Skip to main content

Part of the book series: Die Grundlehren der mathematischen Wissenschaften ((GL,volume 127))

  • 379 Accesses

Abstract

We shall show that every recursive predicate is arithmetical. Thus, the arithmetical predicates introduced in § 27.1 are generalizations of recursive predicates. We can divide (§ 29) the arithmetical predicates into classes (which have elements in common) where the smallest class is that of the recursive and a further class is that of the recursively enumerable predicates which we shall discuss in § 28.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Post, E.: Recursively Enumerable Sets of Positive Integers and their Decision Problems. Bull. Amer. math. Soc. 50, 284–316 (1944).

    Article  MATH  MathSciNet  Google Scholar 

  • Robinson, R. M.: Arithmetical Representation of Recursively Enumerable Sets. J. symbolic Logic 21, 162–186 (1956).

    Article  MATH  Google Scholar 

  • Rosser, B.: Extensions of Some Theorems of Gödel and Church. J. symbolic Logic 1, 87–91 (1936).

    Article  MATH  Google Scholar 

  • Smullyan, R. M.: Theory of Formal Systems. Princeton, N. J.: Princeton University Press 1961, revised edition 1963.

    Google Scholar 

  • Kleene, S. C.: Recursive Predicates and Quantifiers. Trans. Amer. math. Soc. 53, 41–73 (1943).

    Article  MATH  MathSciNet  Google Scholar 

  • Mostowski, A.: On Definable Sets of Positive Integers. Fundam. Math. 34, 81–112 (1947).

    MATH  MathSciNet  Google Scholar 

  • Mostowski, A.: On a Set of Integers not Definable by Means of One-Quantifier Predicates. Ann. Soc. Polonaise Math. 21, 114–119 (1948).

    MATH  MathSciNet  Google Scholar 

  • Kleene, S. C.: Introduction to Metamathematics. Amsterdam: North-Holland Publishing Company 31959.

    Google Scholar 

  • Mostowski, A.: Development and Applications of the “Projective” Classification of Sets of Integers. Proc. internat. Congr. Math. Amsterdam 1 (1954).

    Google Scholar 

  • Kleene, S. C.: Hierarchies of Number-Theoretic Predicates. Bull. Amer. math. Soc. 61, 193–213 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  • Davis, M.: Computability & Unsolvability. New York-Toronto-London: McGraw-Hill Book Company 1958.

    MATH  Google Scholar 

  • Hilbert, D.: Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900. Nachr. Ges. Wiss. Göttingen, math.phys. Kl., 253–297 (1900).

    Google Scholar 

  • Davis, M.: Arithmetical Problems and Recursively Enumerable Predicates. J. symbolic Logic 18, 33–41 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  • Davis, M., and H. Putnam: Reductions of Hilbert’s Tenth Problem. J. symbolic Logic 23, 183–187 (1958).

    Article  MathSciNet  Google Scholar 

  • Davis, M., and H. Putnam: Research on Hilbert’s Tenth Problem. Rensselaer Polytechnic Institute, Troy, N. Y., 3–1 to 3–31 (1959).

    Google Scholar 

  • Davis, M.: Extensions and Corollaries of Recent Work on Hilbert’s Tenth Problem. Illinois J. Math. 7, 246–250 (1963).

    MATH  Google Scholar 

  • Turing, A. M.: On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. London math. Soc. (2), 42. 230–265 (1937).

    Article  Google Scholar 

  • Church, A.: The Calculi of Lambda-Conversion. Princeton: Princeton University Press 1941.

    Google Scholar 

  • Curry, H. B., and R. Feys: Combinatory Logic. Amsterdam: North-Holland Publishing Company 1958.

    MATH  Google Scholar 

  • Kleene, S. C.: R-Definability and Recursiveness. Duke math. J. 2, 340–353 (1936).

    Article  MathSciNet  Google Scholar 

  • Turing, A. M.: Computability and 2-Definability. J. symbolic Logic 2, 153–163 (1937).

    Article  MATH  Google Scholar 

  • Fitch, F. B.: A Simplification of Basic Logic. J. symbolic Logic 18, 317–325 (1953) esp. p. 324, where the expressions Hi occur, for which we have used the notation Ai which reminds us of Church’s R.

    Google Scholar 

  • Fitch, F. B.: Recursive Functions in Basic Logic. J. symbolic Logic 21, 337–346 (1956).

    Article  MathSciNet  Google Scholar 

  • Lorenzen, P.: Einführung in die operative Logik und Mathematik. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Hermes, H.: Zum Inversionsprinzip der operativen Logik. Constructivity in Mathematics, ed. by A. Heyting. pp. 62–68. Amsterdam: North-Holland Publishing Company 1959.

    Google Scholar 

  • Post, E. L.: Formal Reductions of the General Combinatorial Decision Problem. Amer. J. Math. 65, 197–215 (1943). (Cf. the review by Church in: J. symbolic Logic 8, 50–52 (1943).)

    Google Scholar 

  • D’Etlovs, V. K.: The normal algorithms and the recursive functions [Russ.]. Dokl. Akad. Nauk SSSR. 90, 723–725 (1953).

    MathSciNet  Google Scholar 

  • Markov, A. A.: Theory of algorithms [Russ.]. Akad. Nauk SSSR., Matém. Inst. Trudy 42, Moscow-Leningrad 1954.

    Google Scholar 

  • Curry, H. B.: Calculuses and Formal Systems. Dialectica 12, 249–273 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  • Asser, G.: Normierte Postsche Algorithmen. Z. math. Logik 5, 323–333 (1959).

    MATH  MathSciNet  Google Scholar 

  • Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. symbolic Logic 14, 145–158 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  • Myhill, J.: Criteria of Constructibility for Real Numbers. J. symbolic Logic 18, 7–10 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  • Grzegorczyk, A.: On the Definition of Computable Functionals. Fundam. Math. 42, 232–239 (1955).

    MATH  MathSciNet  Google Scholar 

  • Klaua, D.: Konstruktive Analysis. Berlin: VEB Deutscher Verlag der Wissenschaften 1961.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Hermes, H. (1969). Miscellaneous. In: Enumerability · Decidability Computability. Die Grundlehren der mathematischen Wissenschaften, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46178-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46178-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46180-4

  • Online ISBN: 978-3-642-46178-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics