Skip to main content

Some Biochemical and Pharmacologic Considerations of Agents in the Management of Acute Leukemia

  • Chapter
Current Concepts in the Management of Lymphoma and Leukemia

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 36))

  • 33 Accesses

Abstract

The successful induction by chemotherapeutic agents of complete remission of disease in the therapy of acute leukemia necessarily requires a selective toxic action by the antileukemic agent(s) employed on neoplastic cells as compared to the most sensitive of the tissues of the host. That preferential kill of malignant cells by drugs can be attained has been amply demonstrated in both experimental systems [1] and in patients with a variety of neoplastic diseases [2–4].

Support was provided by Grant CA-02817 from the National Cancer Institute, USPHS and Grant T-23 from the American Cancer Society.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruce, R. W.: The action of chemotherapeutic agents at the cellular level and the effect of these agents on hematopoietic and lymphomatous tissue. Can. Cancer Conf. 7, 53 (1967).

    PubMed  CAS  Google Scholar 

  2. Burchenal, J. H.: Formyl discussion: long-term survival in Burkitt’s tumor and in acute leukemia. Cancer Res. 27, 2616 (1967).

    PubMed  CAS  Google Scholar 

  3. Farber, S., D’angio, G., Evans, A., Mitus, A.: Clinical studies of actinomycin D with special reference to Wilms’ tumor in children. Ann. N. Y. Acad. Sci. 89, 421 (1960).

    Article  PubMed  CAS  Google Scholar 

  4. Ross, G. T., Goldstein, D. P., Hertz, R., Lipsett, M. B., Odell, W. D.: Sequential use of methotrexate and actinomycin D in the treatment of metastatic choriocarcinoma and related trophoblastic diseases in women. Amer. J. Obstet. Gynec. 93, 223 (1965).

    PubMed  CAS  Google Scholar 

  5. Handschumacher, R. E.: Mechanisms of control of tumor growth: asparaginase and asparaginase analogs. In: Exploitable Molecular Mechanisms and Neoplasia. Baltimore: Williams and Wilkins 1969, p. 565.

    Google Scholar 

  6. Adamson, R. H., Fabro, S.: Antitumor activity and other biologic properties of L-asparaginase (NSC-109 229)-A review. Cancer Chem. Rep. 52, 617 (1968).

    CAS  Google Scholar 

  7. Patterson, M. K., JR., Orr, G.: L-asparaginase biosynthesis by nutritional variants of the Jensen sarcoma. Biochem. biophys. Res. Commun. 26, 228 (1967).

    CAS  Google Scholar 

  8. Broome, J. D., Schwartz, J. H.: Differences in the production of L-asparaginase in asparaginase-sensitive and resistant lymphoma cells. Biochim. biophys. Acta (Amst.) 138, 637 (1967).

    CAS  Google Scholar 

  9. Horowitz, B., Madras, B. K., Meister, A., OLD, L. J., Boyse, E. A., Stockert, E.:Asparaginase synthetase activity of mouse leukemias. Science 160, 533 (1968).

    Article  PubMed  CAS  Google Scholar 

  10. Prager, M. D., Bachynsky, N.: Asparagine synthetase in asparaginase resistant and susceptible mouse lymphomas. Biochem. biophys. Res. Commun. 31, 43 (1968).

    CAS  Google Scholar 

  11. Silber, R., Berman, E., Goldstein, B., Stein, H., Farnham, G., Bertino, J. R.: Methy-lation of nucleic acids in normal und leukemic leukocytes. Biochim. biophys. Acta (Amst.) 123, 638 (1966).

    CAS  Google Scholar 

  12. Moore, E. C., Lepage, G. A.: In vivo sensitivity of normal and neoplastic mouse tissues to azaserine. Cancer Res. 17, 804 (1957).

    PubMed  CAS  Google Scholar 

  13. Roberts, E., Frankel, S.: Free amino acids in normal and neoplastic tissues of mice as studied by paper chromatography. Cancer Res. 9, 645 (1949).

    PubMed  CAS  Google Scholar 

  14. Simonsen, D. G.: Free amino acids and related substances in normal and neoplastic tissues. In: Amino Acids, Proteins and Cancer Biochemistry. Ed.: J. T. Edsall. New York: Academic Press 1960, p. 121.

    Google Scholar 

  15. Levenberg, B., Melnick., I., Buchanan, J. M.: Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. J. Biol. Chem. 225, 163 (1957).

    CAS  Google Scholar 

  16. Rouser, G.: Free or easily extractable amino acids in blood cells and body fluids. In: The Leukemias: Etiology, Pathophysiology and Treatment. New York: Academic Press 1957, p. 361.

    Google Scholar 

  17. Venditti, J. M., Goldin, A.: Drug synergism in antineoplastic chemotherapy. In: Advances in Chemotherapy, Vol. 1. Eds.: A. Goldin and F. Hawking. New York: Academic Press 1964, p. 397.

    Google Scholar 

  18. Sartorelli, A. C.: Approaches to the combination chemotherapy of transplantable neoplasms. In: Prog. Exptl. Tumor Res., Vol. 6. Ed.: F. Homeurger. Basel: S. Karger 1965, p. 228.

    Google Scholar 

  19. Marchesi, S. L., Sartorelli, A. C.: The biochemical basis for the differential sensitivity of intestinal mucosa and bone marrow to 6-thioguanine. Cancer Res. 23, 1769 (1963).

    PubMed  CAS  Google Scholar 

  20. Henderson, J. F.: Variation in selective toxicity: causes and consequences. Cancer Res. 29, 2404 (1969).

    PubMed  CAS  Google Scholar 

  21. Henderson, E. F., Adamson, R. H., Oliverio, V. T.: The metabolic fate of tritiated Methotrexate. II. Absorption and excretion in man. Cancer Res. 25, 1018 (1965).

    PubMed  CAS  Google Scholar 

  22. Dixon, R. L., Henderson, E. S., Rall, D. P.: Plasma protein binding of methotrexate and its displacement by various drugs. Fed. Proc. 24, 454 (1965).

    Google Scholar 

  23. Oliverio, V. T., Loo, T. L.: Separation and isolation of metabolites of folic acid antagonists. Proc. Amer. Ass. Cancer Res. 3, 140 (1960).

    Google Scholar 

  24. Loo, T. L., Adamson, R. H.: The metabolite of 3’,5’-dichloro-4-amino-4-deoxy-N10methylpteroylglutamic acid (dichloromethotrexate). J. Med. Chem. 8, 513 (1965).

    Article  PubMed  CAS  Google Scholar 

  25. Misra, D. K., Adamson, R. H., Loo, T. L., Oliverio, V. T.: Inhibition of dihydrofolate reductase by dichloromethotrexate and its metabolite. Life Sci. 2, 407 (1963).

    Article  CAS  Google Scholar 

  26. Johns, D. G., Iannotti, A. T., Sartorelli, A. C., Booth, B. A., Bertino, J. R.: The identity of rabbit-liver methotrexate oxidase. Biochim. biophys. Acta (Amst.) 105, 380 (1965).

    CAS  Google Scholar 

  27. Loo, T. L., Adamson, R. H.: The enzymic oxidation of certain folic acid antagonists. Biochem. Pharmacol. 11, 170 (1962).

    Article  PubMed  CAS  Google Scholar 

  28. Johns, D. G., Iannotti, A. T., Sartorelli, A. C., Bertino, J. R.: The relative toxicities of methotrexate and aminopterin. Biochem. Pharmacol. 15, 555 (1966).

    Article  PubMed  CAS  Google Scholar 

  29. Henderson, E. S., Adamson, R. H., Denham, C., Oliverio, V. T.: The metabolic fate of tritiated methotrexate. I. Absorption, excretion, and distribution in mice, rats, dogs and monkeys. Cancer Res. 25, 1008 (1965).

    PubMed  CAS  Google Scholar 

  30. Hohorst, H. J., Zieman, A., Brock, N.: Alkylating substances in serum and urine after injection of cyclophosphamide. Arzneimittel-Forsch. 15, 432 (1965).

    CAS  Google Scholar 

  31. Conney, A. H., Burns, J. J.: Factors influencing drug metabolism. Advanc. Pharmacol. 1, 31 (1962).

    Article  CAS  Google Scholar 

  32. Rall, D. P.: Pharmacologic aspects of selective chemotherapy of leukemia and Burkitt’s tumor. Combination chemotherapy: advertent and inadvertent. Cancer Res. 27, 2650 (1967).

    PubMed  CAS  Google Scholar 

  33. Tephly, T. R., Mannering, G. J.: Inhibition of drug metabolism by steroid hormones. Pharmacologist 6, 186 (1964).

    Google Scholar 

  34. Liegler, D. G., Henderson, E. S., Hahn, M. A., Oliverio, V. T.: The effect of organic acids on renal clearance of methotrexate in man. Clin. Pharmacol. Ther. 10, 849 (1969).

    PubMed  CAS  Google Scholar 

  35. Sartorelli, A. C.: Some approaches to the therapeutic exploitation of metabolic sites of vulnerability of neoplastic cells. Cancer Res. 29, 2292 (1969).

    PubMed  CAS  Google Scholar 

  36. Baker, B. R.: Design of active-site-directed irreversible enzyme inhibitors. New York: John Wiley and Sons 1967.

    Google Scholar 

  37. Creasey, W. A., Agrawal, K. C., Stinson, K. K., Sartorelli, A. C.: Antineoplastic effects and metabolism of a-(N)-heterocyclic carboxaldehyde thiosemicarbazones in dogs and mice. Fed. Proc. 29, 681 (1970).

    Google Scholar 

  38. French, F. A., Blanz, E. J., JR.: The carcinostatic activity of a-(N)-heterocyclic carboxaldehyde thiosemicarbazones. I. Isoquinoline-1-carboxaldehyde thiosemicarbazone. Cancer Res. 25, 1454 (1965).

    PubMed  CAS  Google Scholar 

  39. The carcinostatic activity of thiosemicarbazones of formyl heteroaromatic compounds. III. Primary correlation. J. Med. Chem. 9, 585 (1966)

    Article  Google Scholar 

  40. Agrawal, K. C., Booth, B. A., Sartorelli, A. C.: Potential antitumor agents. I. A series of 5-substituted 1-formylisoquinoline thiosemicarbazones. J. Med. Chem. 11, 700 (1968).

    CAS  Google Scholar 

  41. Sartorelli, A. C.: Potential antitumor agents. III. Sodium salts of a-(N)-heterocyclic carboxaldehyde thiosemicarbazones. J. pharm. Sci. 57, 1948 (1968).

    Article  PubMed  Google Scholar 

  42. Potential antitumor agents. IV. Synthesis of 4-substituted 1-formylisoquinoline thiosemicarbazones by rearrangement of 1-methylisoquinoline-N-oxide. Abstr. Amer. Chem. Soc. MEDI-39, Sept., 1968.

    Google Scholar 

  43. Blanz, E. J., JR., French, F. A.: The carcinostatic activity of 5-hydroxy-2-formylpyridine thiosemicarbazone. Cancer Res. 28, 2419 (1968).

    CAS  Google Scholar 

  44. French, F. A., Blanz, E. J., JR.: The carcinostatic activity of a-(N)-heterocyclic carboxaldehyde thiosemicarbazones. II. 3-hydroxypyridine-2-carboxaldehyde thiosemicarbazone. Cancer Res. 26, 1638 (1966).

    PubMed  CAS  Google Scholar 

  45. Carcinostatic hydrazones: some design principles, data and correlations. In: Cancer Chemotherapy, Gann Monograph No. 2. Tokyo: Maruzen Co. 1967, p. 51.

    Google Scholar 

  46. Sartorelli, A. C.: Effect of chelating agents upon the synthesis of nucleic acids and protein: Inhibition of DNA synthesis by 1-formylisoquinoline thiosemicarbazone. Biochem. biophys. Res. Commun. 27, 26 (1967).

    CAS  Google Scholar 

  47. Agrawal, K. C., Booth, B. A., Moore, E. C.: Inhibition of ribonucleotide diphosphate reductase by substituted a-(N)-heterocyclic aldehyde thiosemicarbazones.. Fourth Internat. Congress Pharmacol. Basel: Schwabe 1969, p. 195.

    Google Scholar 

  48. Booth, B. A.: Biochemical effects of some pyridine aldehyde thiosemicarbazones. Proc. Amer. Ass. Cancer Res. 9, 61 (1968).

    Google Scholar 

  49. Moore, E. C.: Studies on the site of action of pyridine aldehyde thiosemicarbazones. Proc. Amer. Ass. Cancer Res. 10, 76 (1969).

    Google Scholar 

  50. Zedeck, M. S., Agrawal, K. C., Moore, E. C.: Correlation of inhibition of DNA synthesis and in vitro inhibition of ribonucleotide reductase by 1-formylisoquinoline thiosemicarbazone. Fed. Proc. 27, 650 (1968).

    Google Scholar 

  51. Moore, E. C., Agrawal, K. C., Booth, B. A., Sartorelli, A. C.: Potential irreversible inhibitors of ribonucleotide reductase: substituted a-(N)-heterocyclic aldehyde thiosemicarbazones. Fed. Proc. 29, 908 (1970).

    Google Scholar 

  52. Frei, E., III, Freireich, E. J.: Progress and perspectives in the chemotherapy of acute leukemia. In: Advances in Chemotherapy, Vol. 2. Eds.: A. Goldin, F. Hawking, and R. J. Schnitzer. New York: Academic Press 1965, p. 269.

    Google Scholar 

  53. Kessel, D., Hall, T. C., Roberts, D. W., Wodinsky, I.: Uptake as a determinant of methotrexate response in mouse leukemias. Science 150, 752 (1965).

    Article  PubMed  CAS  Google Scholar 

  54. Yamada, T., Iwanami, Y.: The transport of nitrogen mustard N-oxide through cellular membrane and its cytological effects in rat ascites hepatoma. Gann 53, 225 (1962).

    PubMed  CAS  Google Scholar 

  55. Baba, T.: The transport of 14C-labeled nitrogen mustard N-oxide through cellular membrane treated with tween 80 in vitro. Gann 54, 171 (1963).

    PubMed  Google Scholar 

  56. Hakala, M. T.: On the nature of permeability of sarcoma-180 cells to amethopterin in vitro. Biochim. biophys. Acta (Amst.) 102, 210 (1965).

    Article  CAS  Google Scholar 

  57. Goldman, I. D.: Transport energetics of the folic acid analogue, methotrexate, in L1210 leukemia cells. Enhanced accumulation by metabolic inhibitors. J. biol. Chem. 244, 3779 (1969).

    Google Scholar 

  58. Sartorelli, A. C., Booth, B. A., Bertino, J. R.: Folate metabolism in methotrexatesensitive and -resistant Ehrlich ascites cells. Arch. Biochem. 108, 53 (1964).

    Article  PubMed  CAS  Google Scholar 

  59. Mead, J. A. R., Venditti, J. M., Schrecker, A. W., Goldin, A., Keresztesy, J. C.: The effect of reduced derivatives of folic acid on the toxicity and antileukemic effect of methotrexate in mice. Biochem. Pharmacol. 12, 371 (1963).

    Article  CAS  Google Scholar 

  60. Goldin, A., Venditti, J. M., Kline, I., Manite, N.: Eradication of leukaemic cells (L1210) by methotrexate and methotrexate plus citrovorum factor. Nature (Lond.) 212, 1548 (1966).

    Article  CAS  Google Scholar 

  61. Sullivan, R. D., Miller, E., Sikes, M. P.: Antimetabolite-metabolite combination cancer chemotherapy. Effects of intra-arterial methotrexate-intramuscular citrovorum factor therapy in human cancer. Cancer 12, 1248 (1959).

    Article  PubMed  CAS  Google Scholar 

  62. Lefkowitz, E., Papac, R. J., Bertino, J. R.: Studies of head and neck cancer. III. Toxicity of 24 hour infusions of methotrexate (NSC-740) and protection by leucovorin (NSC-3590) in patients with epidermoid carcinomas. Cancer Chem. Rep. 51, 305 (1967).

    CAS  Google Scholar 

  63. Hryniuk, W. M., Bertino, J. R.: Treatment of leukemia with large doses of methotrexate and folinic acid: clinical-biochemical correlates. J. clin. Invest. 48, 2140 (1969).

    Article  PubMed  CAS  Google Scholar 

  64. Elion, G. B., Callahan, S., Nathan, H., Bieber, S., Rundles, R. W., Hitchings, G. H.: Potentiation by inhibition of drug degradation: 6-substituted purines and xanthine oxidase. Biochem. Pharmacol. 12, 85 (1963).

    Article  CAS  Google Scholar 

  65. Levine, A. S., Sharp, H. L., Mitchell, J., KRIVIT, W., NESBIT, M. E.: Combination therapy with 6-mercaptopurine (NSC-755) and allopurinol (NSC-1390) during induction and maintenance of remission of acute leukemia in children. Cancer Chem. Rep. 53, 53 (1969).

    CAS  Google Scholar 

  66. Schabel, F. M., JR., Laster, W. R., JR., Skipper, H. E.: Chemotherapy of leukemia L1210 by 6-mercaptopurine in combination with 6-methylthiopurine ribonucleoside. Cancer Chem. Rep. 51, 111 (1967).

    CAS  Google Scholar 

  67. Wang, M. C., Simpson, A. I., Paterson, A. R. P.: Combinations of 6-mercaptopurine and 6-(methylmercapto)purine ribonucleoside in the chemotherapy of the Ehrlich ascites carcinoma. Cancer Chem. Rep. 51, 101 (1967).

    CAS  Google Scholar 

  68. Hill, D. L., Bennett, L. L., JR.: Purification and properties of 5-phosphoribosyl pyrophosphate amidotransferase from adenocarcinoma 755 cells. Biochemistry 8, 122 (1969).

    Article  PubMed  CAS  Google Scholar 

  69. Paterson, A. R. P., Wang, M. C.: Stimulation of 6-mercaptopurine anabolism in tumor cells by prior treatment with 6-(methylmercapto)purine ribonucleoside. Fed. Proc. 27, 759 (1968).

    Google Scholar 

  70. Bodey, G. P., Brodovsky, H. S., Isassi, A. A., Samuels, M. L., Freireich, E. J.: Studies of combination 6-mercaptopurine (NSC-755) and 6-methylmercaptopurine ribonucleoside (NSC-40 774) in patients with acute leukemia and metastatic cancer. Cancer Chem. Rep. 52, 315 (1968).

    CAS  Google Scholar 

  71. Lajtha, L. G., Vane, J. R.: Dependence of bone marrow cells on the liver for purine supply. Nature (Lond.) 182, 191 (1958).

    Article  CAS  Google Scholar 

  72. Potter, V. R.: Sequential blocking of metabolic pathways in vivo. Proc. Soc. exp. Biol. (N. Y.) 76, 41 (1951).

    CAS  Google Scholar 

  73. Elion, G. B., Singer, S., Hitchings, G. H.: Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J. biol. Chem. 208, 477 (1954).

    PubMed  CAS  Google Scholar 

  74. Miech, R. P., Parks, R. E., JR., Anderson, J. H., JR., Sartorelli, A. C.: An hypo-. thesis on the mechanism of action of 6-thioguanine. Biochem. Pharmacol. 16, 2221 (1967).

    Google Scholar 

  75. Sartorelli, A. C.: Combination chemotherapy with actinomycin D and ribonuclease: an example of complementary inhibition. Nature (Lond.) 203, 877 (1964).

    Article  CAS  Google Scholar 

  76. Elkind, M. M., Kano, E., Sutton-Gibert, H.: Cell killing by actinomycin D in relation to the growth cycle of Chinese hamster cells. J. Cell Biol. 42, 366 (1969).

    Article  PubMed  CAS  Google Scholar 

  77. Perry, R. P.: Selective effects of actinomycin D on the intracellular distribution of RNA synthesis in tissue culture cells. Exp. Cell. Res. 29, 400 (1963).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Sartorelli, A.C. (1971). Some Biochemical and Pharmacologic Considerations of Agents in the Management of Acute Leukemia. In: Ultmann, J.E., Griem, M.L., Kirsten, W.H., Wissler, R.W. (eds) Current Concepts in the Management of Lymphoma and Leukemia. Recent Results in Cancer Research, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46259-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46259-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46261-0

  • Online ISBN: 978-3-642-46259-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics