Skip to main content

Part of the book series: Die Grundlehren der mathematischen Wissenschaften ((GL,volume 173))

  • 373 Accesses

Abstract

In (7.16), a matroid lattice is defined as a compactly atomistic M-symmetric lattice, and it may be defined as an upper continuous AC-lattice. It was shown in (7.10) and (7.15) that in a compactly atomistic lattice (α) the property of being M-symmetric, (β) the covering property, and (γ) the exchange property are equivalent. In DubeilJacotin, Leisieur and Croisot [1] a compactly atomistic lattice with (β) is called a geometric lattice, and in MacLane [1] a compactly atomistic lattice with (γ) is called an exchange lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter III

  1. M. L. Dubreil-Jacotin, L. Leisieur and R. Croisot: Leçons sur la théorie des treillis des structures algébriques ordonnées et des treillis géométriques. Paris: Gauthier-Villars 1953.

    MATH  Google Scholar 

  2. S. MacLane: A lattice formulation for transcendence degrees and p-bases. Duke Math. J. 4, 455–468 (1938).

    MathSciNet  MATH  Google Scholar 

  3. F. Maeda: Perspectivity of points in matroid lattices. J. Sci. Hiroshima Univ., Ser. A-128, 101–112 (1964).

    Google Scholar 

  4. U. Sasaki and S. Fujiwara: The decomposition of matroid lattices. J. Sci. Hiroshima Univ., Ser. A 15, 183–188 (1952).

    MathSciNet  MATH  Google Scholar 

  5. U. Sasaki: Semi-modularity in relatively atomic, upper continuous lattices. J. Sci. Hiroshima Univ., Ser. A 16, 409–416 (1953).

    MathSciNet  MATH  Google Scholar 

  6. B. JOnsson: Lattice-theoretic approach to projective and affine geometry. In: Proc. Internat. Sympos. Axiomatic Method, pp. 183–203. Amsterdam North-Holland 1959.

    Google Scholar 

  7. F. Maeda: Perspectivity of points in matroid lattices. J. Sci. Hiroshima Univ., Ser. A-128, 101–112 (1964).

    Google Scholar 

  8. M. F. Janowitz: On the modular relation in atomistic lattices. Fund. Math. (to appear).

    Google Scholar 

  9. R. Wille: Halbkomplementäre Verbände. Math. Z. 94, 1–31 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Maeda: Kontinuierliche Geometrien. Berlin: Springer-Verlag 1958.

    Google Scholar 

  11. R. Baer: Linear algebra and projective geometry. New York: Academic Press 1952.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Maeda, F., Maeda, S. (1970). Matroid Lattices. In: Theory of Symmetric Lattices. Die Grundlehren der mathematischen Wissenschaften, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46248-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46248-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46250-4

  • Online ISBN: 978-3-642-46248-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics