and S. Mitsuhashi: Isolation and characterization of lividomycin A inactivated by Pseudomonas aeruginosa and Escherichia coli carrying R factor. J. Antibiotics (Tokyo) 25, 483 (1972).

    Article  CAS  Google Scholar 

  • Koyama, G., Y. Iitaka, K. Maeda, and H. Umezawa: The crystal structure of kanamycin. Tetrahedron Letters 1968, 1875.

    Google Scholar 

  • Kozak, M. and D. Nathans: Differential inhibition of coliphage MS2 protein synthesis by ribosome-directed antibiotics. J. Mol. Biol. 70, 41 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Kreider, G., and B. L. Brownstein: A mutation suppressing streptomycin dependence II: An altered protein on the 30S ribosomal subunit. J. Mol. Biol. 61, 135 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Kreider, G., and B. L. Brownstein: Ribosomal proteins involved in the suppression of streptomycin dependence in Escherichia coli. J. Bacteriol. 109, 780 (1972).

    PubMed  CAS  Google Scholar 

  • Lelong, J. C., M. A. Cousin, D. Gros, M. Grunberg-Manago, and F. Gros: Streptomycin induced release of fMet-tRNA from the ribosomal initiation complex. Biochem. Biophys. Res. Commun. 42, 530 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Lennette, E. T., and D. Apirion: The level of f-Met-tRNA on ribosomes from streptomycin treated cells. Biochem. Biophys. Res. Commun. 41, 804 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Leon, S. A., and T. D. Brock: Effect of streptomycin and neomycin on physical properties of the ribosome. J. Mol. Biol. 24, 391 (1967).

    Article  CAS  Google Scholar 

  • Likover, T. E. and C. G. Kurland: The contribution of DNA to translation errors induced by streptomycin in vitro. Proc. Natl. Acad. Sci. U.S. 58, 2385 (1967).

    Article  CAS  Google Scholar 

  • Likover, T. E., and C. G. Kurland: Ribosomes from a streptomycin-dependent strain of Escherichia coli J. Mol. Biol. 25, 497 (1967).

    Article  CAS  Google Scholar 

  • Lin, Y., and N. Tanaka: Mechanism of bottromycin action in polypeptide biosynthesis. J. Biochem. (Tokyo) 63, 1 (1968).

    CAS  Google Scholar 

  • Luzzatto, L., D. Apirion, and D. Schlessinger: Mechanism of action of streptomycin in E. coli: interruption of the ribosome cycle at the initiation of protein synthesis. Proc. Natl. Acad. Sci. U.S. 60, 873 (1968).

    Article  CAS  Google Scholar 

  • Luzzatto, L., D. Apirion, and D. Schlessinger: Streptomycin action: Greater inhibition of Escherichia coli ribosome function with exogenous than with endogenous messenger ribonucleic acid. J. Bacteriol. 99, 206 (1969a).

    PubMed  CAS  Google Scholar 

  • Luzzatto, L., D. Apirion, and D. Schlessinger: Polyribosome depletion and blockage of the ribosome cycle by streptomycin in Escherichia coli. J. Mol. Biol. 42, 315 (1969 b).

    Article  PubMed  CAS  Google Scholar 

  • Machiyama, N.: Mechanism of action of lividomycin, a new aminoglycosidic antibiotic. J. Antibiotics (Tokyo) 24, 706 (1971).

    Article  CAS  Google Scholar 

  • Maehr, H., and C. P. Schaffner: Chemistry of the gentamicins. II. Stereochemistry and synthesis of gentosamine. Total structure of gentamicin A. J. Am. Chem. Soc. 92, 1697 (1970).

    Article  CAS  Google Scholar 

  • Mason, D. J., A. Dietz, and R. M. Smith: Actinospectacin, a new antibiotic. I. Discovery and biological properties. Antibiot. & Chemotherapy 11, 118 (1961).

    CAS  Google Scholar 

  • Masukawa, H.: Localization of sensitivity to kanamycin and streptomycin in 30 S ribosomal proteins of Escherichia coli. J. Antibiotics (Tokyo) 22, 612 (1969).

    Article  CAS  Google Scholar 

  • Masukawa, H., and N. Tanaka: Stimulation by aminoglycosidic antibiotics of DNA-directed protein synthesis. J. Biochem. (Tokyo) 62, 202 (1966).

    Google Scholar 

  • Masukawa, H., and N. Tanaka: Miscoding activity of aminosugars. J. Antibiotics (Tokyo), Ser. A 21, 70 (1968).

    Article  CAS  Google Scholar 

  • Masukawa, H., N. Tanaka, and H. Umezawa: Localization of kanamycin sensitivity in the 23 S core of 30 S ribosomes of E. oli. J. Antibiotics (Tokyo), Ser. A 21, 517 (1968).

    Article  CAS  Google Scholar 

  • McCarthy, B. J., and J. J. Holland: Denatured DNA as a direct template for in vitro protein synthesis. Proc. Natl. Acad. Sci. U.S. 54, 880 (1965).

    Article  CAS  Google Scholar 

  • Mitsuhashi, S., F. Kobayashi, and M. Yamaguchi: Enzymatic inactivation of gentamicin C components by cell-free extract from Pseudomonas aeruginosa. J. Antibiotics (Tokyo) 24, 400 (1971).

    Article  CAS  Google Scholar 

  • Mizuno, S., K. Nitta, and H. Umezawa: Mechanism of action of negamycin in E. coli K 12. II. Miscoding activity in polypeptide synthesis directed by synthetic polynucleotide. J. Antibiotics (Tokyo) 23, 589 (1970).

    Article  CAS  Google Scholar 

  • Modolell, J., and B. D. Davis: Breakdown by streptomycin of initiation complexes formed on ribosomes of Escherichia coli. Proc. Natl. Acad. Sci. U.S. 67, 1148 (1970).

    Article  CAS  Google Scholar 

  • Mori, T., T. Ichiyanagi, H. Kondo, K. Tokunaga, T. Oda, and K. Munakata: Studies on new antibiotic lividomycins. II. Isolation and characterization of lividomycins A, B and other aminoglycosidic antibiotics produced by Streptomyces lividus. J. Antibiotics (Tokyo) 24, 339 (1971).

    Article  CAS  Google Scholar 

  • Murase, M., T. Ito, S. Funatsu, and H. Umezawa: Studies on kanamycin related compounds produced during fermentation by mutants of Streptomyces kanamyceticus. Isolation and properties. Progr. Antimicr. Anticancer Chemoth. (Univ. Tokyo Press) 2, 1098 (1970).

    CAS  Google Scholar 

  • Naganawa, H., S. Kondo, K. Maeda, and H. Umezawa: Structure determination of enzymatically phosphorylated products of aminoglycoside antibiotic by proton magnetic resonance. J. Antibiotics (Tokyo) 24, 823 (1971 a).

    Article  CAS  Google Scholar 

  • Naganawa, H., M. Yagisawa, S. Kondo, T. Takeuchi, and H. Umezawa: The structure determination of an enzymatic inactivation product of 3′,4′-dideoxykanamycin B. J. Antibiotics (Tokyo) 24, 913 (1971b).

    Article  CAS  Google Scholar 

  • Neuss, N., K. F. Koch, B. B. Molloy, W. Day, L. L. Huckstep, D. E. Dorman, and J. D. Roberts: Structure of hygromycin B, an antibiotic from Streptomyces hygroscopicus: the use of CMR spectra in structure determination. I. Helv. Chim. Acta 53, 2314 (1970).

    Article  CAS  Google Scholar 

  • Nomura, M., and F. Engbaek: Expression of ribosomal protein genes as analyzed by bacteriophage Mu-induced mutations. Proc. Natl. Acad. Sci. U.S. 69, 1526 (1972).

    Article  CAS  Google Scholar 

  • Oda, T., T. Mori, Y. Kyotani, and M. Nakayama: Studies on new antibiotic lividomycins. IV. Structure of lividomycin A. J. Antibiotics (Tokyo) 24, 511 (1971).

    Article  CAS  Google Scholar 

  • Okamoto, S., and Y. Suzuki: Chloramphenicol-, dihydrostreptomycin-, and kanamycin-inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome “R”. Nature 208, 1301 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Okanishi, M., S. Kondo, Y. Suzuki, S. Okamoto, and H. Umezawa: Studies on inactivation of kanamycin and resistance of E. coli. J. Antibiotics (Tokyo), Ser. A 20, 132 (1967).

    CAS  Google Scholar 

  • Okanishi, M., S. Kondo, R. Utahara, and H. Umezawa: Phosphorylation and inactivation of aminoglycosidic antibiotics by E. coli carrying R factor. J. Antibiotics (Tokyo) 21, 13 (1968).

    Article  CAS  Google Scholar 

  • Okuyama, A., N. Machiyama, T. Kinoshita, and N. Tanaka: Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochem. Biophys. Res. Commun. 43, 196 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Okuyama, A., and N. Tanaka: Differential effects of aminoglycosides on cistron-specific initiation of protein synthesis. Biochem. Biophys. Res. Commun. 49, 951 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Okuyama, A., T. Watanabe, and N. Tanaka: Effects of aminoglycoside antibiotics on initiation of viral RNA-directed protein synthesis. J. Antibiotics (Tokyo) 25, 212 (1972).

    Article  CAS  Google Scholar 

  • Old, D., and L. Gorini: Amino acid changes provoked by streptomycin in a polypeptide synthesized in vitro. Science 150, 1290 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Oliver, T. J., A. Goldstein, R. R. Bower, J. C. Holper, and R. H. Otto: M-141, a new antibiotic. I. Antimicrobial properties, identity with actinospectacin, and production by Streptomyces flavopersicus, sp. n. Antimicr. Ag. Chemoth. 495 (1961).

    Google Scholar 

  • Ozaki, M., S. Mizushima, and M. Nomura: Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 226, 333 (1969).

    Article  Google Scholar 

  • Ozanne, B., R. Benveniste, D. Tipper, and J. Davies: Aminoglycoside antibiotics: inactivation by phosphorylation in E. coli carrying R factor. J. Bacteriol. 100, 1144 (1969).

    PubMed  CAS  Google Scholar 

  • Pestka, S., R. Marchall, and M. Nirenberg: RNA codewords and protein synthesis. V. Effects of streptomycin on the formation of ribosome-sRNA complexes. Proc. Natl. Acad. Sci. U.S. 53, 639 (1965).

    Article  CAS  Google Scholar 

  • Pestka, S.: Studies on the formation of transfer ribonucleic acid-ribosome complexes. I. The effect of streptomycin and ribosomal dissociation on 14C-aminoacyl transfer ribonucleic acid binding to ribosomes. J. Biol. Chem. 241, 367 (1966).

    PubMed  CAS  Google Scholar 

  • Petitpas-Dewandre, A., H. Barbason, and W. G. Verly: Affinite pour la streptomycine des ribosomes d’Escherichia coli. Europ. J. Biochem. 7, 307 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Price, A. R., and F. Rottman: 2′-O-Methyloligoadenylates as templates for the binding of lysyl transfer ribonucleic acid to ribosomes. Biochemistry 9, 4524 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Price, K. E., D. R. Chisholm, M. Misiek, F. Leitner, and Y. H. Tsai: Microbiological evaluation of BB-K8, a new semisynthetic aminoglycoside. J. Antibiotics (Tokyo) 25, 709 (1972).

    Article  CAS  Google Scholar 

  • Reimann, H., R. S. Jaret, and D. J. Cooper: Sisomicin: Stereochemistry and attachment of the unsaturated sugar moiety. Chem. Commun. 924 (1971).

    Google Scholar 

  • Rinehart, K. L.: The neomycins and related antibiotics. New York: John Wiley & Sons 1964.

    Google Scholar 

  • Rinehart, K. L., M. Hichens, A. D. Argoudelis, W. S. Chilton, H. E. Carter, M. P. Georgiadis, C. P. Schaffner, and R. T. Schillings: Chemistry of the neomycins. X. Neomycins B and C. J. Am. Chem. Soc. 84, 3218 (1962).

    Article  CAS  Google Scholar 

  • Schwartz, J. H.: An effect of streptomycin on the biosynthesis of the coat protein of coliphage of f2 by extracts of E. coli. Proc. Natl. Acad. Sci. U.S. 53, 1133 (1965).

    Article  CAS  Google Scholar 

  • Shaw, W. V.: The enzymatic acetylation of chloramphenicol by extracts of R factor-resistant Escherichia coli. J. Biol. Chem. 242, 687 (1967).

    PubMed  CAS  Google Scholar 

  • Sherman, M. I.: The role of ribosomal conformation in protein biosynthesis. Further studies with streptomycin. Europ. J. Biochem. 25, 291 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Sherman, M. I., and M. V. Simpson: The role of ribosomal conformation in protein biosynthesis: the streptomycin-ribosome interaction. Proc. Natl. Acad. Sci. U.S. 64, 1388 (1969).

    Article  CAS  Google Scholar 

  • Shibahara, S., S. Kondo, K. Maeda, H. Umezawa, and M. Ohno: The total synthesis of negamycin and the antipode. J. Am. Chem. Soc. 94, 4353 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Shier, W. T., K. L. Rinehart, Jr., and D. Gottlieb: Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc. Natl. Acad. Sci. U.S. 63, 198 (1969).

    Article  CAS  Google Scholar 

  • Shier, W. T., K. L. Rinehart, Jr., and D. Gottlieb: Preparation of two new aminoglycoside antibiotics. J. Antibiotics (Tokyo) 23, 51 (1970).

    Article  CAS  Google Scholar 

  • Shoji, J., S. Kozuki, M. Mayama, Y. Kawamura, and K. Matsumoto: Isolation of a new water-soluble basic antibiotic A-396-I. J. Antibiotics (Tokyo) 23, 291 (1970).

    Article  CAS  Google Scholar 

  • Shoji, J., and Y. Nakagawa: Structural feature of antibiotic A-396-I. J. Antibiotics (Tokyo) 23, 569 (1970).

    Article  CAS  Google Scholar 

  • Shomura, T., N. Ezaki, T. Tsuruoka, T. Niwa, E. Akita, and T. Niida: Studies on antibiotic SF-733, a new antibiotic. I. taxonomy, isolation and characterization. J. Antibiotics (Tokyo) 23, 155 (1970).

    Article  CAS  Google Scholar 

  • Sparling, P. F.: Kasugamycin resistance: 30S ribosomal mutation with an unusual location on the Escherichia coli chromosome. Science 167, 56 (1968).

    Article  Google Scholar 

  • Suhara, Y., K. Maeda, H. Umezawa, and M. Ohno: Chemical studies on kasugamycin. V. The structure of kasugamycin. Tetrahedron Letters 1966, 1239.

    Google Scholar 

  • Suzuki, Y., M. Hori, and H. Umezawa: Effect of antibiotics on magnesium ion removal from E. coli ribosome suspensions. J. Antibiotics (Tokyo) 21, 571 (1968).

    Article  CAS  Google Scholar 

  • Suzuki, Y., and S. Okamoto: The enzymatic acetylation of chloramphenicol by the multiple drug-resistant Escherichia coli carrying R factor. J. Biol. Chem. 242, 4722 (1967).

    PubMed  CAS  Google Scholar 

  • Takasawa, S., R. Utahara, M. Okanishi, K. Maeda, and H. Umezwa: Studies on adenylstreptomycin, a product of streptomycin inactivation by E. coli carrying R factor. J. Antibiotics (Tokyo) 21, 477 (1968).

    Article  CAS  Google Scholar 

  • Tanaka, N., and S. Igusa: Effects of viomycin and polymyxin B on protein synthesis in vitro. J. Antibiotics (Tokyo) 21, 239 (1968).

    Article  CAS  Google Scholar 

  • Tanaka, N., H. Masukawa, and H. Umezawa: Structural basis of kanamycin for miscoding activity. Biochem. Biophys. Res. Commun. 26, 544 (1967 a).

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, N., T. Nishimura, H. Yamaguchi, C. Yamamoto, Y. Yoshida, K. Sashikata, and H. Umezawa: Mechanism of action of kasugamycin. J. Antibiotics (Tokyo) 17, 140 (1965).

    Google Scholar 

  • Tanaka, N., K. Sashikata, T. Nishimura, and H. Umezawa: Activity of ribosomes from kanamycin-resistant E. coli. Biochem. Biophys. Res. Commun. 16, 216 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, N., K. Sashikata, and H. Umezawa: Antibiotic-sensitivity of ribosomes from kanamycin-resistant E. coli. J. Antibiotics, (Tokyo), Ser. A 20, 115 (1967b).

    CAS  Google Scholar 

  • Tanaka, N., K. Sashikata, H. Yamaguchi, and H. Umezawa: Inhibition of protein synthesis by bottromycin A2 and its hydrazide. J. Biochem. (Tokyo) 60, 405 (1966 a).

    CAS  Google Scholar 

  • Tanaka, N., H. Yamaguchi, and H. Umezawa: Mechanism of kasugamycin action on polypeptide synthesis. J. Biochem. (Tokyo) 60, 429 (1966b).

    CAS  Google Scholar 

  • Tanaka, N., Y. Yoshida, K. Sashikata, H. Yamaguchi, and H. Umezawa: Inhibition of polypeptide synthesis by kasugamycin, an aminoglycoside antibiotic. J. Antibiotics (Tokyo) 19, 65 (1966 c).

    CAS  Google Scholar 

  • Tanaka, Y., and H. Kaji: The role of ribosomal protein for the binding of dihydrostreptomycin to ribosomes. Biochem. Biophys. Res. Commun. 32, 313 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Traub, P., K. Hosokawa, and M. Nomura: Streptomycin sensitivity and the structural components of the 30S ribosomes of Escherichia coli. J. Mol. Biol. 19, 211 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Uehara, Y., S. Kondo, H. Umezawa, K. Suzukake, and M. Hori: Negamycin, a miscoding antibiotic with a unique structure. J. Antibiotics (Tokyo) 25, 685 (1972).

    Article  CAS  Google Scholar 

  • Umezawa, H.: Recent advances in chemistry and biochemistry of antibiotics. Microbial Chemistry Research Foundation (1964).

    Google Scholar 

  • Umezawa, H., O. Doi, M. Ogura, S. Kondo, and N. Tanaka: Phosphorylation and inactivation of kanamycin by Pseudomonas aeruginosa. J. Antibiotics (Tokyo), Ser. A 21, 154 (1968a).

    Article  CAS  Google Scholar 

  • Umezawa, H., Y. Nishimura, T. Tsuchiya, and S. Umezawa: Syntheses of 6′-N-methylkanamycin and 3′,4′-dideoxy-6′-N-methylkanamycin B active against resistant strains having 6′-N-acetylating enzymes. J. Antibiotics (Tokyo) 25, 743 (1972 a).

    Article  CAS  Google Scholar 

  • Umezawa, H., Y. Okami, T. Hashimoto, Y. Suhara, M. Hamada, and T. Takeuchi: A new antibiotic, kasugamycin. J. Antibiotics (Tokyo), Ser. A 18, 101 (1965).

    CAS  Google Scholar 

  • Umezawa, H., M. Okanishi, S. Kondo, K. Hamana, R. Utahara, K. Maeda, and S. Mitsuhashi: Phosphorylative inactivation of aminoglycosidic.antibiotics by Escherichia coli carrying R factor. Science 157, 1559 (1967 a).

    PubMed  CAS  Google Scholar 

  • Umezawa, H., M. Okanishi, R. Utahara, K. Maeda, and S. Kondo: Isolation and structure of kanamycin inactivated by a cell-free system of kanamycin-resistant E. coli. J. Antibiotics (Tokyo), Ser. A 20, 136 (1967b).

    CAS  Google Scholar 

  • Umezawa, H., S. Takasawa, M. Okanishi, and R. Utahara: Adenylstreptomycin, a product of streptomycin inactivated by E. coli carrying R factor. J. Antibiotics (Tokyo), Ser. A 21, 81 (1968b).

    Article  CAS  Google Scholar 

  • Umezawa, H., M. Ueda, K. Maeda, K. Yagishita, S. Kondo,Y. Okami, R. Utahara, Y. Osato, K. Nitta, and T. Takeuchi: Production and isolation of a new antibiotic, kanamycin. J. Antibiotics (Tokyo), Ser. A 10, 181 (1957).

    CAS  Google Scholar 

  • Umezawa, H., S. Umezawa, T. Tsuchiya, and Y. Okazaki: 3′,4′-Dideoxykanamycin B active against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa. J. Antibiotics (Tokyo) 24, 485 (1971 a).

    Article  CAS  Google Scholar 

  • Umezawa, H., H. Yamamoto, M., Yagisawa, S. Kondo, T. Takeuchi, and Y. A. Chabbert: Kanamycin phosphotransferase I: Mechanism of cross-resistance between kanamycin and lividomycin. J. Antibiotics (Tokyo) 26, 407 (1973).

    Article  CAS  Google Scholar 

  • Umezawa, S., T. Tsuchiya, R. Muto, Y. Nishimoto, and H. Umezawa: Synthesis of 3′-deoxykanamycin effective against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa. J. Antibiotics (Tokyo) 24, 274 (1971 b).

    Article  CAS  Google Scholar 

  • Umezawa, S., T. Tsuchiya, D. Ikeda, and H. Umezawa: Syntheses of 3′,4′-dideoxy- and 3′,4′,5″-trideoxy-ribostamycin active against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa. J. Antibiotics (Tokyo) 25, 613 (1972 b).

    Article  CAS  Google Scholar 

  • Umezawa, S., K. Umino, S. Shibahara, M. Hamada, and S. Omoto: Fermentation of 3-amino-3-deoxy-d-glucose. J. Antibiotics (Tokyo), Ser. A 20, 355 (1967c).

    CAS  Google Scholar 

  • Umezawa, S., I. Watanabe, T. Tsuchiya, H. Umezawa, and M. Hamada: Synthesis of 5″-deoxylividomycin B. J. Antibiotics (Tokyo) 25, 617 (1972 c).

    Article  CAS  Google Scholar 

  • Uramoto, M., N. Otake, and H. Yonehara: Mannosyl glucosaminide, a new antibiotic. J. Antibiotics (Tokyo), Ser. A 20, 236 (1967).

    CAS  Google Scholar 

  • Vavra, J. J., C. Deboer, A. Dietz, L. J. Hannka, and W. T. Sokolski: Streptozotocin, a new antibacterial antibiotic. Antibiot. Ann. 1959/1960, 230 (1960).

    Google Scholar 

  • Vogel, Z., T. Vogel, A. Zamir, and D. Elson: Ribosome activation and the binding of dihydrostreptomycin: effect of polynucleotides and temperature on activation. J. Mol. Biol. 54, 379 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Wallace, B. J., P.-C. Tai, and B. D. Davis: Effect of streptomycin on the response of Escherichia coli ribosomes to the dissociation factor. J. Mol. Biol. (in press).

    Google Scholar 

  • Weinstein, W. J., G. M. Luedemann, E. M. Oden, G. H. Wagman, J. R. Rosselet, J. A. Marquez, C. T. Coniglio, W. Charney, H. L. Herzog, and J. Black: Gentamicin, a new antibiotic complex from Micromonospora. J. Med. Chem. 6, 463 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, M. J., J. A. Marquez, R. T. Testa, G. H. Wagman, E. M. Oden, and J. A. Waitz: Antibiotic 6640, a new Micromonospora-Produced aminoglycoside antibiotic. J. Antibiotics (Tokyo) 23, 551 (1970).

    Article  CAS  Google Scholar 

  • White, J. R., and H. L. White: Streptomycinoid antibiotics: synergism by puromycin. Science 146, 772 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, A. D., and F. E. Hahn: Stability of ribosomes from streptomycin exposed Escherichia coli. Biochem. Biophys. Res. Commun. 31, 945 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Woo, P. W. K., H. W. Dion, and Q. R. Bartz: Butirosins A and B, aminoglycoside antibiotics. III. Structures. Tetrahedron Letters 28, 2625 (1971).

    Article  Google Scholar 

  • Yagisawa, M., H. Naganawa, S. Kondo, M. Hamada, T. Takeuchi, and H. Umezawa: Adenyldideoxykanamycin B, a product of the inactivation of dideoxykanamycin B by Escherichia coli carrying R factor. J. Antibiotics (Tokyo) 24, 911 (1971).

    Article  CAS  Google Scholar 

  • Yagisawa, M., H. Naganawa, S. Kondo, T. Takeuchi, and H. Umezawa: Inactivation of 3′,4′-dedeoxykanamycin B by an enzyme solution of resistant E. coli and isolation of 3′,4′-dideoxykanamycin B 2″-guanylate and 2″-inosinate. J. Antibiotics (Tokyo) 25, 492 (1972 a).

    Article  CAS  Google Scholar 

  • Yagisawa, M., H. Naganawa, S. Kondo, T. Takeuchi, and H. Umezawa: 6′-N-Acetylation of 3′,4′-dideoxykanamycin B by an enzyme in a resistant strain of Pseudomonas aeruginosa. J. Antibiotics (Tokyo) 25, 495 (1972b).

    Article  CAS  Google Scholar 

  • Yagisawa, M., H. Yamamoto, H. Naganawa, S. Kondo, T. Takeuchi, and H. Umezawa: A new enzyme in Escherichia coli carrying R-factor phosphorylating 3′-hydroxyl of butirosin A, kanamycin, neamine and ribostamycin. J. Antibiotics (Tokyo) 25, 748 (1972c).

    Article  CAS  Google Scholar 

  • Yamada, T., K. Kvitek, and J. Davies: The binding of streptomycin and R-factor-inactivated streptomycin to ribosomes. Prog. Antimicr. Anticancer Chemoth. (Univ. Tokyo Press) 2, 562 (1970).

    CAS  Google Scholar 

  • Yamaki, H., and N. Tanaka: Effects of protein synthesis inhibitors on the lethal action of kanamycin and streptomycin. J. Antibiotics (Tokyo), Ser. A 16, 222 (1963).

    CAS  Google Scholar 

  • Yamamoto, H., S. Kondo, K. Maeda, and H. Umezawa: Synthesis of lividomycin A 5″-phosphate, an enzymatically inactivated lividomycin A. J. Antibiotics (Tokyo) 25, 485 (1972 a).

    Article  CAS  Google Scholar 

  • Yamamoto, H., S. Kondo, M. Maeda, and H. Umezawa: Syntheses of 5″-deoxylividomycin A and its amino derivative. J. Antibiotics (Tokyo) 25, 487 (1972 b).

    Article  CAS  Google Scholar 

  • Yamamoto, H., M. Yagisawa, H. Naganawa, S. Kondo, T. Takeuchi, and H. Umezawa: Kanamycin 6′-acetate and ribostamycin 6′-acetate, enzymatically inactivated products by Pseudomonas aeruginosa. J. Antibiotics (Tokyo) 25, 746 (1972c).

    Article  CAS  Google Scholar 

  • Zagorska, L., J. Dondon, J.C. Lelong, F. Gros, and M. Grunberg-Manago: Decoding site of initiator transfer RNA. Biochemie 53, 63 (1971).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanaka, N. (1975). Aminoglycoside Antibiotics. In: Corcoran, J.W., Hahn, F.E., Snell, J.F., Arora, K.L. (eds) Mechanism of Action of Antimicrobial and Antitumor Agents. Antibiotics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46304-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46304-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46306-8

  • Online ISBN: 978-3-642-46304-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics