Advertisement

The Milk-Ejection Reflex and the Actions of Oxytocin, Vasopressin and Synthetic Analogues on the Mammary Gland

  • G. W. Bisset
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 23)

Abstract

In discussing the physiology of lactation, the following terminology introduced by Folley and his co-workers (Folley, 1947 b, 1949; Cowie, Folley, Cross, Harris, Jacobsohn, and Richardson, 1951; Cowie, Folley, and Richardson, 1954) will be adopted. This terminology has made an important contribution to our understanding of the subject because it separates two distinct processes -a) milk secretion and ß) milk removal.

Keywords

Mammary Gland Milk Yield Myoepithelial Cell Paraventricular Nucleus Supraoptic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, V. C.: The effect of anticholinesterases injected into the supraoptic nuclei of chlora-losed dogs on the release of the oxytocic factor of the posterior pituitary. J. Physiol. (Lond.) 133,330–333 (1956h).Google Scholar
  2. —, G.B. Koelle, and P. Smart: Histochemical demonstration of cholinesterases in the hypothalamus of the dog. J. Physiol. (Lond.) 139, 137–144 (1957).Google Scholar
  3. —, E.P. Langworth, and G.W. Theobald: Potentials evoked in the hypothalamus and cerebral cortex by electrical stimulation of the uterus. Nature (Lond.) 203, 654–656 (1964).CrossRefGoogle Scholar
  4. —, M. Pickford: Observations on a central antagonism between adrenaline and acetylcholine. J. Physiol. (Lond.) 131, 712–718 (1956a).Google Scholar
  5. Adamsons, K., Jr., S.L. Engel, H.V. Van Dyke, B. Schmidt-Nielsen, and K. Schmidt-Nielsen: The distribution of oxytocin and vasopressin (antidiuretic hormone) in the neurophysis of the camel. Endocrinology 58, 272–278 (1956).PubMedCrossRefGoogle Scholar
  6. Andersson, B.: Some observations on the neurohumoral regulation of milk ejection. Acta physiol. scand. 23, 1–8 (1951a).PubMedCrossRefGoogle Scholar
  7. —: The effect and localisation of electrical stimulation of certain parts of the brain stem in sheep and goats. Acta physiol. scand. 23, 8–23 (1951b).PubMedCrossRefGoogle Scholar
  8. —: Further studies on the milk-ejection mechanism in sheep and goats. Acta physiol. scand. 23, 24–30 (1951c).PubMedCrossRefGoogle Scholar
  9. —, and S.M. McCann: Drinking, antidiuresis and milk-ejection from electrical stimulation within the hypothalamus of the goat. Acta physiol. scand. 35, 191–201 (1955).PubMedCrossRefGoogle Scholar
  10. Averill, R.L.W.: The hypothalamus and lactation. Brit. med. Bull. 22, 261–265 (1966).PubMedGoogle Scholar
  11. Babkin, B.P.: Secretory mechanism of the digestive glands, p. 676. New York: Hoeber 1944.Google Scholar
  12. Bangham, D.R., and G.W. Bisset, unpublished.Google Scholar
  13. —, and M.V. Mussett: Third International Standard for Posterior Pituitary. Bull. Wld. Hlth Org. 19, 325–340 (1958).Google Scholar
  14. Bargmann, W.: Über die Neurosekretorische Verknüpfung von Hypothalamus und Neuro-hypophyse. Z. Zellforsch. Abt. Histochem. 34, 610–634 (1949a).Google Scholar
  15. —: Über die Neurosekretorische Verknüpfung von Hypothalamus und Hypophyse. Klin.Wschr. 27, 617–622 (1949b).CrossRefGoogle Scholar
  16. Baryshnikov, I.A.: Nervous control of mammary function. The reflex regulation of lactation. In: 2nd Int. Congr. Endocr., pp. 655-659, 1964.Google Scholar
  17. Beleslin, D., G.W. Bisset, J. Haldar, and R.L. Polak: The release of vasopressin without oxytocin in response to haemorrhage. Proc. roy. Soc. B 166, 443–458 (1967).CrossRefGoogle Scholar
  18. Beller, F.K., K.H. Krumholz, and K. Zeininger: Vergleichende Oxytocin-Bestimmungen. Gemessen durch den lactagogen Effect der Milchdrüse. Acta endocr. (Kbh.) 29,1–8 (1958).Google Scholar
  19. Benda, C.: Das Verhältnis der Milchdrüse zu den Hautdrüsen. Derm. Z. 1, 94–110 (1894).CrossRefGoogle Scholar
  20. Benson, G. K.: Pituitary-adrenal relationships in the retardation of mammary gland involution by oxytocin. J. Endocr. 20, 91–100 (1960).PubMedCrossRefGoogle Scholar
  21. —, and A. T. Cowie: Lactation in the rat after hypophysial posterior lobectomy. J. Endocr. 14, 54–65 (1956).PubMedCrossRefGoogle Scholar
  22. —, and J.S. Tindal: The pituitary and the maintenance of milk secretion. Proc. roy. Soc. B. 149, 330–336 (1958).CrossRefGoogle Scholar
  23. —, and S. J. Folley: Oxytocin as stimulator for the release of prolactin from the anterior pituitary. Nature (Lond.) 177, 700 (1956).CrossRefGoogle Scholar
  24. —: Retardation of mammary involution in the rat by oxytocin. J. Endocr. 14, xl (1957a).Google Scholar
  25. —: The effect of oxytocin on mammary gland involution in the rat. J. Endocr. 16,189–202 (1957b).PubMedCrossRefGoogle Scholar
  26. — —: Effects of oxytocin on the functional capacity of pituitary grafts with particular reference to prolactin secretion. In: 1st Int. Congr. Endocr., Copenhagen, Abstr. No. 578, 1147, 1960.Google Scholar
  27. Beránková, Z., I. Rychlík, K. Jost, J. Rudinger, and F. Šorm: Inhibition of the uterus-contracting effect of oxytocin by O-methyloxytocin. Coll. Czechoslov. Chem. Commun. 26, 2673–2675 (1961).Google Scholar
  28. Beránková-Ksandrová, Z., G.W. Bisset, K. Jošt, I. Krejčí, V. Pliska, J. Rudinger, I. Rychlík, and F. Šorm: Synthetic analogues of oxytocin acting as hormonogens. Brit. J. Pharmacol. 26, 615–632 (1966).PubMedGoogle Scholar
  29. Berde, B., and R.A. Boissonnas: Synthetic analogues and homologues of the posterior pituitary hormones. In: The pituitary gland, pp. 624–661. Ed. by G. W. Harris and B.T. Donovan. London: Butterworths 1966.Google Scholar
  30. —, and A. Cerletti: Démonstration expérimentale de l’action de l’ocytocine sur la glande mammaire. Gynaecologia (Basel) 144, 275–278 (1957).Google Scholar
  31. —: Über die Wirkung pharmakologischer Oxytocindosen auf die Milchdrüse. Acta endocr. (Kbh.) 34, 543–557 (1960).Google Scholar
  32. —: Prüfung von Bradykinin and Hypertensin an der Milchdrüse. Helv. physiol. pharmacol. Acta. 19, C7–10 (1961).Google Scholar
  33. —, and H. Konzett: Isoleucyl8-Oxytocin, ein biologisch-hochwirksames Polypeptid. Med. exp. (Basel) 2, 317–322 (1960).CrossRefGoogle Scholar
  34. —, and E. Stürmer: (1960, 1962, 1964, unpublished). Cited by B. Berde, and R.A. Boissonnas. In: The pituitary gland, pp. 624–661. Ed. by G.W. Harris and B.T. Donovan. London: Butterworths 1966.Google Scholar
  35. Berger, E., and J.M. Marshall: Interactions of oxytocin, potassium, and calcium in the rat uterus. Amer. J. Physiol. 201, 931–934 (1961).Google Scholar
  36. Bernstein, S.H., R.E. Weston, G. Ross, J. Grossman, I.B. Hanenson, and L. Leiter: Studies on intravenous water diuresis and nicotine and pitressin antidiuresis in normal subjects and patients with liver disease. J. clin. Invest. 32, 422–427 (1953).CrossRefGoogle Scholar
  37. Beyer, C., and F. Mena: Blockage of milk removal in the cat by periventricular diencephalic lesions. Amer. J. Physiol. 208, 585–588 (1965).PubMedGoogle Scholar
  38. —, P. Pacheco, and M. Alcarez: Effect of central nervous system lesions on lactation in the cat. Fed. Proc. 21, 353 (1962).Google Scholar
  39. —, J.S. Tindal, and C.H. Sawyer: Electrophysiological study of projections from mesen-cephalic central gray matter to forebrain in the rabbit. Exp. Neurol. 6, 435–450 (1962).PubMedCrossRefGoogle Scholar
  40. Beyer, F.C., L.G. Anguiano, and F. J. Mena: Oxytocin release in response to stimulation of cingulate gyrus. Amer. J. Physiol. 200, 625–627 (1961).Google Scholar
  41. Bisset, G.W.: The assay of oxytocin and vasopressin in blood and the mechanism of in-activation of these hormones by sodium thioglycollate. In: Oxytocin, pp. 380–399. Ed. by R. Caldeyro-Barcia and H. Heller. Oxford: Pergamon Press 1961.Google Scholar
  42. —: Effect of tyrosinase preparations on oxytocin, vasopressin and bradykinin. Brit. J. Pharmacol. 18, 405–420 (1962a).PubMedGoogle Scholar
  43. —: Synthetic analogues of oxytocin acting as antagonists. J. Physiol. (Lond.) 165, 69–71 (1962b).Google Scholar
  44. Bisset, G.W.: The effect on milk-ejecting activity of modifying two functional groups in oxytocin. In: Oxytocin, vasopressin and their structural analogues, 2nd Int. Pharmacological Meeting, Prague, pp. 21–29. Oxford: Pergamon Press 1964.Google Scholar
  45. —, B. J. Clark, J. Haldar, M.C. Harris, G. P. Lewis, and E. Rocha E Silva, Brit. J. Pharmakol. 31, 537–549 (196Google Scholar
  46. —, and G.P. Lewis: Brit. J. Pharmakol. 31, 550–559 (1967).Google Scholar
  47. —, J. Haldar, and J. E. Lewin: Actions of oxytocin and other biologically active peptides on the rat uterus. Mem. Soc. Endocrin. 14, 185–198 (1966).Google Scholar
  48. —, S.M. Hilton, and A.M. Poisner: Parallel assays of vasopressin and oxytocin in blood on localized electrical stimulation of the hypothalamus. J. Physiol. (Lond.) 169,40–41 (1963).Google Scholar
  49. A.M. Poisner —: Hypothalamic pathways for independent release of vasopressin and oxytocin. Proc. roy. Soc. B 166, 422–442 (1967).CrossRefGoogle Scholar
  50. —, and J. Lee: Antidiuretic activity in the blood after stimulation of the neurohypophysis in man. Lancet 2, 715–719 (1958).PubMedCrossRefGoogle Scholar
  51. —, and G. P. Lewis: A spectrum of pharmacological activity in some biologically active peptides. Brit. J. Pharmacol. 19, 168–182 (1962).PubMedGoogle Scholar
  52. —, and J.M. Walker: Assay of oxytocin in blood. J. Physiol. (Lond.) 126, 588–595 (1954).Google Scholar
  53. —: The effects of nicotine, hexamethonium and ethanol on the secretion of the antidiuretic and oxytocic hormones of the rat. Brit. J. Pharmacol. 12, 461–467 (1957).PubMedGoogle Scholar
  54. Bodanszky, M., and V. Du Vigneaud: Synthesis of a biologically active analog of oxytocin, with phenylalanine replacing tyrosine. J. Amer. ehem. Soc. 81, 1258 (1959).CrossRefGoogle Scholar
  55. Boissonnas, R.A., St. Guttmann, B. Berde, and H. Konzett: Relationships between the chemical structures and the biological properties of the posterior pituitary hormones and their synthetic analogues. Experientia (Basel) 17, 377–432 (1961).CrossRefGoogle Scholar
  56. Bower, E. A.: Action potentials from uterine sensory nerves. J. Physiol. (Lond.) 148,2 P (1959).Google Scholar
  57. Branda, L.A., S. Drabarek, and V. Du Vigneaud: The synthesis and pharmacological properties of deamino-4-decarboxamido-oxytocin (l-ß-mercaptopropionic acid-4-α-amino-butyric acid-oxytocin). J. biol. Chem. 241, 2572–2575 (1966).PubMedGoogle Scholar
  58. Braude, R., and K.G. Mitchell: “Let-down” of milk in the sow. Nature (Lond.) 165, 937 (1950).CrossRefGoogle Scholar
  59. —: Observations on the relationship between oxytocin and adrenaline in milk ejection in the sow. J. Endocr. 8, 238–241 (1952).PubMedCrossRefGoogle Scholar
  60. Brooks, C. Mcc, T. Ishikawa, and K. Koizumi: Control of activity in supraoptic nucleus neurons. Physiologist 6, 147 (1963).Google Scholar
  61. K. Koizumi —, and H.-H. Lu: Activity of neurones in the paraventricular nucleus of the hypothalamus and its control. J. Physiol. (Lond.) 182, 217–231 (1966).Google Scholar
  62. BÜlbring, E., and J.H. Burn: An action of adrenaline on transmission in sympathetic ganglia which may play a part in shock. J. Physiol. (Lond.) 101, 289–303 (1942).Google Scholar
  63. Bugbee, E.P., and O. Kamm: Recent progress in the investigation of the posterior lobe of the pituitary gland. Endocrinology 12, 671–679 (1928).CrossRefGoogle Scholar
  64. Burn, G.P., and R.S. Grewal: The antidiuretic response to and excretion of pituitary (posterior lobe) extract in man, with reference to the action of nicotine. Brit. J. Pharmacol. 6, 471–482 (1951).PubMedGoogle Scholar
  65. Burn, J.H.: The concept of double transmission. In: The autonomic nervous system, p. 111. Oxford: Blackwell Scientific Publications 1963.Google Scholar
  66. —: Current concepts about adrenergic transmission. J. med. Sci. 11, 3–18 (1965).Google Scholar
  67. —: Adrenergic transmission. Pharmacol. Rev. 18, Part 1, 459–470 (1966).PubMedGoogle Scholar
  68. —, and M.J. Rand: Sympathetic postganglionic mechanism. Nature (Lond.) 184, 163–165 (1959).CrossRefGoogle Scholar
  69. —, L.H. Truelove, and I. Burn: Antidiuretic action of nicotine and of smoking. Brit med. J. 1, 403–406 (1945).PubMedCrossRefGoogle Scholar
  70. Campbell, B., and W.E. Petersen: Milk “let-down” and the orgasm in the human female. Human Biol. 25, 165–168 (1953).PubMedGoogle Scholar
  71. Cathcart, E.P., F.W. Gairns, and H.S.D. Garven: The innervation of the human quiescent nipple, with notes on pigmentation, erection and hyperneury. Trans, roy. Soc. Edinb. 51, 699–718 (1949).CrossRefGoogle Scholar
  72. Chalmers, T.M., and A.A.G. Lewis: Stimulation of the supraoptico-hypophysial system in man. Clin. Sci. 10, 127–135 (1951).Google Scholar
  73. Chan, W. Y. Mechanism of epinephrine inhibition of the milk-ejecting response to oxytocin. J. Pharmacol, exp. Ther. 147, 48–53 (1965).Google Scholar
  74. Chang, H.C., K.F. Chia, C.H. Hsu, and R.K.S. Lim: Humoral transmission of nerve impulses at central synapses. I. Sinus and vagus afferent nerves. Chin. J. Physiol. 12, 1–35 (1937a).Google Scholar
  75. —, and R.K.S. Lim: Vagus—post-pituitary reflex. I. Pressor component. Chin. J. Physiol. 12, 309–326 (1937b).Google Scholar
  76. Chang, H.C., K.F. Chia, C.H. Hsu, and R.K.S. Lim: Reflex secretion of the posterior pituitary elicited through the vagus. J. Physiol. (Lond.) 90, 87–89 (1937c).Google Scholar
  77. C.H. Hsu, and R.K.S. Lim —: Humoral transmission of nerve impulses at central synapses. II. Central vagus transmission after hypophysectomy in the dog. Chin. J. Physiol. 13, 13–32 (1938).Google Scholar
  78. Chaudhury, R.R.: The release of oxytocin in unanaesthetized lactating rats. In: 1st Int. Congress of Endocrinology, Copenhagen 1960, p. 123.Google Scholar
  79. —: Release of oxytocin in unanaesthetized lactating rats. Brit. J. Pharmacol. 17, 297–304 (1961).PubMedGoogle Scholar
  80. —, M.R. Chaudhtjry, and F.C. Lu: Stress-induced block of milk ejection. Brit. J. Pharmacol. 17, 305–309 (1961).PubMedGoogle Scholar
  81. Clark, B. J., and M. Rocha E Silva, Jr.: Independent release of vasopressin by carotid occlusion. J. Physiol. (Lond.) 186, 142–143 (1966).Google Scholar
  82. Clegg, P.C., P. Hopkinson, and V.R. Pickles: Some effects of calcium and magnesium ions on guinea-pig uterine muscle. J. Physiol. (Lond.) 167, 1–17 (1963).Google Scholar
  83. Coutheno, E.M., and A. Csapo: The effect of oxytocics on the “ca-deficient ” uterus. J. gen. Physiol. 43, 13–27 (1959).CrossRefGoogle Scholar
  84. Cowie, A.T.: Unpublished work, quoted by S.J. Folley. Recent Progr. Hormone Res. 7, 107, (1952).Google Scholar
  85. —, and S. J. Folley: Neurohypophysial hormones and the mammary gland. In: The neuro-hypophysis, pp. 183–201. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  86. —, B.A. Cross, G.W. Harris, D. Jacobsohn, and K.C. Richardson: Terminology for use in lactational physiology. Nature (Lond.) 168, 421 (1951).Google Scholar
  87. —, G.S. Knaggs, and J.S. Tindal: Complete restoration of lactation in the goat after hypophysectomy. J. Endocr. 28, 267–279 (1964).CrossRefGoogle Scholar
  88. —, and J. S. Tindal: Some aspects of the neuro-endocrine control of lactation. In: Proc. 2nd Int. Congr. Endocr., pp. 646-654, 1964.Google Scholar
  89. Cross, B.A.: Suckling antidiuresis in rabbits. Nature (Lond.) 166, 612–613 (1950).CrossRefGoogle Scholar
  90. —: Suckling antidiuresis in rabbits. J. Physiol. (Lond.) 114, 447 (1951).Google Scholar
  91. —: Nursing behaviour and the milk-ejection reflex in rabbits. J. Endocr. 8, XIII (1952a).CrossRefGoogle Scholar
  92. —: Milk ejection and neurohypophysial function. Endocrinology 9, IX (1952b).Google Scholar
  93. —: Sympathetico-adrenal inhibition of the neurohypophysial milk-ejection mechanism. J. Endocr. 9, 7–18 (1953a).PubMedCrossRefGoogle Scholar
  94. —: Milk ejection and neurohypophysial function. J. Endocr. 9, IX (1953b).PubMedGoogle Scholar
  95. —: Milk ejection resulting from mechanical stimulation of mammary myoepithelium in the rabbit. Nature (Lond.) 173, 450–451 (1954a).CrossRefGoogle Scholar
  96. —: The hypothalamus and the mechanism of sympathetico-adrenal inhibition of milk-ejection. J. Endocr. 11, IV (1954b).Google Scholar
  97. —: The hypothalamus and the mechanism of sympathetico-adrenal inhibition of milk-ejection. J. Endocr. 12, 15–28 (1955a).PubMedCrossRefGoogle Scholar
  98. —: Neurohormonal mechanisms in emotional inhibition of milk-ejection. J. Endocr. 12, 29–37 (1955b).PubMedCrossRefGoogle Scholar
  99. —: The posterior pituitary gland in relation to reproduction and lactation. J. Endocr. 11, 151–155 (1955c).Google Scholar
  100. —: The motility and reactivity of the oestrogenized rabbit uterus in vivo;with comparative observations on milk-ejection. J. Endocr. 16, 237–260 (1958a).PubMedCrossRefGoogle Scholar
  101. —: On the mechanism of labour in the rabbit. J. Endocr. 16, 261–276 (1958b).PubMedCrossRefGoogle Scholar
  102. —: Neural control of oxytocin secretion. In: Oxytocin, pp. 24–47. Ed. by R. Caldeyro-Barcia and H. Heller. Oxford: Pergamon Press 1961.Google Scholar
  103. —, and H. B. Van Dyke: The effects of highly purified posterior pituitary principles on the lactating mammary gland of the rabbit. J. Endocr. 9, 232–235 (1953).PubMedCrossRefGoogle Scholar
  104. —, and J. D. Green: Activity of single neurones in the hypothalamus. Effect of osmotic and other stimuli. J. Physiol. (Lond.) 148, 554–569 (1959).Google Scholar
  105. —, and G.W. Harris: Milk-ejection following electrical stimulation of the pituitary stalk in rabbits. Nature (Lond.) 166, 994–995 (1950a).CrossRefGoogle Scholar
  106. —: Milk ejection following electrical stimulation of the pituitary stalk in rabbits. Colloq. int. Cent. nat. Rech. Sci. (Paris) No. 32, 157 (1950b).Google Scholar
  107. —: The neurohypophysis and “let-down” of milk. J. Physiol. (Lond.) 113, 35 P (1951).Google Scholar
  108. —: The role of the neurohypophysis in the milk-ejection reflex. J. Endocr. 8, 148–161 (1952).PubMedCrossRefGoogle Scholar
  109. —, and I.A. Silver: Milk-ejection and mammary engorgement. Proc. roy. Soc. Med. 49, 978–979 (1956).PubMedGoogle Scholar
  110. Cross, B.A., and I.A. Silver: Mammary oxygen tension and the milk-ejection mechanism. J. Endocr. 23, 375–384 (1962).PubMedCrossRefGoogle Scholar
  111. Cross, B.A., and I.A. Silver: (Unpublished). Cited by B. A. Cross. In: Oxytocin, pp. 24–47. Ed. by R. Caldeyro-Barcia and H. Heller. Oxford: Pergamon Press 1961.Google Scholar
  112. Csapo, A.: A link between “models” and living muscle. Nature (Lond.) 173,1019–1021 (1954).CrossRefGoogle Scholar
  113. —: The effects of oxytocic substances on the excitability of the uterus. In: Oxytocin, pp. 100 to 123. Ed. by R. Caldeyro-Barcia and H. Heller. London: Pergamon Press 1961.Google Scholar
  114. Dale, H.: Evidence concerning the endocrine function of the neurohypophysis and its nervous control. In: The neurohypophysis, pp. 1–9. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  115. Daniel, A.R., and K. Lederis: Effects of ether anaesthesia and haemorrhage on hormone storage and ultrastructure of the rat neurohypophysis. J. Endocr. 34, 91–104 (1966a).PubMedCrossRefGoogle Scholar
  116. —: Effects of acetylcholine on the release of neurohypophysial hormones in vitro. J. Endocr. 34, X–XI (1966b).CrossRefGoogle Scholar
  117. Daniel, E.E., H. Sehdev, and K. Robinson: Mechanisms for activation of smooth muscle. Physiol. Rev. Suppl. 5, 228–260 (1962).Google Scholar
  118. Debackere, M., and G. Peeters: The influence of vaginal distension on milk ejection and diuresis in the lactating cow. Arch. int. Pharmacodyn. 123, 462–471 (1960a).Google Scholar
  119. —: Milk ejection studied by means of a crossed-circulation technique on sheep. Naturwissenschaften 47, 189 (1960b).CrossRefGoogle Scholar
  120. —: Release of hormone induced by massage of the seminal vesicles and ampullae in the ram. Naturwissenschaften 47, 329 (1960c).CrossRefGoogle Scholar
  121. — and N. Tuyttens: Reflex release of an oxytocic hormone by stimulation of genital organs in male and female sheep studied by a cross-circulation technique. J. Endocr. 22, 321–334 (1961).PubMedCrossRefGoogle Scholar
  122. Dempsey, E. W., H. Bunting, and G.B. Wislocki: Observations on the chemical cytology of the mammary gland. Amer. J. Anat. 81, 309–333 (1947).PubMedCrossRefGoogle Scholar
  123. Denamur, R.: The hypothalamo-neurohypophysial system and the milk-ejection reflex. Dairy Sci. Abstr. 27, 193–224, 263-280 (1965).Google Scholar
  124. —, and J. Martinet: Sensibilité de la glande mammaire de la chèvre aux hormones posthypo-physaires. C.R. Soc. Biol. (Paris) 147, 1217–1220 (1953).Google Scholar
  125. —: Les stimulus nerveux mammaires sont-ils nécessaires a l’entretien de la lactation chez la Chèvre. C.R. Acad. Sci. (Paris) 248, 743–745; 860-862 (1959a).Google Scholar
  126. —: Le rôle du système nerveux de la glande mammaire dans l’entretien de la lactation. Arch. Sci. Physiol. 13, 271–352 (1959b).Google Scholar
  127. —: Physiological mechanisms concerned in the maintenance of lactation in the goat and sheep. Nature (Lond.) 185, 252–253 (1960).CrossRefGoogle Scholar
  128. —: Action de l’oxytocine sur la sécrétion du lait de brebis. Ann. Endocr. (Paris) 22, 777 to 781 (1961).Google Scholar
  129. Dettelbach, H.R.: A method for assaying small amounts of antidiuretic substance with notes on some properties of vasopressin. Amer. J. Physiol. 192, 379–386 (1958).PubMedGoogle Scholar
  130. Dicker, S.E.: A method for the assay of very small amounts of antidiuretic activity with a note on the antidiuretic titre of rat’s blood. J. Physiol. (Lond.) 122, 149–157 (1953).Google Scholar
  131. — The fate of the antidiuretic activity of Pitressin in rats. J. Physiol. (Lond.) 124, 464–475 (1954).Google Scholar
  132. —: The effects of methylpentynol on ethanol drinking and on water metabolism in rats. J. Physiol. (Lond.) 144, 138–147 (1958).Google Scholar
  133. —: Release and metabolism of the neurohypophysial hormones. J. Pharm. Pharmacol. 13, 449–469 (1961).PubMedCrossRefGoogle Scholar
  134. —: Release of vasopressin and oxytocin from isolated pituitary glands of adult and newborn rats. J. Physiol. (Lond.) 185, 429–444 (1966).Google Scholar
  135. Dikshit, B. B.: The production of cardiac irregularities by excitation of the hypothalamic centres. J. Physiol. (Lond.) 81, 382–394 (1934).Google Scholar
  136. —: Action of acetylcholine on the “sleep centre.” J. Physiol. (Lond.) 83, 42 P (1935).Google Scholar
  137. Van Dongen, C.G., and R.L. Hays: A sensitive in vitro assay for oxytocin. Endocrinology 78, 1–6 (1966).PubMedCrossRefGoogle Scholar
  138. Douglas, W. W.: A possible mechanism of neurosecretion. Release of vasopressin by depolarization and its dependence on calcium. Nature (Lond.) 197, 81–82 (1963).CrossRefGoogle Scholar
  139. —, and A.M. Poisner: On the mode of action of acetylcholine in evoking adrenal medullary secretion. Increased uptake of calcium during the secretory response. J. Physiol. (Lond.) 162, 385–392 (1962a).Google Scholar
  140. —: Importance of calcium for acetylcholine-evoked salivary secretion. Nature (Lond.) 196, 379–380 (1962b).CrossRefGoogle Scholar
  141. —: Release of vasopressin from the rat’s neurohypophysis in vitro. J. Physiol. (Lond.) 167, 55 P (1963).Google Scholar
  142. Douglas, W.W., and A.M. Poisner: Stimulus-secretion coupling in a neurosecretory organ. Therole of calcium on the release of vasopressin from the neurohypophysis. J. Physiol (Lond.) 172, 1–18 (1964a).Google Scholar
  143. —: Calcium movement in the neurohypophysis of the rat and its relation to the release of vasopressin. J. Physiol. (Lond.) 172, 19–30 (1964b).Google Scholar
  144. Drabarek, S.: Analogs of oxytocin containing glycine in place of tyrosine, isoleucine, or glutamine. J. Amer. chem. Soc. 86, 4477–4481 (1964).CrossRefGoogle Scholar
  145. Duggan, A.W., and G.W. Reed: Hypothalamus and oxytocin. Nature (Lond.) 181, 1278 to 1279 (1958).CrossRefGoogle Scholar
  146. Duke, H.N., and M. Pickford: Observations on the action of acetylcholine and adrenaline on the hypothalamus. J. Physiol. (Lond.) 114, 325–332 (1951).Google Scholar
  147. —, and J. A. Watt: The immediate and delayed effects of diisopropylfluorophosphate injected into the supraoptic nuclei of dogs. J. Physiol. (Lond.) 111, 81–88 (1950).Google Scholar
  148. J. A. Watt —: Antidiuretic action of morphine. Its site and mode of action in the hypothalamus of the dog. Quart. J. exp. Physiol. 36, 149–158 (1951).Google Scholar
  149. Durbin, R.P., and D.H. Jenkinson: The calcium dependence of tension development in depolarized smooth muscle. J. Physiol. (Lond.) 157, 90–96 (1961).Google Scholar
  150. Van Dyke, H.B., K. Adamsons, Jr., and S.L. Engel: Aspects of the biochemistry and physiology of the neurohypophyseal hormones. Recent Progr. Hormone Res. 11, 1–35 (1955).Google Scholar
  151. —, and R.G. Ames: Alcohol diuresis. Acta endocr. (Kbh.) 7, 110–121 (1951).Google Scholar
  152. —, B.F. Chow, R.O. Greep, and A. Rothen: The isolation of a protein from the pars neuralis of the ox pituitary with constant oxytocic, pressor and diuresis inhibiting activities. J. Pharmacol, exp. Ther. 74, 190–209 (1942).Google Scholar
  153. Eayrs, J.T., and R.M. Baddeley: Neural pathways in lactation. J. Anat. (Lond.) 90, 161 to 171 (1956).Google Scholar
  154. —, and J. A. Edwardson: Neuroendocrine interactions in the maintenance of lactation. Acta endocr. (Kbh.) Suppl. 100, 154 (1965).Google Scholar
  155. Edman, K.A.P., and H.O. Schild: Interactions of acetylcholine, adrenaline and magnesium with calcium in the contraction of depolarized rat uterus. J. Physiol. (Lond.) 155, 10–11 (1961a).Google Scholar
  156. —: Interaction of acetylcholine, calcium and depolarization in the contraction of smooth muscle. Nature (Lond.) 190, 350–353 (1961b).CrossRefGoogle Scholar
  157. —: The need for calcium in the contractile responses induced by acetylcholine and potassium in the rat uterus. J. Physiol. (Lond.) 161, 424–441 (1962).Google Scholar
  158. Eggleton, M. G.: The effect of nicotine on the diuresis induced by ethyl alcohol. J. Physiol. (Lond.) 108, 482–490 (1949).Google Scholar
  159. Ely, F., and W.E. Petersen: Factors involved in the ejection of milk. In: Report of Proceedings of the 32nd Annual Meeting; American Society of Animal Production, p. 80, 1939.Google Scholar
  160. W.E. Petersen —: The ejection of milk from the mammary gland. J. Dairy Sci. 23, 536–537 (1940).Google Scholar
  161. W.E. Petersen —: Factors involved in the ejection of milk. J. Dairy Sci. 24, 211–223 (1941).CrossRefGoogle Scholar
  162. Evans, D.H.L., and H.O. Schild: Mechanism of contraction of smooth muscle by drugs. Nature (Lond.) 180, 341–342 (1957).CrossRefGoogle Scholar
  163. Everett, J.W.: Luteotrophic function of autografts of the rat hypophysis. Endocrinology 54, 685–690 (1954).PubMedCrossRefGoogle Scholar
  164. Fang, H.S., H.M. Liu, and S.C. Wang: Liberation of antidiuretic hormone following hypo-thalamic stimulation in the dog. Amer. J. Physiol. 202, 212–216 (1962).PubMedGoogle Scholar
  165. Feldberg, W.: The role of acetylcholine in the central nervous system. Brit. med. Bull. 6, 312–321 (1949).Google Scholar
  166. —, and M. Vogt: Acetylcholine synthesis in different regions of the central nervous system. J. Physiol. (Lond.) 107, 372–381 (1948).Google Scholar
  167. Ferguson, J.K.W.: Study of motility of intact uterus at term. Surg. Gynec. Obstet. 73, 359–366 (1941).Google Scholar
  168. Findlay, J.D., and D. Robertshaw: The role of the sympatho-adrenal system in the control of sweating in the ox (Bos taurus). J. Physiol. (Lond.) 179, 285–297 (1965).Google Scholar
  169. Fisher, C., W.R. Ingram, and S.W. Ranson: Diabetes insipidus. Michigan: Edwards Bros. Inc. 1938.Google Scholar
  170. Fitzpatrick, R.J.: On oxytocin and uterine function. In: The neurohypophysis. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  171. —: The estimation of small amounts of oxytocin in blood. In: Oxytocin, pp. 358–379. Ed. by R. Caldeyro-Barcia and H. Heller. Oxford: Pergamon Press 1961.Google Scholar
  172. —, and C. F. Walmsley: The concentration of oxytocin in bovine blood during parturition. J. Physiol. (Lond.) 163, 13P (1962).Google Scholar
  173. —: The release of oxytocin during parturition. In: Advances in Oxytocin Research. Ed. by J.H.M. Pinkerton, pp. 51–73. London: Pergamon Press 1965.Google Scholar
  174. Folley, S. J.: Endocrine control of the mammary gland. Brit. med. Bull. 5,135–141 (1947 a).Google Scholar
  175. —: The nervous system and lactation. Brit. med. Bull. 5, 142–148 (1947b).Google Scholar
  176. —: Neuro-hormonal mechanisms in lactation. J. Endocr. 6, XVI–XXV (1949).CrossRefGoogle Scholar
  177. —: Aspects of pituitary-mammary gland relationships. Recent Progr. Hormone Res. 7, 107–131 (1952).Google Scholar
  178. —: The physiology of suckling and milking. In: Physiology and biochemistry of lactation. Edinburgh: Oliver & Boyd 1956.Google Scholar
  179. —, and G. S. Knaggs: Observations on oxytocin release in ruminants. J. Reprod. Fertil. 8, 265–266 (1964).CrossRefGoogle Scholar
  180. —, Oxytocin levels in the blood of ruminants with special reference to the milking stimulus. In: Advances in oxytocin research, pp. 37–49. Ed. by J.H.M. Pinkerton. Oxford: Per-gamon Press 1965a.Google Scholar
  181. —: Levels of oxytocin in the jugular vein blood of goats during parturition. J. Endocr. 33, 301–315 (1965b).PubMedCrossRefGoogle Scholar
  182. —,: Milk-ejection activity (oxytocin) in the external jugular vein blood of the cow, goat and sow, in relation to the stimulus of milking or suckling. J. Endocr. 34, 197–214 (1966).PubMedCrossRefGoogle Scholar
  183. Ford, H.D., and S. Kantounis: Localization of neurosecretory secretions and pathways in male albino rabbit. J. comp. Neurol. 108, 91–101 (1957).PubMedCrossRefGoogle Scholar
  184. Fosker, A.P., and H.D. Law: Oxytocin and 4-glycine oxytocin. J. chem. Soc. 907,4922–4929 (1965).CrossRefGoogle Scholar
  185. Friedman, E.A.: Direct measurement of milk-ejection pressure in unanaesthetized lactating humans. Amer. J. Obstet. Gynec. 80, 119–123 (1960).PubMedGoogle Scholar
  186. —, and M. R. Sachtleben: Oxytocin in lactation: clinical applications. Amer. J. Obstet. Gynec. 82, 846–855 (1961).PubMedGoogle Scholar
  187. Fuchs, A.R., and G. Wagner: Quantitative aspects of release of oxytocin by suckling in unanaesthetized rabbits. Acta endocr. (Kbh.) 44, 581–592 (1963a).Google Scholar
  188. —: The effect of ethyl alcohol on the release of oxytocin in rabbits. Acta endocr. (Kbh.) 44, 593–605 (1963b).Google Scholar
  189. —: Effect of alcohol on release of oxytocin. Nature (Lond.) 198, 92–94 (1963 c).CrossRefGoogle Scholar
  190. Gaines, W.L.: A contribution to the physiology of lactation. Amer. J. Physiol. 38, 285–312 (1915).Google Scholar
  191. —, and F. P. Sanmann: The quantity of milk present in the udder of the cow at milking time. Amer. J. Physiol. 80, 691–701 (1927).Google Scholar
  192. Gaitan, E., E. Cobo, and M. Mizrachi: Evidence for the differential secretion of oxytocin and vasopressin in man. J. clin. Invest. 43, 2310–2322 (1964).PubMedCrossRefGoogle Scholar
  193. Gale, C.C., and B. Larsson: Radiation induced “hypophysectomy” and hypothalamic lesions in lactating goats. Acta physiol. scand. 59, 299–318 (1963).PubMedCrossRefGoogle Scholar
  194. —, S. Taleisnik, H.M. Friedman, and S.M. McCann: Hormonal basis for impairments in milk synthesis and milk ejection following hypothalamic lesions. J. Endocr. 23, 303–316 (1961).PubMedCrossRefGoogle Scholar
  195. Gavin, W.: On the effects of administration of extracts of pituitary body and corpus luteum to milch cows. Quart. J. exp. Physiol. 6, 13–16 (1913).Google Scholar
  196. Gerschenfeld, G., H. M. Tramezzani, and E. D. P. De Robertis: Ultrastructure and function in neurohypophysis of the toad. Endocrinology 66, 741–762 (1960).PubMedCrossRefGoogle Scholar
  197. Ginsbttrg, M., and L.M. Brown: Effect of anaesthetics and haemorrhage on the release of neurohypophysial antidiuretic hormone. Brit. J. Pharmacol. 11, 236–244 (1956).Google Scholar
  198. Gofman, M.A.: Reflex regulation of milk ejection. Trans. Inst. Fiziol. (Moska). 4, 22–33 (1955) (in russian).Google Scholar
  199. Gomez, E.T.: The relation of the posterior hypophysis in the maintenance of lactation in hypophysectomized rats. J. Dairy Sci. 22, 488 (1939).Google Scholar
  200. —: The effect of post hypophyseal extract on lactation in hypophysectomized post-gravid rats. J. Dairy Sci. 23, 537–538 (1940).Google Scholar
  201. Gowen, J.W., and E.R. Tobey: Udder size in relation to milk secretion. J. gen. Physiol. 10, 949–960 (1927).PubMedCrossRefGoogle Scholar
  202. Greving, R.: Zur Anatomie, Physiologie und Pathologie der vegetativen Zentren im Zwischenhirn. Z. ges. Anat. 24, 348–413 (1923).Google Scholar
  203. —: Beitrag zur Innervation der Hypophyse. Klin. Wschr. 4, 2181–2182 (1925).Google Scholar
  204. —: Beiträge zur Anatomie der Hypophyse und ihrer Funktion. I. Eine Faserverbindung zwischen Hypophyse und Zwischenhirnbasis (Tr.-Supraoptico-hypophysens). Dtsch. Z. Nervenheilk. 89, 179–195 (1926).CrossRefGoogle Scholar
  205. —: Das Zwischenhirn-Hypophysensystem. Seine Morphologie, Phylogenese und klinische Bedeutung. Klin. Wschr. 7, 734–737 (1928).CrossRefGoogle Scholar
  206. Grewal, R. S., F. C. Lu, and M. G. Allmark: The release of posterior pituitary hormone in the rat by nicotine and lobeline. J. Pharmacol, exp. Ther. 135, 84–88 (1962).Google Scholar
  207. Grosvenor, C. E.: Some effects of ergotamine on milk-ejection in lactating rat. Proc. Soc. exp. Biol. (N.Y.) 91, 294–296 (1956a).Google Scholar
  208. —: Some effects of ergotamine tartrate upon lactation in the rat. Amer. J. Physiol. 186, 211–215 (1956b).PubMedGoogle Scholar
  209. —: Lactation in rat mammary glands after spinal cord section. Endocrinology 74, 548–553 (1964).PubMedCrossRefGoogle Scholar
  210. —: Contraction of lactating rat mammary gland in response to direct mechanical stimulation. Amer. J. Physiol. 208, 214–218 (1965a).PubMedGoogle Scholar
  211. —: Evidence that exteroceptive stimuli can release prolactin from pituitary gland of lactating rat. Endocrinology 76, 340–342 (1965b).PubMedCrossRefGoogle Scholar
  212. —: Effect of nursing and stress upon prolactin-inhibiting activity of the rat hypothalamus. Endocrinology 77, 1037–1042 (1965c).PubMedCrossRefGoogle Scholar
  213. —, and C.W. Turner: Ergotamine, oxytocin and milk let-down in lactating rat. Proc. Soc. exp. Biol. (N.Y.) 93, 466–468 (1956).Google Scholar
  214. —: A method for evaluation of milk “let-down” in lactating rat. Proc. Soc. exp. Biol. (N.Y.) 94, 816–817 (1957a).Google Scholar
  215. —: Estimation of amount of oxytocin released as result of nursing stimuli in lactating rat. Proc. Soc. exp. Biol. (N.Y.) 95, 131–133 (1957b).Google Scholar
  216. —: Evidence for adrenergic and cholinergic components in milk let-down reflex in lactating rat. Proc. Soc. exp. Biol. (N.Y.) 97, 719–722 (1957c).Google Scholar
  217. —: Milk let-down activity of synthetic oxytocin (syntocinon) and relaxin in lactating rats. Proc. Soc. exp. Biol. (N.Y.) 97, 189–190 (1958a).Google Scholar
  218. —: Effect of oxytocin and blocking agents upon pituitary lactogen discharge in lactating rats. Proc. Soc. exp. Biol. (N.Y.) 97, 463–465 (1958b).Google Scholar
  219. Gunther, M.: The posterior pituitary and labour. Brit. med. J. 1, 567 (1948).PubMedCrossRefGoogle Scholar
  220. Guttmann, ST., and R.A. Boissonnas: Synthese de la Ser4-oxytocine, de l’Ala4-oxytocine, de la Ser5-oxytocine et de l’Ala-oxytocine. Helv. chim. Acta 46, 1626–1636 (1963).CrossRefGoogle Scholar
  221. Haeger, K., and D. Jacobsohn: A contribution to the study of milk ejection in women. Acta physiol. scand. 30, Suppl. 111, 152–160 (1953).Google Scholar
  222. Haldar, J.: The problem of independent release of the neurohypophysial hormones. University of London Ph. D. Thesis 1966.Google Scholar
  223. Hammond, J.: The physiology of milk and butter fat secretion. Vet. Rec. 16, 519–527 (1936).Google Scholar
  224. Harris, G.W.: The innervation and actions of the neurohypophysis; an investigation using the method of remote control stimulation. Phil. Trans. B. 232, 385–441 (1947).CrossRefGoogle Scholar
  225. —: The central nervous system, neurohypophysis and milk ejection. Proc. roy. Soc. B. 149, 336–353 (1958).CrossRefGoogle Scholar
  226. —, and D. Jacobsohn: Functional grafts of anterior pituitary. Proc. roy. Soc. B. 139, 263–276 (1951).CrossRefGoogle Scholar
  227. —, and V. R. Pickles: Reflex stimulation of neurohypophysis (posterior pituitary gland) and nature of posterior pituitary hormone(s). Nature (Lond.) 172, 1049 (1953).CrossRefGoogle Scholar
  228. Haun, C.K.: Induction of lactation in the rabbit with oxytocin. Anat. Rec. 133, 286–287 (1959).Google Scholar
  229. Hawker, R.W.: Oxytocin and an unidentified oxytocic substance in extracts of blood. In: Oxytocin, pp. 425–436. Ed. by H. Heller and R. Caldeyro-Barcia. Oxford: Pergamon Press 1961.Google Scholar
  230. —, and P. A. Robertson: Some properties of an oxytocic substance found in blood extracts. Endocrinology 63, 242–249 (1958).PubMedCrossRefGoogle Scholar
  231. —, C.F. Walmsley, V.S. Roberts, and P.A. Robertson: Oxytocin and oxytocic substance in blood extracts before and after hypothalamic stimulation in rats. Med. J. Aust. 2, 524–525 (1959).Google Scholar
  232. Hays, R.L., and N.L. Vandemark: Effect of stimulation of the reproductive organs of cow on release of oxytocin-like substance. Endocrinology 52, 634–637 (1953).PubMedCrossRefGoogle Scholar
  233. Heaney, N. S.: A contribution to the study of pituitrin. Surg. Gynec. Obstet. 17, 103–109 (1913).Google Scholar
  234. Hebb, C. O., and J.L. Linzell: Some conditions affecting the blood flow through the perfused mammary gland, with special reference to the action of adrenaline. Quart. J. exp. Physiol. 36, 159–175 (1951).Google Scholar
  235. Holland, R.C., and B.A. Cross: (unpublished). Quoted by B.A. Cross. In: Oxytocin, pp. 24–47. Ed. by R. Caldeyro-Barcia and H. Heller. London: Pergamon Press 1961.Google Scholar
  236. —, and C.H. Sawyer: Milk ejection in the rabbit in response to intracarotid injections of hypertonic saline. Fed. Proc. 17, 73 (1958).Google Scholar
  237. C.H. Sawyer —: Effects of intracarotid injections of hypertonic solutions on the neurohypophyseal milk-ejection mechanism. Amer. J. Physiol. 196, 791–795 (1959a).PubMedGoogle Scholar
  238. C.H. Sawyer —: EEG correlates of osmotic activation of the neurohypophyseal milk-ejection mechanism. Amer. J. Physiol. 196, 796–802 (1959b).PubMedGoogle Scholar
  239. Holmes, U.C., and F.G.W. Knowles: Synaptic vesicles in the neurohypophysis. Nature (Lond.) 185, 710–711 (1960).CrossRefGoogle Scholar
  240. Hope, D.B., V.V.S. Murti, and V. Du Vigneaud: A highly potent analogue of oxytocin, desamino-oxytocin. J. biol. Chem. 237, 1563–1566 (1962).PubMedGoogle Scholar
  241. Huang, J.J.: A vagus-post-pituitary reflex. Chin. J. Physiol. 13, 367–382 (1938).Google Scholar
  242. Huguenin, R.C., and R.A. Boissonnas: (1963, unpublished). Quoted by B. Berde and R.A. Boissonnas. In: The pituitary gland, pp. 624–661. Ed. by G.W. Harris and B.T. Donovan. London: Butterworths 1966.Google Scholar
  243. Hynek, B., J. Bílek, and M. Lis: Introduction of a permanent electrode into the pituitary gland of the cow. Influence of electrical stimulation on milk ejection. Nature (Lond.) 208, 690–691 (1965).CrossRefGoogle Scholar
  244. Ingelbrecht, P.: Influence du système nerveux central sur la mamelle lactante chez le rat blanc. C.R. Soc. Biol. (Paris) 120, 1369–1371 (1935).Google Scholar
  245. Isbister, C.: A clinical study of the draught reflex in human lactation. Arch. Dis. Childh. 29, 66–72 (1954).PubMedCrossRefGoogle Scholar
  246. Ishikawa, T., K. Koizumi, and C. McBrooks: Electrical activity recorded from the pituitary stalk of the cat. Amer. J. Physiol. 210, 427–431 (1966).PubMedGoogle Scholar
  247. Jaquenoud, P.-A., and R.A. Boissonnas: Synthèse de la Phe2-oxytocine. Helv. chim. Acta 42, 788–793 (1959).CrossRefGoogle Scholar
  248. —: Synthèse de la Ileu8-oxytocine et de la Val8-oxytocine, deux analogues de l’oxytocine modifies dans la chaine laterale. Helv. chim. Acta. 44, 113–122 (1961).CrossRefGoogle Scholar
  249. —: Synthèse de l’Asp (NH2)4-oxytocine, de la Glu (NH2)4-oxytocine et de l’Asp (NH2)4-Glu (NH2) 52-oxytocine. Helv. chim. Acta. 45, 1601–1607 (1962).CrossRefGoogle Scholar
  250. —: (1963, unpublished). Quoted by B. Berde and R.A. Boissonnas. In: The pituitary gland, pp. 624–661. Ed. by G. W. Harris and B. T. Donovan. London: Butterworths 1966.Google Scholar
  251. —: (1964, unpublished). Quoted by B. Berde. In: The pituitary gland, pp. 624–661. Ed. by G.W. Harris and B.T. Donovan. London: Butterworths 1967.Google Scholar
  252. Jošt, K., J. Rudinger, and F. Šorm: Amino acids and peptides. XXXVIII. Structural analogues of oxytocin modified in position 2 of the peptide chain. Preparation and some chemical and biological properties. Coll. Czechoslov. Chem. Commun. 28, 1706–1714 (1963 a).Google Scholar
  253. F. Šorm —: Amino acids and peptides. XXXIX. Analogues of oxytocin exerting protracted biological effects. Coll. Czechoslov. Chem. Commun. 28, 2021–2030 (1963b).Google Scholar
  254. Jung, H.: The effect of oxytocin on the mechanism of uterine excitation. In: Oxytocin, pp. 87–99. Ed. by R. Caldeyro-Barcia and H. Heller. London: Pergamon Press 1961.Google Scholar
  255. Kalliala, H., and M. J. Karvonen: Antidiuresis during suckling in lactating women. Ann. Med. exp. Fenn. 29, 233–241 (1951).PubMedGoogle Scholar
  256. Kalliala, H., M. J. Karvonen —, and V. Leppänen: Release of antidiuretic hormone during nursing in the dog. Ann. Med. exp. Fenn. 30, 96–107 (1952).PubMedGoogle Scholar
  257. Kamm, O., T.B. Aldrich, I.W. Grote, L.W. Rowe, and E.P. Bugbee: The active principles of the posterior lobe of the pituitary gland. J. Amer. chem. Soc. 50, 573–601 (1928).CrossRefGoogle Scholar
  258. Kandel, E. R.: Electrical properties of hypothalamic neuroendocrine cells. J. gen. Physiol. 47, 691–717 (1964).PubMedCrossRefGoogle Scholar
  259. Kay, H.D.: The science and practice of milking. Sci. Progr. 37, 609–624 (1949).PubMedGoogle Scholar
  260. —: Milk liberation. Advanc. Sci. 12, 83–88 (1955).Google Scholar
  261. Kiernon, J. A.: Carboxylic esterases of the hypothalamus and neurohypophysis of the hedgehog. J. roy. micr. Soc. 83, 297–306 (1964).CrossRefGoogle Scholar
  262. Knaggs, G. S.: Blood oxytocin levels in the cow during milking and in the parturient goat. J. Endocr. 26, XXIV–XXV (1963).Google Scholar
  263. Koella, W.: Die Beeinflussung der Harnsekretion durch hypothalamische Reizung. Helv. physiol. pharm. Acta. 7, 498–514 (1949).Google Scholar
  264. Koelle, G. B.: A proposed dual neurohumoral role of acetylcholine: its functions at the pre-and postsynaptic sites. Nature (Lond.) 190, 208–211 (1961).CrossRefGoogle Scholar
  265. —: A new general concept of the neurohumoral functions of acetylcholine and acetylcholine-sterase. J. Pharm. Pharmacol. 14, 65–90 (1962).PubMedCrossRefGoogle Scholar
  266. —, and C. N. Geesey: Localization of acetylcholinesterase in the neurohypophysis and its functional implications. Proc. Soc. exp. Biol. (N.Y.) 106, 625–628 (1961).Google Scholar
  267. Koizumi, K., T. Ishikawa, and C. McC. Brooks: Control of activity of neurones in the supraoptic nucleus. J. Neurophysiol. 27, 878–892 (1964).PubMedGoogle Scholar
  268. Konzett, H., and B. Berde: The biological activity of a new analogue of oxytocin in which the tyrosyl group is replaced by phenylalanyl. Brit. J. Pharmacol. 14, 133–136 (1959).PubMedGoogle Scholar
  269. Krejčí, L., I. Poláček, B. Kupkova, and J. Rudinger: Dose-response analysis of the action of some oxytocic analogues on the isolated uterus; the effect of ions. In: Oxytocin, vaso-pressin and their structural analogues. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacological Meeting, 117–123. Oxford: Pergamon Press 1964.Google Scholar
  270. Kullandeb, S.: Studies on the hormonal control of the milk-ejection activity in lactating rabbits. Acta endocr. (Kbh.) 44, 313–324 (1963).Google Scholar
  271. Kuriyama, H., and A. Csapo: A study of the parturient uterus with the microelectrode technique. Endocrinology 68, 1010–1025 (1961).PubMedCrossRefGoogle Scholar
  272. Labouche, C.: Action des extraits posthypophysaires à activité ocytocique sur la retention physiologique du lait chez la femelle bovine en milieu tropical. C.R. Soc. Biol. (Paris) 151, 1171–1176 (1957).Google Scholar
  273. Langer, E., and S. Huhn: Der Submikroskopische Bau der Myoepithelzelle. Z. Zellforsch. Abt. Histochem. 47, 507–516 (1958).CrossRefGoogle Scholar
  274. Laqueur, G. L.: Neurosecretory pathways between the hypothalamic paraventricular nucleus and the neurohypophysis. J. comp. Neurol. 101, 543–554 (1954).PubMedCrossRefGoogle Scholar
  275. Laruelle, M. L.: Le système végétatif méso-diencéphalique partie anatomique. Rev. Neurol. 1, 809–842 (1934).Google Scholar
  276. Law, H.D., and V. Du Vigneaud: Synthesis of 2-p-methoxyphenylalanine oxytocin (O-methyl-oxytocin) and some observations on its pharmacological behavior. J. Amer. chem. Soc. 82, 4579–4581 (1960).CrossRefGoogle Scholar
  277. Lederis, K.: Vasopressin and oxytocin in the mammalian hypothalamus. Gen. comp. Endocr. 1, 80–89 (1961).PubMedCrossRefGoogle Scholar
  278. —: The distribution of vasopressin and oxytocin in hypothalamic nuclei. In: Neurosecretion, pp. 227–235. Ed. by H. Heller and R.B. Clark. Mem. Soc. Endocr. London: Pergamon Press 1962.Google Scholar
  279. —: Fine structure and hormone content of the hypothalamo-neurohypophysial system of the rainbow trout (Salmo irideus) exposed to sea water. Gen. comp. Endocr. 4, 638–661 (1964).CrossRefGoogle Scholar
  280. —: An electron-microscopical study of the human neurohypophysis. Z. Zellforsch. Abt. Histochem. 65, 847–868 (1965).CrossRefGoogle Scholar
  281. —, and A. Livingston: Acetylcholine content in the rabbit neurohypophysis. J. Physiol. (Lond.) 185, 37–38 (1966).Google Scholar
  282. Levy, B., and S. Tozzi: The adrenergic receptive mechanism of the rat uterus. J. Pharmacol. exp. Ther. 142, 178–184 (1963).PubMedGoogle Scholar
  283. Lewis, A. A. G., and T. M. Chalmers: A nicotine test for the investigation of diabetes insipidus. 10, 137–144 (1951).Google Scholar
  284. Linzell, J. L.: Vasomotor nerve fibres to the mammary glands of the cat and dog. Quart. J. exp. Physiol. 35, 295–319 (1950).Google Scholar
  285. —: The silver staining of myoepithelial cells, particularly in the mammary gland and their relation to the ejection of milk. J. Anat. (Lond.) 86, 49–57 (1952).Google Scholar
  286. —: The contractility of the alveoli of the mammary gland. J. Physiol. (Lond.) 123, 32P (1954).Google Scholar
  287. —: Some observations on the contractile tissue of the mammary glands. J. Physiol. (Lond.) 130, 257–267 (1955).Google Scholar
  288. —: Evidence against a parasympathetic innervation of the mammary glands. J. Physiol. (Lond.) 133, 66–67P (1956).Google Scholar
  289. —: Physiology of the mammary glands. Physiol. Rev. 39, 534–576 (1959).PubMedGoogle Scholar
  290. —: Transplantation of mammary glands. Nature (Lond.) 188, 596–598 (1960).CrossRefGoogle Scholar
  291. —: Recent advances in the physiology of the udder. Vet. Ann. 2, 44–53 (1961).Google Scholar
  292. —: Some effects of denervating and transplanting mammary glands. Quart. J. exp. Physiol. 48, 34–60 (1963).Google Scholar
  293. Macaulay, M.H.I.: Factors involved in the ejection of milk from the mammary gland. Coll. int. Cent. nat. Rech. Sci. 32, 145–155 (1950).Google Scholar
  294. Mackenzie, K.: An experimental investigation of the mechanism of milk secretion, with special reference to the action of animal extracts. Quart. J. exp. Physiol. 4, 305–330 (1911).Google Scholar
  295. Maclean, P. D.: The limbic system with respect to self-preservation and the preservation of the species. J. nerv. ment. Dis. 127, 1–11 (1958).PubMedCrossRefGoogle Scholar
  296. —, D.W. Ploog, and B.W. Robinson: Circulatory effects of limbic stimulation, with special reference to the male genital organ. Physiol. Rev. 40, Suppl. 4, 105–112 (1960).Google Scholar
  297. Marshall, J.M., and A.I. Csapo: Hormonal and ionic influences on the membrane activity of uterine smooth muscle cells. Endocrinology 68, 1026–1035 (1961).PubMedCrossRefGoogle Scholar
  298. McCann, S.M., R. Mack, and C. Gale: The possible role of oxytocin in stimulating the release of prolactin. Endocrinology 64, 870–888 (1959).PubMedCrossRefGoogle Scholar
  299. Meites, J.: Hormonal prolongation of lactation for 75 days after litter removal in parturient rats. Fed. Proc. 18, 103 (1959).Google Scholar
  300. —, and T.F. Hopkins: Mechanism of action of oxytocin in retarding mammary involution. Study in hypophysectomized rats. J. Endocr. 22, 207–213 (1961).PubMedCrossRefGoogle Scholar
  301. —, and C.S. Nicoll: Hormonal prolongation of lactation for 75 days after litter withdrawal in postpartum rats. Endocrinology 65, 572–579 (1959).CrossRefGoogle Scholar
  302. Mettes, J., C. S. Nicoll, and P.K. Talwalker: Induction and maintenance of lactation in rats by electricalstimulation of uterine cervix. Proc. Soc. exp. Biol. (N.Y.) 102, 127–131 (1959).Google Scholar
  303. —: Local action of oxytocin on mammary glands of postpartum rats after litter removal. Proc. Soc. exp. Biol. (N.Y.) 103, 118–122 (1960).Google Scholar
  304. —, and T. F. Hopkins: Induction and maintenance of mammary growth and lactation by neurohormones, drugs, nonspecific stresses and hypothalamic tissue. Proc. 1st Int. Congr. Endocr., Copenhagen, Abstr. No. 573, 1137, 1960.Google Scholar
  305. —, P.K. Talwalker, and C.S. Nicoll: Failure of oxytocin to initiate mammary secretion in rabbits or rats. Proc. Soc. exp. Biol. (N.Y.) 105, 467–469 (1960).Google Scholar
  306. —, and C. W. Turner: Studies concerning the mechanism controlling the initiation of lactation at parturition. Endocrinology 30, 726–733 (1942).CrossRefGoogle Scholar
  307. Mena, F., and C. Beyer: Effect of high spinal section on established lactation in the rabbit. Amer. J. Physiol. 205, 313–316 (1963).PubMedGoogle Scholar
  308. Méndez-Bauer, C., H.M. Cabot, and R. Caldeyro-Barcia: A new test for the biological assay of oxytocin. Science 132, 299–300 (1960).PubMedCrossRefGoogle Scholar
  309. Moon, U.C., and C. W. Turner: Effect of reserpine on oxytocin and lactogen discharge in lactating rats. Proc. Soc. exp. Biol. (N.Y.) 101, 332–335 (1959).Google Scholar
  310. Moore, R.D., and M.X. Zarrow: Contraction of the rabbit mammary strip in vitro in response to oxytocin. Acta endocr. (Kbh.) 48, 186–198 (1965).Google Scholar
  311. Morita, H., T. Ishibashi, and S. Yamashita: Synaptic transmission in neurosecretory cells. Nature (Lond.) 191, 183 (1961).CrossRefGoogle Scholar
  312. Munsick, R. A.: Effect of magnesium ion on the response of the rat uterus to neurohypophysial hormones and analogues. Endocrinology 66, 451–457 (1960).CrossRefGoogle Scholar
  313. —, and C. Jeronimus: Effects of diethylstilboestrol and magnesium on the rat oxytocic potencies of some neurohypophysial hormones and analogues. Endocrinology 76, 90–96 (1965).PubMedCrossRefGoogle Scholar
  314. Nesvadba, H., J. Honzl, and J. Rudinger: Amino acids and peptides. XXXVII. Some structural analogues of oxytocin modified in position 3 of the peptide chain: synthesis and some chemical and biological properties. Coll. Czechoslov. Chem. Commun. 28, 1691–1705 (1963).Google Scholar
  315. Newton, M., and N.R. Newton: The let-down reflex in human lactation. J. Pediat. 33, 698–704 (1948).PubMedCrossRefGoogle Scholar
  316. —: Postpartum engorgement of the breast. Amer. J. Obstet. Gynec. 61, 664–667 (1951).PubMedGoogle Scholar
  317. —: Relation of the let-down reflex to the ability to breast feed. Pediatrics 5, 726–733 (1950).PubMedGoogle Scholar
  318. Nibbelink, D.W.: Paraventricular nuclei, neurohypophysis and parturition. Amer. J. Physiol. 200, 1229–1232 (1961).PubMedGoogle Scholar
  319. Nickerson, K., R.W. Bonsnes, R.G. Douglas, P. Condliffe, and V. Du Vigneaud: Oxytocin and milk ejection. Amer. J. Obstet. Gynec. 67, 1028–1034 (1954).PubMedGoogle Scholar
  320. Nicoll, C. S., and J. Mettes: Prolongation of lactation in the rat by litter replacement. Proc. Soc. exp. Biol. (N.Y.) 101, 81–82 (1959).Google Scholar
  321. O’connor, W. J., and E.V. Verney: Effect of increased activity of sympathetic system in inhibition of water-diuresis by functional stress. Quart. J. exp. Physiol. 33, 77–90 (1945).Google Scholar
  322. Olivecrona, H.: Relation of the paraventricular nucleus to the pituitary gland. Nature (Lond.) 173, 1001 (1954).CrossRefGoogle Scholar
  323. —: Paraventricular nucleus and pituitary gland. Acta physiol. scand. 40, Suppl. 136, 1–178 (1957).Google Scholar
  324. Ott, I., and J.C. Scott: The action of infundibulin upon the mammary secretion. Proc. Soc. exp. Biol. (N.Y.) 8, 48 (1910).Google Scholar
  325. Pasetto, N.: Sul meccanismo colinergico delle ipotalamo postipofisarie. Arch. Fisiol. 52, 1–6 (1952).PubMedGoogle Scholar
  326. Pavlov, G. N.: Study of the reflex of milk-ejection in goats with the aid of localized cooling of the spinal cord. Tr. Inst. Fiziol. (Mosk.) 4, 17–21 (1955) [in russian].Google Scholar
  327. Peeters, G.: Proprietes physiologiques et pharmacologiques du trayon. Arch. int. Pharma-codyn. 77, 100–103 (1948).Google Scholar
  328. —, J.H. Bouckaert, and W. Oyaert: The influence of unilateral lumbar sympathectomy on the udder of the sheep. Arch. int. Pharmacodyn. 89, 197–203 (1952).PubMedGoogle Scholar
  329. —, and R. Coussens: The influence of the milking act on the diuresis of the lactating cow. Arch. int. Pharmacodyn. 84, 209–219 (1950).PubMedGoogle Scholar
  330. —, J.H. Bouckaert, and W. Oyaert: L’influence de la traite sur la diurèse de la vache gravide. Arch. int. Pharmacodyn. 80, 355–358 (1949).PubMedGoogle Scholar
  331. —, and W. Oyaert: Physiology of the cistern of the bovine mammary gland. Arch. int. Pharmacodyn. 79, 113–122 (1949).PubMedGoogle Scholar
  332. Peeters, G., R. Coussens, and G. Sierens: Physiology of the nerves in the bovine mammary gland. Arch. int. Pharmacodyn. 79, 75–82 (1949).PubMedGoogle Scholar
  333. —, and M. Debackere: The effect on diuresis of vaginal distension, milking and suckling in the sheep. J. Physiol. (Paris) 55, 481–493 (1963).Google Scholar
  334. —, G. Genie, and R. Coussens: The autonomic innervation of the udder in sheep and cows. Arch. int. Pharmacodyn. 85, 152–158 (1951).PubMedGoogle Scholar
  335. —, and L. Massart: La perfusion de la glande mammaire isolée. Arch. int. Pharmacodyn. 74, 83–89 (1947).PubMedGoogle Scholar
  336. —: Artificial lactation and perfusion of the bovine mammary gland. Research (Lond.) 3, 217–221 (1950).Google Scholar
  337. —, and R. Coussens: L’ejection du lait chez les bovides. Arch. int. Pharmacodyn. 75, 85–89 (1947a).PubMedGoogle Scholar
  338. R. Coussens —: L’influence du calcium sur la glande mammaire isolee. Arch. int. Pharmacodyn. 74, 151–154 (1947b).PubMedGoogle Scholar
  339. —, W. Oyaert, and R. Coussens: Plethysmography applied to the teats of the bovine mammary gland. Arch. int. Pharmacodyn. 75, 243–255 (1948).PubMedGoogle Scholar
  340. —, G. Sierens, and M. Silver: L’Expulsion du lait dans la glande mammaire bovine isolee. Ann. Endocr. (Paris) 12, 255–257 (1951).Google Scholar
  341. M. Silver —: Expulsion of milk in the isolated perfused udder of the cow. Arch. int. Pharmacodyn. 88, 413–424 (1952).PubMedGoogle Scholar
  342. —, H. Stormorken, and F. Vanschoubroek: The effect of different stimuli on milk ejection and diuresis in the lactating cow. J. Endocr. 20, 163–172 (1960).PubMedCrossRefGoogle Scholar
  343. Petersen, W. E.: Effect of certain hormones and drugs on the perfused mammary gland. Proc. Soc. exp. Biol. (N.Y.) 50, 298–300 (1942).Google Scholar
  344. —: Lactation. Physiol. Rev. 24, 340–364 (1944).Google Scholar
  345. —, and T. M. Ludwick: The humoral nature of the factor causing the let down of milk. Fed. Proc. 1, 66–67 (1942).Google Scholar
  346. —, L. G. Palmer, and C.H. Eckles: The synthesis and secretion of milk fat. Amer. J. Physiol. 90, 573–599 (1929).Google Scholar
  347. —, J.C. Shaw, and M.B. Visscher: Perfusion of the excised mammary gland as a method of studying milk secretion. J. Dairy Sci. 22, 439–440 (1939).Google Scholar
  348. M.B. Visscher —: A technique for perfusing excised bovine mammary glands. J. Dairy Sci. 24, 139–146 (1941).CrossRefGoogle Scholar
  349. Pickford, M.: The inhibitory effect of acetylcholine on water diuresis in the dog and its pituitary transmission. J. Physiol. (Lond.) 95, 226–238 (1939).Google Scholar
  350. —: The action of acetylcholine on the supraoptic nucleus of the chloralosed dog. J. Physiol. (Lond.) 106, 264–270 (1947).Google Scholar
  351. —: Milk ejection in the unanaesthetized dog. J. Physiol. (Lond.) 149, 41–42 P (1959).Google Scholar
  352. —: Factors affecting milk release in the dog and the quantity of oxytocin liberated by suckling. J. Physiol. (Lond.) 152, 515–526 (1960).Google Scholar
  353. —, and J. A. Watt: A comparison of the effect of intravenous and intracarotid injections of acetylcholine in the dog. J. Physiol. (Lond.) 114, 333–335 (1951).Google Scholar
  354. Pickles, V.R.: Blood-flow estimations as indices of mammary activity. J. Obstet. Gynaec. Brit. Emp. 60, 301–311 (1953).PubMedCrossRefGoogle Scholar
  355. Poláček, I., I. Krejčí, and J. Rudinger, Personal communication.Google Scholar
  356. Popenoe, E.A., J.G. Pierce, V. Du Vigneaud, and H.B. Van Dyke: Oxytocic activity of purified vasopressin. Proc. Soc. exp. Biol. (N.Y.) 81, 506–508 (1952).Google Scholar
  357. Ratner, A.: Studies on the relation of prolactin-inhibiting activity of the hypothalamus to pituitary prolactin release in the rat. Diss. Abstr. 26, 4771 (1966).Google Scholar
  358. —, and J. Mettes: Removal of prolactin inhibiting activity of rat hypothalamus by oestrogen, reserpine and suckling. Fed. Proc. 23, 110 (1964a).Google Scholar
  359. —: Depletion of prolacting-inhibiting activity of rat hypothalamus by estradiol or suckling stimulus. Endocrinology 75, 377–382 (1964b).PubMedCrossRefGoogle Scholar
  360. Richardson, K.C.: Some structural features of the mammary tissues. Brit. med. Bull. 5, 123–129 (1947).Google Scholar
  361. —: Contractile tissues in the mammary gland with special reference to myoepithelium in the goat. Proc. roy. Soc. B 136, 30–45 (1949).CrossRefGoogle Scholar
  362. —: The effector contractile tissues of the mammary gland. J. Endocr. 6, XXV (1950a).Google Scholar
  363. —: Structural investigation of the contractile tissues in the mammary gland. Colloq. int. Cent, nat. Rech. Sci. 32, 167–169 (1950b).Google Scholar
  364. Rioch, D., G.B. Wislocki, and J.L. O’leary: Précis of preoptic, hypothalamic and hypo-physial terminology with atlas. Res. Publ. Ass. nerv. ment. Dis. 20, 3–30 (1940).Google Scholar
  365. De Robertis, E.: Ultrastructure and function in some neurosecretory systems. In: Neuro-secretion, pp. 3–20. Ed. by H. Heller and R.B. Clark. Mem. Soc. Endocr. London: Academic Press 1962.Google Scholar
  366. De Robertis, E.: Electron microscope and chemical study of binding sites of brain biogenic amines. Progr. Brain Res. 8, 118–136 (1964a).CrossRefGoogle Scholar
  367. —: Histophysiology of synapses and neurosecretion. London: Pergamon Press 1964b.Google Scholar
  368. Robinson, M.: Failing lactation. Lancet 1, 66–68 (1943).CrossRefGoogle Scholar
  369. Rudinger, J., and I. Krejčí: Dose-response relations for some synthetic analogues of oxy-tocin, and the mode of action of oxytocin on the isolated uterus. Experientia (Basel) 18, 585 (1962).CrossRefGoogle Scholar
  370. Rydén, G., and I. Sjöholm: Assay of oxytocin by rat mammary gland in vitro. Brit. J. Pharmacol. 19, 136–141 (1962).PubMedGoogle Scholar
  371. Rydin, H., and E.B. Verney: Inhibition of water-diuresis by functional stress and by muscular exercise. Quart. J. exp. Physiol. 27, 343–374 (1938).Google Scholar
  372. Schäfer, E. A.: On the effect of pituitary and corpus luteum extracts on the mammary gland in the human subject. Quart. J. exp. Physiol. 6, 17–19 (1913).Google Scholar
  373. —: Note on preceding paper by Simpson and Hill: The mode of action of pituitary extract on the mammary gland. Quart. J. exp. Physiol. 8, 379–381 (1915).Google Scholar
  374. —, and K. Mackenzie: The action of animal extracts on milk secretion. Proc. roy. Soc. B 84, 16–22 (1912).CrossRefGoogle Scholar
  375. Selye, H., J.B. Collip, and D.C. Thomson: Nervous and humoral factors in lactation. Endocrinology 18, 237–247 (1934).CrossRefGoogle Scholar
  376. Selye, H.L.: On the nervous control of lactation. Amer. J. Physiol. 107, 535–538 (1934).Google Scholar
  377. Shute, C.C.O., and P.R. Lewis: Cholinergic and monoaminergic pathways in the hypothalamus. Brit. med. Bull. 22, 221–226 (1966).PubMedGoogle Scholar
  378. Sica-Blanco, Y., C. Méndez-Bauer, N. Sala, H.M. Cabot, y R. Caldeyro-Barcia: Nuevo metodo para el estudio de la funcionalidad mamaria en la mujer. Arch. Ginec. Obstet. 17, 63–72 (1959).Google Scholar
  379. Silver, I.A.: Myoepithelial cells in the mammary and parotid glands. J. Physiol. (Lond.) 125, 8 P (1954).Google Scholar
  380. —: Vascular changes in the mammary gland during engorgement with milk. J. Physiol. (Lond.) 133, 65 P (1956).Google Scholar
  381. Simpson, S., and R.L. Hill: The mode of action of pituitary extract on the mammary gland. Quart. J. exp. Physiol. 8, 377–378 (1915).Google Scholar
  382. Sjöholm, I., and G. Rydén: Improved method for quantitative estimation of oxytocin. Nature (Lond.) 193, 77–78 (1962).CrossRefGoogle Scholar
  383. Smith, D.M., W.G. Whittlestone, and J. Allen: The design and use of a milking machine for sows. J. Dairy Res. 18, 31–33 (1951).CrossRefGoogle Scholar
  384. Smith, M.W.: Some properties of rat mammary tissue. Nature (Lond.) 190, 541–542 (1961).CrossRefGoogle Scholar
  385. Somlyo, A.V., C. Woo, and A.F. Somlyo: Effect of magnesium on posterior pituitary hormone action on vascular smooth muscle. Amer. J. Physiol. 210, 705–714 (1966).PubMedGoogle Scholar
  386. Stürmer, E., and B. Berde: A comparative pharmacological study of synthetic eledoisin and synthetic bradykinin. J. Pharmacol, exp. Ther. 140, 349–355 (1963).Google Scholar
  387. Sundsten, J. W., and C.H. Sawyer: Osmotic activation of neurohypophysial hormone release in rabbits with hypothalamic islands. Exp. Neurol. 4, 548–561 (1961).PubMedCrossRefGoogle Scholar
  388. Super, Z., and V. Eisen: The action of nervous depressants on the antidiuretic and chloruretic effect of nicotine. Arch. int. Pharmacodyn. 93, 75–82 (1953).Google Scholar
  389. Swanson, E.W., and C.W. Turner: Evidence for the presence of smooth muscle elements surrounding the alveoli of the mammary gland. J. Dairy Sci. 24, 635–638 (1941).CrossRefGoogle Scholar
  390. Taleisnik, S., and R.P. Deis: Influence of cerebral cortex in inhibition of oxytocin release induced by stressful stimuli. Amer. J. Physiol. 207, 1394–1398 (1964).PubMedGoogle Scholar
  391. Talwalker, P.K., A. Ratner, and J. Meites: In vitro inhibition of pituitary prolactin synthesis and release by hypothalamic extract. Amer. J. Physiol. 205, 213–218 (1963).PubMedGoogle Scholar
  392. Taylor, N.B.G., and J.M. Walker: Antidiuretic substance in human urine after smoking. J. Physiol. (Lond.) 113, 412–418 (1951).Google Scholar
  393. Theobald, G.W.: The separate release of oxytocin and antidiuretic hormone. J. Physiol. (Lond.) 149, 443–461 (1959).Google Scholar
  394. Thorn, N. A.: Role of calcium in the release of vasopressin and oxytocin from posterior pituitary protein. Acta endocr. (Kbh.) 50, 357–364 (1965).Google Scholar
  395. Tindal, J.S., and A. Yokoyama: Assay of oxytocin by the milk-ejection response in the anaesthetized lactating guinea-pig. Endocrinology 71, 196–202 (1962).PubMedCrossRefGoogle Scholar
  396. Tsakhaev, G.A.: Problem of reflex regulation of milk ejection. Tr. Inst. Fiziol. (Mosk.) 4, 5–16 (1955) [in russian].Google Scholar
  397. Turner, C. W., and W.D. Cooper: Assay of posterior pituitary factors which contract the lactating mammary gland. Endocrinology 29, 320–323 (1941).CrossRefGoogle Scholar
  398. Turner, R.A., J.G. Pierce, and V. Du Vigneaud: The purification and the amino acid content of vasopressin preparations. J. biol. Chem. 191, 21–28 (1951).PubMedGoogle Scholar
  399. Tverskoi, G.B.: Sensitivity of the muscles of ducts, cistern and the teat sphincter of a cow’s udder to nervous stimuli and pituitrin. Tr. Inst. Fiziol. (Mosk.) 4,51–57 (1955a) [in russian].Google Scholar
  400. —: The role of pressure fluctuations in the cavity system of the udder in the stimulation of milk secretion. Tr. Inst. Fiziol. (Mosk.) 4, 68–74 (1955b) [in russian].Google Scholar
  401. —: Role of sensory innervation of udder in reflex regulation of milk secretion and butterfat synthesis. Zh. obshch. Biol. (Mosk.) 18, 169–184 (1957) [in russian].Google Scholar
  402. —: Secretion of milk in goats after complete severance of the spinal cord. Dokl. Akad. Nank. Sssr. 123, 1137–1139 (1958) [in russian].Google Scholar
  403. Verney, E. B.: The antidiuretic hormone and the factors which determine its release. Proc. roy. Soc. B 135, 25–106 (1947).CrossRefGoogle Scholar
  404. —: Renal excretion of water and salt. Lancet 2, 1237–1242, 1295-1298 (1957).CrossRefGoogle Scholar
  405. Du Vigneatjd, V.: The hormones of the posterior pituitary gland with special reference to their milk-ejecting ability. Bull. N.Y. Acad. Med. 41, 802–803 (1965).Google Scholar
  406. —, G.S. Denning, Jr., S. Drabarek, and W.Y. Chan: The synthesis and pharmacological study of 4-decarboxamido-oxytocin (4-α-aminobutyric acid-oxytocin) and 5-decarbox-amido-oxytocin (5-alanine-oxytocin). J. biol. Chem. 239, 472–477 (1964).Google Scholar
  407. —, P. S. Fitt, M. Bodanszky, and M. O’connell: Synthesis and some pharmacological properties of a peptide derivative of oxytocin: glycyloxytocin. Proc. Soc. exp. Biol. (N.Y.) 104, 653–656 (1960).Google Scholar
  408. Walker, J.M.: The effect of smoking on water diuresis in man. Quart. J. Med. 18, 51–55 (1949).PubMedGoogle Scholar
  409. —: The release of vasopressin and oxytocin in response to drugs. In: The neurohypophysis, pp. 229–232. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  410. Waller, H.K.: A reflex governing the outflow of milk from the breast. Lancet 1, 69–72 (1943).CrossRefGoogle Scholar
  411. —: Breast feeding and the early phase of lactation. Mth. Bull. Minist. Hlth Lab. Serv. 6, 73–81 (1947a).Google Scholar
  412. —: Incidence, causes and prevention of failure of breast-feeding. Brit. med. Bull. 5, 181–183 (1947b).Google Scholar
  413. Whittlestone, W. G.: The characteristics of the milk-ejection curve of normal dairy cows under standard milking conditions. N.Z. J. sci. Technol. 2829, 188–205 (1946-1948).Google Scholar
  414. —: Some recent experiments on the problem of milk-ejection. Proc. N.Z. Soc. Anim. Prod. 67-77 (1950a).Google Scholar
  415. —: Nature of the milk-ejection process. Nature (Lond.) 166, 994 (1950b).CrossRefGoogle Scholar
  416. —: Studies on milk-ejection in the dairy cow. N.Z. J. sci. Technol. 32, 1–20 (1951).Google Scholar
  417. —: The milk-ejecting activity of extracts of the posterior pituitary gland. J. Endocr. 8, 89–95 (1952).PubMedCrossRefGoogle Scholar
  418. —: Intramammary pressure changes in the lactating sow. J. Dairy Res. 21, 19–30 (1954a).CrossRefGoogle Scholar
  419. —: Intramammary pressure changes in the lactating sow. II. The effects of vasopressin and acetylcholine. J. Dairy Res. 21, 183–187 (1954b).CrossRefGoogle Scholar
  420. —: Intramammary pressure changes in the lactating sow. III. The effects of level of dose of oxytocin and the influence of rate of injection. J. Dairy Res. 21, 188–193 (1954c).CrossRefGoogle Scholar
  421. —: The effect of adrenaline on the milk-ejection response of the sow. J. Endocr. 10, 167–172 (1954d).PubMedCrossRefGoogle Scholar
  422. —, E.G. Bassett, and C.W. Turner: Source of secretion of milk “let-down” hormone in domestic animals. Proc. Soc. exp. Biol. (N.Y.) 80, 197–199 (1952).Google Scholar
  423. —, and C.W. Turner: Effect of acetylcholine on mammary gland of the lactating sow. Proc. Soc. exp. Biol. (N.Y.) 80, 194–196 (1952).Google Scholar
  424. Wiederman, J., M. Freund, and M.L. Stone: Oxytocin effect on myoepithelium of the breast throughout pregnancy. J. appl. Physiol. 19, 310–314 (1964).PubMedGoogle Scholar
  425. —, and M.L. Stone: Effect of oxytocin on myoepithelium of the breast. J. appl. Physiol. 17, 539–542 (1962).PubMedGoogle Scholar
  426. Yokoyama, A.: Milk-ejection responses following administration of “tap” stimuli and posterior pituitary extracts. Endocr. jap. 3, 32–37 (1956).PubMedCrossRefGoogle Scholar
  427. —, and K. Ota: The effect of hypothalamic lesions on litter growth in rats. Endocr. jap. 6, 14–20 (1959a).PubMedCrossRefGoogle Scholar
  428. —: Effects of administration of oxytocin and prolactin on lactating activity of mammary glands in rats. Endocr. jap. 6, 259–267 (1959b).PubMedCrossRefGoogle Scholar
  429. Zaks, M. G.: Reflex regulation of the tonus of the walls of the udder cistern and of the intramammary pressure. Tr. Inst. Fiziol. (Mosk.) 4, 34–50 (1955) [in russian].Google Scholar
  430. Zhuze, A.L., K. Jost, E. Kasafirek, and J. Rudinger: Amino acids and peptides. XLV. Analogues of oxytocin with o-ethyltyrosine, p-methylphenylalanine, and p-ethylphenyl-alaline replacing tyrosine. Coll. Czechoslov. Chem. Commun. 29, 2648–2662, (1964).Google Scholar
  431. Zotikova, I. N.: Effect of the nervous system on secretion and ejection of milk in the white mouse. Tr. Inst. Fiziol. (Mosk.) 4, 63–67 (1955) [in russian].Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • G. W. Bisset

There are no affiliations available

Personalised recommendations