Anaesthesia Breathing Systems

  • Peter Schreiber
Part of the Anaesthesiology and Resuscitation / Anaesthesiologie und Wiederbelebung / Anaesthésiologie et Réanimation book series (A+I, volume 59)


The anaesthesia breathing system is that part of the anaesthesia machine which is in direct contact with the patient. More precisely, it is the assembly of components through which the patient breathes. Anaesthesia breathing systems can be classified either according to the mode of use or according to their design. The mode of use means more specifically the relationship between fresh gas flow and the respiratory minute volume of the patient. The ratio of these determines the percentage of rebreathing of previously exhaled gas. Fig. 49 shows the two systems of classification.


Relief Valve Respiratory Minute Volume Expiratory Valve Directional Valve Inspiratory Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baer, B.: Die inspiratorische Sauerstoffkonzentration bei Anwendung von Kreislauf-Narkosegeräten. Anaesthesist 14, 42–46 (1965).PubMedGoogle Scholar
  2. Baraka, A., Brandstater, B., Muallem, M., Seraphim, C.: Rebreathing in a double “T”-piece system. Brit. J. Anaesth. 41, 47–53 (1969).PubMedGoogle Scholar
  3. Barth, L., Meyer, M.: Moderne Narkose. Jena: VEB Gustav Fischer 1965.Google Scholar
  4. Bio Marine Industries: Technical description of oxygen sensor. Devon, Pa.: Bio Marine Industries.Google Scholar
  5. Benson, D.W., Graff, T.D., Hurt, H.H.: The circle semiclosed system control of P Aco 2 by inflow rates of anesthetic gases and hyperventilation. Anesthesiology 29, 174 (1968).Google Scholar
  6. Boyan, P.C.: General anesthesia with minimal equipment. N.Y. St. J. Med. 63, 829–833 (1963).Google Scholar
  7. Bracken, A., Cox, L.A.: Apparatus for carbon dioxide absorption. Brit. J. Anaesth. 40, 660–665 (1968).Google Scholar
  8. Braulio de Castro : The E.M.O. Vaporizer using the technique demonstrated by Sir Robert Macintosh, read during the third Scientific Session of the First Asian and Australian Congress of Anaesthesiology Nov. 1962.Google Scholar
  9. British Standard Institution: Document No. 67/25024.Google Scholar
  10. Brown, E.S., Hustead, R.F.: Resistance of pediatric breathing systems. Anesth. Analg. Curr. Res. 48, 842–849 (1969).Google Scholar
  11. Elam, J.O.: Practical aspects of carbon dioxide absorption. N.Y. St. J. Med. 55, 3436, 3442 (1965).Google Scholar
  12. Seniff, A.M., Elam, J.O.: Carbon dioxide elimination in semiclosed systems. Anesthesiology 25, 31–36 (1964).PubMedGoogle Scholar
  13. Byles, P.H.: Observation on some continuously-acting spirometers. Brit. J. Anaesth. 32, 470 (1960).PubMedGoogle Scholar
  14. Campbell, D. J.: Volumeter attachment on Boyle circle absorber. Brit. J. Anaesth. 43, 206–207 (1971).PubMedGoogle Scholar
  15. Cole, P. V., Parkhouse, J.: Clinical experience with the E.M.O. inhaler. Postgrad. Med. J. 39, 476 (1963).PubMedGoogle Scholar
  16. Cole, W.H.J., Tucker, J.F.B.: Heat sterilisation of the circle absorption unit: unit designed to withstand autoclaving. Med. J. Aust. 1, 52–55 (1967).PubMedGoogle Scholar
  17. Cooper, E.A.: The measurement of ventilation. Brit. J. Anaesth. 41, 718–722 (1969).PubMedGoogle Scholar
  18. Corbett, Th.H.: The gas trap: A device to minimize chronic exposure to anesthetic gases. Anesthesiology 31, 464 (1969).PubMedGoogle Scholar
  19. Cullen, St.C.: Halothane analyzer. Anesthesiology 23, 391–394 (1962).Google Scholar
  20. Ditzler, J.W.: Checking anesthesia machines. Anesthesiology 32, 87 (1970).Google Scholar
  21. Drägerwerk: Narkotest-M Kurzanleitung. Drägerwerk A.G., Lübeck, Germany.Google Scholar
  22. Droh, R.: Das Kuhn’sche Kinderbesteck — ein verbessertes Narkose- und Beatmungsgerät für Säuglinge und Kleinkinder. Anaesthesist 16, 248–251 (1967).PubMedGoogle Scholar
  23. Dryden, G.E.: Risk of contamination from anesthesia circle absorber: an evaluation. Anesth. Analg. Curr. Res. 48, 939–943 (1969).Google Scholar
  24. Eger II., E.I.: Uptake of methoxyflurane in man at constant alveolar and at constant inspired concentration. Anesthesiology 25, 284–290 (1964).PubMedGoogle Scholar
  25. — Effect of inspired anesthetic concentration on the rate of rise of alveolar concentration. Anesthesiology 24, 153–157 (1963).Google Scholar
  26. Brandstater, B.: Solubility of methoxyflurane in rubber. Anesthesiology 24, 679 (1963).PubMedGoogle Scholar
  27. Eger II., E.L., Guadagni, N.P.: Halothane uptake in man at constant alveolar concentration. Anesthesiology 24, 299 (1963).Google Scholar
  28. Epstein, R. M. : Hazards of anesthetic equipment. Anesthesiology 25, 490–504 (1964).PubMedGoogle Scholar
  29. Ethans, C.T. : The effect of inflow, overflow, and valve placement on economy of the circle system. Anesthesiology 29, 93–100 (1968).PubMedGoogle Scholar
  30. Elam, J.O.: The design of circle absorbers. Anesthesiology 19, 99–100 (1958).Google Scholar
  31. Lowe, H.J.: Studies on anesthesia, respiration, and rescutitation — Annual Progress Report, Nov. 15th 1968–Nov. 30th 1969, Supported by U.S. Army Medical Research and Development Command Contract No. DADA-MD-17-67-C-7052.Google Scholar
  32. Epstein, H.G., Hunter, A.R.: Anaesthetic apparatus: A pictorial review of the development of the modern anaesthetic machine. Brit. J. Anaesth. 40, 636–647 (1968).Google Scholar
  33. Epstein, R.M., Rackow, H., Salanitre, E., Wolf, G.L.: Influence of the concentration effect on the uptake of anesthetic mixtures : The second gas effect. Anesthesiology 25, 364–371 (1964).PubMedGoogle Scholar
  34. Farman, J.V.: The use of the E.M.O. apparatus for ether anaesthesia in the smaller Hospital. W. Afr. med. J. 10, 355–365 (1961).PubMedGoogle Scholar
  35. Frey, R., Hügin, W., Mayrhofer, O.: Lehrbuch der Anaesthesiologie. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  36. Geiker, H., Kunze, D., Ziegan, J.: Akute Entzündung der Atemschleimhäute infolge Absorberkalkverschleppung. Anaesthesist 18, 150–153 (1969).Google Scholar
  37. Gelb, E.J., Chem, M.S., Steen, S.N.: A new concept for the continuous monitoring of anesthetic gases. Anesthesiology 33, 446–451 (1970).PubMedGoogle Scholar
  38. Ghose, R.: Modern, safe, low cost anaesthesia. Ethopian Med. J. 2, 3 (1964).Google Scholar
  39. Grogono, A.W., Porterfield, J.: Ambu valve: Danger of wrong assembly. Brit. J. Anaesth. 42, 978 (1970).PubMedGoogle Scholar
  40. Hayes, B., Robinson, J.S.: An assessment of methods of humidification of inspired gas. Brit. J. Anaesth. 42, 94–104 (1970).PubMedGoogle Scholar
  41. Herden, H.-N., Lawin, P.: Ein neues Verfahren zur Sterilisation der Anaesthesie-Zubehörteile. Anaesthesist 18, 276–278 (1969).PubMedGoogle Scholar
  42. Hillard, E.K.: British standards relevant to anaesthesia. Brit. J. Anaesth. 240, 702–708 (1968).Google Scholar
  43. Hirano, T., Saito, T.: A new automatic non-rebreathing valve. Anesthesiology 31, 84–85 (1969).PubMedGoogle Scholar
  44. Hoffman, J. C.: Control of methoxyflurane from a boyle apparatus. Anesthesiology 32, 372–374 (1970).PubMedGoogle Scholar
  45. Holmes, C.McK.: Post-operative vomiting after ether/air anaesthesia. Anaesthesia 20, 199–205 (1965).PubMedGoogle Scholar
  46. Horatz, K., Schuman, J.: Die derzeitige Bedeutung der Tropfnarkose. Anästh. prax. 2, 85–90. München: E.U.H. Marseille Verlag 1967.Google Scholar
  47. Klinghammer, H.H., Langer, R.: Halothankonzentrationen bei Narkosen mit Feldnarkosegeräten. Wehrmed. 4, 33–44 (1966).Google Scholar
  48. Hutschenreuther, K. : Anaesthesia und Notfallmedizin. Anesthesiology and Resuscitation — Anaesthesiologie und Wiederbelebung, Bd. 15, Berlin- Heidelberg-New York : Springer 1966.Google Scholar
  49. ISO-Standard draft: ISO/TC 121/GT 4 (Secretariat-10) 20 Terminiology.Google Scholar
  50. — ISO/TC 121/WG 2 (Secretariat-14) 29 Anaesthesia Breathing Bags.Google Scholar
  51. — ISO/TC 121/GT 4 (Paris-3) 19 Terminiology.Google Scholar
  52. — ISO/TC 121/GT 4 (Secretariat 1969-5) Terminiology.Google Scholar
  53. — ISO/TC 121/GT 4 (Secretariat-12) 22 F/E Terminiology.Google Scholar
  54. Jennings, A.M.C., Styles, M.: A predictor for halothane concentration during closed-circuit anaesthesia. Brit. J. Anaesth. 40, 543–551 (1968).PubMedGoogle Scholar
  55. Joyce, Th.H., Vacanti, Ch. I., van Houten, R.I., Mitchel, G.D.: A draw-over anesthetic system for peace or war. Anesth. Analg. Curr. Res. 48, 121–128 (1969).Google Scholar
  56. Kain, M. L., Nunn, J. F. : Fresh gas economics of the magill circuit. Anesthesiology 29, 964–974 (1968).PubMedGoogle Scholar
  57. Kamm, G.: Erfahrung bei der Durchführung von Narkosen in Zentral-Afrika. Anaesthesist 18, 166–167 (1969).PubMedGoogle Scholar
  58. Klatskin, G., Kimberg, D.V.: Recurrent hepatitis attributable to halothane sensitization in an anesthetist. New Engl. J. Med. 280, 515–522 (March 6) (1969).PubMedGoogle Scholar
  59. Leatherdale, R. A. L. : The E.M.O. ether inhaler. Anaesthesia 21, 504–512 (1966).PubMedGoogle Scholar
  60. Linde, H.W., Bruce, D.L.: Occupational exposure of anesthesists to halothane, nitrous oxide, and radiation. Anesthesiology 30, 363–368 (1969).PubMedGoogle Scholar
  61. Linker, S.G., Holaday, D. A., Waltuck, B.: A simply constructed automatic pressure-relief valve. Anesthesiology 32, 563–564 (1970).PubMedGoogle Scholar
  62. Lowe, H.J., Cupic, M., Sheth, P., Titel, J., Kye, H., Feingold, A.: Dose regulated anesthesia, Special print from Department of Anesthesiology, Pritzker School of Medicine, University of Chicago.Google Scholar
  63. Hagler, K.: Clinical and laboratory evaluation of an expired anesthetic gas monitor (Narko-Test). Anesthesiology 34, 378–382 (1971).PubMedGoogle Scholar
  64. Titel, H. J., Hagler, K. J.: Absorption of anesthetics by conductive rubber in breathing circuits. Anesthesiology 34, 283–289 (1971).PubMedGoogle Scholar
  65. Lüder, M.: Bestimmung von Halothanedampf-Konzentrationen mit dem Laboratoriumsinterferometer. Anaesthesist 13, 360–364 (1964).Google Scholar
  66. — Probleme der Doppelabsorption. Vortr. Gründungsversammlung, Sektion Anaesthesiologie, Berlin, 7. 3. 1964.Google Scholar
  67. Macintosh, R.R., Bannister, F.B.: Grundlagen der Allgemeinnarkose. Berlin: VEB Verlag Volk und Gesundheit 1964.Google Scholar
  68. Mushin, W.W., Epstein, H.G.: Physics for the anaesthesist, 2nd Ed. Oxford: Blackwell 1958.Google Scholar
  69. Mapleson, W. W.: Concentration of anaesthetics in closed circuits, with special reference to halothane. Brit. J. Anaesth. 32, 289 (1960).Google Scholar
  70. Mapleson, W. W. : Uptake and distribution of anesthetic agents. Ed. Papper, E. M., Kitz, R.J. New York: McGraw-Hill 1963.Google Scholar
  71. Markello, R., King, B.D.: Halothane-ether-air anesthesia. J. Amer. med. Ass. 190, 869–872 (1964).Google Scholar
  72. Marrese, R.A.: A safe methode for discharging anesthetic gases. Anesthesiology 31, 371–372 (1969).PubMedGoogle Scholar
  73. Marshall, M., Henderson, G.A.: Positiv pressure ventilation using a semiclosed system: A reassessment. Brit. J. Anaesth. 40, 265–269 (1968).PubMedGoogle Scholar
  74. Martin, J.T., Ulrich, J.A.: A bacterial filter for an anesthetic circuit. Anesth. Analg. Curr. Res. 48, 944–946 (1969).Google Scholar
  75. Mushin, W., Galloon, J.: Brit. J. Anaesth. 32, 324 (1960).PubMedGoogle Scholar
  76. Mushin, W.W., Rendell-Baker, L., Thompson, P. W. : Automatic ventilation of the lungs. Oxford: Blackwell 1959.Google Scholar
  77. NCG: A study of carbon dioxide gas absorption. National Cylinder Gas, Division of Chemetron Corp., Chicago, 111.Google Scholar
  78. Neff, W.B., Burke, S.F., Thompson, R.: A venturi circulator for anesthetic systems. Anesthesiology 29, 838–841 (1968).PubMedGoogle Scholar
  79. Oehmig, H.: Über eine Methode, Atemkalk einzusparen. Anaesthesist 4, 45 (1955).PubMedGoogle Scholar
  80. Netzer: Experimentelle Untersuchungen über Leistungsfähigkeit und Eigenschaften von Atemkalk. Anaesthesist 5, 6 (1956).Google Scholar
  81. — Jahrbuch des Marburger Universitätsbundes, 113–135 (1962).Google Scholar
  82. — Halothan-Narkose : Das Phänomen der Isokonzentration. Anaesthesist 11, 156–160 (1962).PubMedGoogle Scholar
  83. Powell, J.N., Gingrich, T.F.: Some aspects of nitrous oxide anesthesia at an altitude of one mile. Anesth. Analg. Curr. Res. 48, 680–685 (1969).Google Scholar
  84. Purnell, R. J. : The position of the wright anemometer in the circle absorber system. Brit. J. Anaesth. 40, 917–918 (1968).PubMedGoogle Scholar
  85. Rackow, H., Salanitre, E.: Modern concept in pediatric anesthesiology. Anesthesiology 30, 208–234 (1969).PubMedGoogle Scholar
  86. Rashad, K.F., Benson, D.W.: Role of humidity in prevention of hypothermia in infants and children. Anesth. Analg. Curr. Res. 46, 712–718 (1967).Google Scholar
  87. Rendell-Baker, L. : Another close call with “crossed valves”. Anesthesiology 31, 154–155 (1969).Google Scholar
  88. Ring, W.H.: Standardization of inhalation anesthetic equipment. Anesthesiology 30, 112–115 (1969).PubMedGoogle Scholar
  89. Robbins, L., Crocker, D., Smith, R.M.: Tidal volume losses of volume-limited ventilators. Anesth. Analg. Curr. Res. 46, 428–431 (1967).Google Scholar
  90. Roberts, R.B.: The conductivity of disposable plastic circuits. Anesth. Analg. Curr. Res. 49, 729–730 (1970).Google Scholar
  91. — The eradication of cross-infection from anesthetic equipment. Anesth. Analg. Curr. Res. 49, 63–68 (1970).Google Scholar
  92. Romagnoli, A., Tousignant, M.: Versality of the haloxair apparatus. C.M.A. Journal, Vol. 103, Nov. 1055–1056 (1970).Google Scholar
  93. Rusz, Th., Duncalf, D.: A safe controlled pop-off valve. Anesthesiology 33, 459–461 (1970).Google Scholar
  94. Schnelle, N., Nelson, D.: A new device collecting and disposing of exhaust gases from anesthesia machines. Anesth. Analg. Curr. Res. 48, 744–747 (1969).Google Scholar
  95. Schreiber, P.J.: Zur Arbeit von Lüder: Bestimmung von Halothandampf-Konzentration mit dem Laboratoriumsinterferometer. Anaesthesist 14, 284 bis 285 (1965).Google Scholar
  96. Schulze, H.H., Kästner, D., Lange, P.: Zur Frage der chronischen Toxicität von Halothankonzentrationen in der Operationssaalluft. Anaesthesist 18, 378–381 (1969).PubMedGoogle Scholar
  97. Sechzer, P.H., Linde, H.W., Price, H.L.: Uptake of halothane by human body. Anesthesiology 24, 779–783 (1963).PubMedGoogle Scholar
  98. Smith, B.E.: Gas chromatography in the operating room. Anesth. Analg. Curr. Res. 49, 740–745 (1970).Google Scholar
  99. Smith, Th. C.: Nitrous oxide and low flow circle systems. Anesthesiology 27, 266–271 (1966).PubMedGoogle Scholar
  100. Stevens, H. L.: The ultrasonic approach to humidification of anesthesia gases. New York, Second conference on Clinical Application of the Ultrasonic Nebulizer, November 18th 1967.Google Scholar
  101. Suwa, K., Yamamura, H.: The effect of gas inflow on the regulation of CO2 levels with hyperventilation during anesthesia. Anesthesiology 33, 440–445 (1970).PubMedGoogle Scholar
  102. Sykes, M.K.: Rebreathing circuits: A review. Brit. J. Anaesth. 40, 666–674 (1968).Google Scholar
  103. Titel, J.H., Lowe, H.J.: Rubber-gas partition coefficients. Anesthesiology 29, 1215–1216 (1968).PubMedGoogle Scholar
  104. United States Industry Standard Draft : Anesthesia Breathing Circuit Connectors (Revised 1/28/70).Google Scholar
  105. Vogel, H., Hakim, A., Pflüger, H.: Rückatmung bei der Verwendung von Ruben-Ventilen. Anaesthesist 18, 247–249 (1969).PubMedGoogle Scholar
  106. Weeks, D.B., Broman, K.E.: A method of quantitating humidity in the anesthesia circuit by temperature control : Semiclosed circle. Anesth. Analg. Curr. Res. 49, 292–296 (1970).Google Scholar
  107. Weis, K.-H., Schreiber, P.J.: Konzentrationsmessungen mit dem Gardener-Universal-Verdampfer. Anaesthesist 14, 289–293 (1965).PubMedGoogle Scholar
  108. Welsh, B., Blackwood, M.J. A., Conn, A. W.: Evaluation of a laboratory means of estimating respiratory water loss using the T-piece system. Anesth. Analg. Curr. Res. 50, 103–108 (1971).Google Scholar
  109. White, Ch. W.: Hazards of the valved Y-piece. Anesthesiology 32, 567 (1970).PubMedGoogle Scholar
  110. Wynands, J.E., Wrigley, F.R.H.: Simple method of humidifying anaesthetic gases. Canad. Anaesth. Soc. J. 13, 403–405 (July) 1966.PubMedGoogle Scholar
  111. Yeakel, A.E.: A device for eliminating overflow anesthetic gases from anesthetizing locations. Anesthesiology 32, 281 (1970).Google Scholar
  112. Zinganell, K.: Halothan im geschlossenen Kreislauf. Anaesthesist 18, 88–94 (1969).PubMedGoogle Scholar
  113. Zorab, J.S.M.: An unusual cause of difficulty in ventilation. Brit. J. Anaesth. 41, 640 (1969).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • Peter Schreiber
    • 1
  1. 1.Department of AnesthesiologyUniversity of AlabamaBirminghamUSA

Personalised recommendations