Advertisement

Production, Release, Transportation and Elimination of the Neurohypophysial Hormones

  • Michael Ginsburg
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 23)

Abstract

At first the term ‘neurosecretion’ was used in the description of neurones that contained particles resembling secretory granules (Scharrer and Scharrer,1940). Since then, advancing knowledge of neuronal structure and function, in particular the discovery by electron microscopy of synaptic vesicles and other inclusions containing transmitter substances and the demonstration that neurosecretory neurones transmit action potentials, has led to a narrowing of the distinction between neurosecretory and other neurones and to a tendency to make the definition more restrictive.

Keywords

Arginine Vasopressin Supraoptic Nucleus Neurosecretory Granule Neural Lobe Neurosecretory Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, V.C., G.B. Koelle, and P. Smart: Histochemical demonstrations of cholinester-ases in the hypothalamus of the dog. J. Physiol. (Lond.) 139, 137–144 (1957).Google Scholar
  2. —, and M. Pickford: Simultaneous observations on the rate of urine flow and spontaneous uterine movements in the dog and their relationship to posterior lobe activity. J. Physiol. (Lond.) 126, 320–346 (1954).Google Scholar
  3. —: Observations on a central antagonism between adrenaline and acetylcholine. J. Physiol. (Lond.) 131, 712–718 (1956a).Google Scholar
  4. —: The effect of anti-cholinesterases injected into the supraoptic nuclei of chloralosed dogs on the release of the oxytocic factor of the posterior pituitary. J. Physiol. (Lond.) 133, 330–333 (1956b).Google Scholar
  5. Acher, R.: Etat naturel des principles oxytocique et vasopressique de la neurohypophyse. In: Neurosecretion, 2nd Int. Symposium, pp. 71–78. Ed. by W. Bargmann, G. Hanstrom, and E. Scharrer. Berlin-Heidelberg-New York: Springer 1958.Google Scholar
  6. —, J. Chauvet, et G. Olivry: Sur l’existence eventuelle d’une hormone unique neurohypo-physaire. Relation entre l’ocytocine, la vasopressine et la protéine de van Dyke extraites de la neurohypophyse du boeuf. Biochim. biophys. Acta (Amst.) 22, 421–427 (1956a).CrossRefGoogle Scholar
  7. G. Olivry —: Variations des teneurs en activites ocytocique et vasopressique de la neurohypophyse du rat au cours de la croissance et de la reproduction. Biochim. biophys. Acta (Amst.) 22, 428–433 (1956b).CrossRefGoogle Scholar
  8. —, and C. Fromageot: The relationship of oxytocin and vasopressin to active proteins of posterior pituitary origin. In: The Neurohypophysis. Ed. by H. Heller. London: Butter-worths 1957.Google Scholar
  9. Adam, H.M.: Histamine in the central nervous system. In: Regional Neurochemistry. Ed. by S.E. Kety and J. Elkes. London: Pergamon Press 1961.Google Scholar
  10. Adams, W.M., and J.C. Sloper: The hypothalamic elaboration of the posterior pituitary principles in man, the rat and dog. Histochemical evidence derived from performic acid-alcian blue reaction for cystine. J. Endocr. 13, 221–228 (1956).PubMedCrossRefGoogle Scholar
  11. Adamsons, K., S.L. Engel, and H.B. Van Dyke: Stability of neurohypophysial hormones. Endocrinology 63, 679–687 (1958).PubMedCrossRefGoogle Scholar
  12. H.B. Van Dyke —, B. Schmidt-Nielsen, and K. Schmidt-Nielsen: The distribution of oxytocin and vasopressin (antidiuretic hormone) in the neurohypophysis of the camel. Endocrinology 58, 272–278 (1956).PubMedCrossRefGoogle Scholar
  13. Alexander, C.S., and J.F. Downs: Diabetes insipidus complicating pregnancy. Obstet. and Gynec. 10, 682–683 (1957).CrossRefGoogle Scholar
  14. —, and D.M. Filbin: Extraction and bioassay of antidiuretic hormone (ADH) from human urine by a new method. J. Lab. clin. Med. 60, 855 (1962).Google Scholar
  15. Amatruda, J. J., P. J. Mulrow, J.C. Gallagher, and W.H. Sawyer: Carcinoma of the lung with inappropriate antidiuresis. Demonstration of antidiuretic-hormone-like activity in tumour extract. New Engl. J. Med. 269, 544–549 (1963).PubMedCrossRefGoogle Scholar
  16. Ames, R.G., and H.B. Van Dyke: Antidiuretic hormone in the serum or plasma of rats. Endocrinology 50, 350–360 (1952).PubMedCrossRefGoogle Scholar
  17. —: Antidiuretic hormone in the urine and pituitary of the kangaroo rat. Proc. Soc. exp. Biol. (N.Y.) 75, 417–420 (1950).Google Scholar
  18. —, D.H. Moore, and H.B. Van Dyke: The excretion of posterior pituitary antidiuretic hormone in urine and its detection in blood. Endocrinology 46, 215–227 (1950).CrossRefGoogle Scholar
  19. Amoroso, E.C., R.J. Harrison, L. Harrison-Matthews, I.W. Rowlands, C.H. Bourne, and J.C. Sloper: Cited in Sloper (1958).Google Scholar
  20. Andersson, B.: Some observations on the neuro-humoral regulation of milk-ejection. Acta physiol. scand. 23, 1–7 (1951).PubMedCrossRefGoogle Scholar
  21. —, and P.A. Jewell: The effect of long periods of continuous hydration on the neurosecretory material in the hypothalamus. J. Endocr. 15, 332–338 (1957).PubMedCrossRefGoogle Scholar
  22. —, and S. Larson: Inhibitory effects of emesis on water diuresis in the dog. Acta physiol. scand. 32, 19–27 (1954).PubMedCrossRefGoogle Scholar
  23. Aprahamian, H.A., J.L. Vanderveen, J.P. Bunker, A.J. Murphy, and J.D. Crawford: The influence of general anaesthetics on water and solute excretion in man. Ann. Surg. 150, 122–130 (1959).PubMedCrossRefGoogle Scholar
  24. Aroskar, J.P., W. Chan, J.E. Stouffer, C.H. Schneider, V.V.S. Murti, and V. Du Vig-Neaud: Renal secretion and tissue distribution of radioactivity after administration of tritium labelled oxytocin to rats. Endocrinology 14, 226–232 (1964).CrossRefGoogle Scholar
  25. Asdell, S.A.: Patterns of mammalian reproduction. Ithaca, New York: Cornstalk 1946.Google Scholar
  26. Audrian, L., et H. Clauser: Mécanisme de l’inactivation de l’ocytocine par le tissu utérin. Biochim. biophys. Acta (Amst.) 38, 494–501 (1960).CrossRefGoogle Scholar
  27. Auer, J.: Postnatal differentiation in the hypothalamus of the hamster. J. Neurol. (Brux.) 95, 17–41 (1951).CrossRefGoogle Scholar
  28. Aujard, L., E. Csanyi, et C. Le Breton: Recherches sur l’activité oxytocique des urines. Arch. Sci. physiol. 9, 71–82 (1954).Google Scholar
  29. Baisset, A., et P. Montastrtjc: Modification de la diurèse apres distention de l’orciette gauche. Pathol. Biol. Semaine Hop. 7, 1691 (1959).Google Scholar
  30. Baratz, R.A., A. Doig, and I. J. Adatto: Plasma antidiuretic activity and free water clearance following osmoreceptor and neurohypophysial stimulation in human subjects. J. clin. Invest. 39, 1539–1545 (1960).PubMedCrossRefGoogle Scholar
  31. —, and R. C. Ingraham: Renal haemodynamics and antidiuretic hormone release associated with volume regulation. Amer. J. Physiol. 198, 565–570 (1960).PubMedGoogle Scholar
  32. Barboxjr, A., G.M. Bull, N.C. Hughes-Jones, B.M. Evans, and J. Logothetopoulos: The effect of breathing 5–7% carbon dioxide on the urine flow and mineral excretion. Clin. Sci. 12, 1–13 (1953).Google Scholar
  33. Bard, P., and M.B. Macht: Neurological basis of behaviour. Ciba Foundation Symposium, p. 55 (1958).Google Scholar
  34. Barer, R., H. Heller, and K. Lederis: The isolation, identification and properties of the hormonal granules of the neurohypophysis. Proc. roy. Soc. B 158, 388–416 (1963).CrossRefGoogle Scholar
  35. —, and K. Lederis: Ultrastructure of the rabbit neurohypophysis with special reference to the release of the hormones. Z. Zeilforsch. 75, 201–239 (1966).CrossRefGoogle Scholar
  36. Bargmann, W.: Über die neurosekretorische Verknüpfung von Hypothalamus und Neuro-hypophyse. Z. Zellforsch. 34, 610–634 (1949).PubMedGoogle Scholar
  37. —: Zwischenhirn und Neurohypophyse; eine neue Vorstellung über die funktioneile Bedeutung der Hinterlappen. Med. Mschr. 5, 466–470 (1951).PubMedGoogle Scholar
  38. —: Über das Zwischenhirn-Hypophysensystem von Fischen. Z. Zellforsch. 39, 275–298 (1953).CrossRefGoogle Scholar
  39. —, u. A. Knoop: Elektronenmikroskopische Beobachtungen an der Neurohypophyse. Z. Zellforsch. 46, 242–251 (1957).PubMedCrossRefGoogle Scholar
  40. —, and E. Scharrer: The site of origin of hormones of the posterior pituitary. Amer. Sci. 39, 255–259 (1951).Google Scholar
  41. Barnett, H. L., and J. Vesterdal: The physiologie and clinical significance of immaturity of kidney function in young infants. J. Pediat. 42, 99–119 (1953).CrossRefGoogle Scholar
  42. Barnett, R. J.: Histochemical demonstration of disulfide groups in the neurohypophysis under normal and experimental conditions. Endocrinology 55, 484–501 (1954).CrossRefGoogle Scholar
  43. —, and A.M. Seligman: Histochemical demonstrations of protein-bound sulphydryl groups. Science 116, 323–327 (1952).CrossRefGoogle Scholar
  44. Barraclough, M.A., J. J. Jones, and J. Lee: Production of vasopressin by anaplastic oat cell carcinoma of the bronchus. Clin. Sci. 31, 135–144 (1966).PubMedGoogle Scholar
  45. Beck, E., and P.M. Daniel: Degeneration and regeneration in the hypothalamus. In: Cytology of nervous tissue; Proceedings, Anatomical Society, pp. 60–63. London: Taylor and Francis 1961.Google Scholar
  46. —, H. Levttin, and F. H. Epstein: Effect of intravenous infusion of calcium on renal concentrating ability. Amer. J. Physiol. 197, 1118–1120 (1959).PubMedGoogle Scholar
  47. Beleslin, D., G. W. Bissett, J. Haldar, and R.L. Polak: The release of vasopressin without oxytocin in response to haemorrhage. Proc. roy. Soc. B 166, 443–458 (1967).CrossRefGoogle Scholar
  48. Beller, F.K., K.H. Krumholz U. K. Zeininger: Vergleichende Oxytocin-Bestimmungen, gemessen durch die Lactogenen der Milchdrüse (milk-ejection). Acta endocr. (Kbh.) 29, 1–8 (1958).Google Scholar
  49. Bennett, M.V.L., and S. Fox: Electrophysiology of the caudal neurosecretory cells in the skate and fluke. Gen. Cong. Endocrinol. 2, 77–95 (1962).CrossRefGoogle Scholar
  50. Bentley, P. J.: The effects of ionic changes on water transfer across the isolated urinary bladder of the toad, Bufo marinus. J. Endocr. 18, 327–333 (1959).CrossRefGoogle Scholar
  51. Berde, B.: Les analogues synthétiques des hormones neurohypophysaires. Sont-il une clef de l’étude des troubles de l’hormonogenese de ce système. Extrait de les troubles congénitaux de l’hormonogenese. Rapports de la Ville reunion des endocrinologistes de langue francaise (1965).Google Scholar
  52. Bern, H.A.: The secretory neurone as a doubly specialised cell. In: The general physiology of cell specialization, pp. 349–366. Ed. by D. Mazta and A. Tyler. New York: McGraw-Hill 1963.Google Scholar
  53. —, R.S. Nishioka, and I.R. Hagedoorn: Association of elementary granules with the Golgi complex. J. Ultrastruct. Res. 5, 311–320 (1962).CrossRefGoogle Scholar
  54. Bernischke, K., and D.B. McKay: The antidiuretic hormone in fetus and infant. Obstet, and Gynec. 1, 638–649 (1953).Google Scholar
  55. Bernstein, S.H., R.E. Weston, G. Ross, J. Grossman, I.B. Hanenson, and L. Leiter: Studies in intravenous water diuresis and nicotine and pitressin antidiuresis in normal subjects and patients with liver disease. J. clin. Invest. 32, 422–427 (1953).CrossRefGoogle Scholar
  56. Beuzeville, CF., and H.D. Lauson: The question of vasopressin removal by rat liver. Fed. Proc. 23, 150 (1964).Google Scholar
  57. Billenstein, D.C., and J.F Leveque: The reorganisation of the neurohypophyseal stalk following hypophysectomy in the rat. Endocrinology 56, 704–717 (1955).CrossRefGoogle Scholar
  58. Birnie, J. H.: The inactivation of posterior pituitary antidiuretic activity by liver extracts. Endocrinology 52, 33–38 (1953).PubMedCrossRefGoogle Scholar
  59. —, E.K. Blackmobe, and H. Heller: Changes in water diuresis and vasopressin inactivation in mice fed on protein deficient diets. Experientia (Basel) 8, 20 (1952).CrossRefGoogle Scholar
  60. Bissett, G. W., and J.M. Walker: The effect of hexamethonium on the antidiuretic action of nicotine in the rat. Abstr. Comm. XIX Int. Physiol. Congr. 215 (1953).Google Scholar
  61. —: The effects of nicotine, hexamethonium and ethanol on the secretion of the antidiuretic and oxytocic hormones of the rat. Brit. J. Pharmacol. 12, 461 (1957).Google Scholar
  62. Blackmore, W.P., K.W. Ermin, O.F. Wiegand, and R. Lipsey: Renal and cardiovascular effects of halothane. Anaesthesiology 21, 489–495 (1960).CrossRefGoogle Scholar
  63. Block, R. J., and H.B. Van Dyke: Amino acids in posterior pituitary protein. Arch. Biochem. 36, 1–4 (1952).CrossRefGoogle Scholar
  64. Blombert, G., J. Gerbrandy, J. A. Molhuysen, L. A. De Vries, and J.G.G. Borst: Diuretic effect of isotonic saline solution compared to that of water. Lancet 1951 II 1011–1015.CrossRefGoogle Scholar
  65. Bocanegra, M., and H.D. Lauson: Ultrafiltrability of endogenous antidiuretic hormone from the plasma of dogs. Amer. J. Physiol. 200, 486–492 (1961).Google Scholar
  66. Bodian, D.: Nerve endings, neurosecretory substance and lobular organisation of the neuro-hypophysis. Bull. Johns Hopk. Hosp. 89, 354–376 (1951).Google Scholar
  67. —: Cytological aspects of neurosecretion in opossum neurohypophysis. Bull. Johns Hopk. Hosp. 113, 57–93 (1963).Google Scholar
  68. Bodo, R.C. De: Antidiuretic action of morphine and its mechanism. J. Pharmacol. 82, 74–85 (1944).Google Scholar
  69. —, and K.T. Prescott: The antidiuretic action of barbiturates (phenobarbital, amytal, pento-barbital) and the mechanism involved in this action. J. Pharmacol. 85, 222–233 (1945).Google Scholar
  70. Boissonnas, R.A., B. Berde, and H. Konzett: In: Oxytocin, p. 247. Ed. by R. Caldeyro-Barcia and H. Heller. Oxford: Pergamon Press 1961.Google Scholar
  71. Bower, B.F., D.M. Mason, and P.H. Forsham: Bronchogenic carcinoma with inappropriate antidiuretic activity in plasma and tumor. New Engl. J. Med. 271, 934–938 (1964).PubMedCrossRefGoogle Scholar
  72. Boylan, J. W., and D. E. Antkowiak: Mechanisms of diuresis during negative pressure breathing. J. appl. Physiol. 14, 116–120 (1959).PubMedGoogle Scholar
  73. Braude, R., and K.G. Mitchell: Let down of milk in the sow. Nature (Lond.) 165, 937 (1950).CrossRefGoogle Scholar
  74. Brightman, M. W.: Neurosecretion and milk-ejection in the mouse. Anat. Rec. 121, 268 (1955).Google Scholar
  75. Brook, A.H., and L. Share: On the question of protein binding and the diffusability of circulating antidiuretic hormone in the dog. Endocrinology 78, 785–799 (1966).CrossRefGoogle Scholar
  76. Brooks, C. Mc, J. Ushtyamt, and G. Lange: Reactions of neurones in or near supra-optic nucleus. Amer. J. Physiol. 202, 487–490 (1962).PubMedGoogle Scholar
  77. Brun, C., E.O.E. Knudsen, and F. Raaschou: Post-syncopal oliguria. Acta med. scand. 122, 381–395 (1945a).CrossRefGoogle Scholar
  78. F. Raaschou —: On the cause of post-syncopal oliguria. Acta med. scand. 122, 486–489 (1945b).PubMedCrossRefGoogle Scholar
  79. Buchborn, E.: Antidiuretic hormone and serum osmolarity in liver cirrhosis. Lancet 1957 I, 1201.CrossRefGoogle Scholar
  80. Bucy, P.C.: In: The hypophysis cerebri in cytology and cellular pathology of the nervous system, p. 712. Ed. by W. Penfield. New York: P.B. Hoeber 1932.Google Scholar
  81. Burn, G.P., and R.S. Grewal: The antidiuretic response to and excretion of pituitary (posterior lobe) extract in man, with reference to the action of nicotine. Brit. J. Pharmacol. 6, 471–482 (1951).PubMedGoogle Scholar
  82. Burn, J.H., L.H. Truelove, and S. Burn: The antidiuretic action of nicotine and smoking. Brit. med. J. 1945 I, 403–406.CrossRefGoogle Scholar
  83. Cafruny, E. J., E. Carhart, and A. Farah: Effect of hypophysectomy and hormones on sulphydryl concentrations in rat kidney cells. Endocrinology 61, 143–147 (1957).PubMedCrossRefGoogle Scholar
  84. Caldeyro-Barcia, R.: Factors controlling the actions of the pregnant human uterus. In: Physiology of prematurity, pp. 11–17. Ed. by M. Kowlessar. New York: Josiah Macy 1961.Google Scholar
  85. —, and J. J. Poseiro: Oxytocin and contractility of the pregnant human uterus. Ann. N.Y. Acad. Sci. 75, 813–830 (1958).CrossRefGoogle Scholar
  86. —, Y. Sica-Blanco, J.J. Poseiro, V. Gonzalez-Panizza, C. Mendez-Bauer, C. Fielitz, H. Alvarez, S.V. Pose, and C.M. Hendricks: A quantitative study of synthetic oxytocin on the pregnant human uterus. J. Pharmacol. 12, 18 (1957).Google Scholar
  87. Carlsson, A., B. Falck, and N.A. Hillarp: Cellular localisation of brain monoamine. Acta Physiol. Scand., Suppl. 196, 1–28 (1962).Google Scholar
  88. Cates, J.E., and O. Garrod: The effect of nicotine on urinary flow in diabetes insipidus. Clin. Sci. 10, 145–160 (1951).Google Scholar
  89. Chalmers, T.M., and A.A.G. Lewis: Stimulation of the supraoptic-hypophysial system in man. Clin. Sci. 10, 127–135 (1951).Google Scholar
  90. —, and G. L. S. Pawan: The effects of posterior pituitary extracts on the renal excretion of sodium and chloride in man. J. Physiol. (Lond.) 112, 238–242 (1951).Google Scholar
  91. Chambers, G.H., E.V. Melville, R.S. Hare, and K. Hare: Regulation of the release of pituitrin by changes in the osmotic pressure of plasma. Amer. J. Physiol. 144,311–320 (1945).Google Scholar
  92. Chang, H.C., K.P. Chia, G.H. Hsu, and R.K.S. Lim: A vagus-post-pituitary reflex. I. Pres-sor component. Chin. J. Physiol. 12, 309–326 (1937).Google Scholar
  93. G.H. Hsu, R.K.S. Lim —, and R. K. S. Lim: Humoral transmission at central synapses. II. Central vagus transmission after hypophysectomy in the dog. Chin. J. Physiol. 13, 13–32 (1938).Google Scholar
  94. —, R.K.S. Lim, V.M. Lu, C.C. Wang, and K.J. Wang: A vago-post-pituitary reflex. III. Oxytocic component. Chin. J. Physiol. 13, 269–284 (1938).Google Scholar
  95. Chaudhury, R. R.: Release of oxytocin in unanaesthetised rats. Brit. J. Pharmacol. 17, 297 to 304 (1961).PubMedGoogle Scholar
  96. Chaudhury, R. R. —, H.K. Chuttani, and V. Ramlingswami: The antidiuretic hormone and liver damage. Clin. Sci. 21, 199–203 (1961).PubMedGoogle Scholar
  97. —, and J. M. Walker: The release of neurohypophysial hormones in the rabbit by anaesthetics and by haemorrhage. J. Physiol. (Lond.) 143, 16 p. (1958).Google Scholar
  98. Chaudhury, R. R. —: The fate of injected oxytocin in the rabbit. J. Endocr. 19, 189–192 (1959).PubMedCrossRefGoogle Scholar
  99. Chauvet, J., M.T. Lenci, et R. Acher: L’ocytocine et la vasopressine du mouton. Reconstitution d’un complexe hormonal actif. Biochim. biophys. Acta (Amst.) 38, 266–272 (1960).CrossRefGoogle Scholar
  100. Chien, S., B. Peric, and S. Usami: Reflex nature of release of antidiuretic hormone upon common carotid occlusion in vagotomised dogs. Proc. Soc. exp. Biol. (N.Y.) III, 193–196 (1962).Google Scholar
  101. Christlieb, M.: Über den Abbau von Oxytocin und Vasopressin in vitro. Arch. Exp. Pathol. Pharmakol. 194, 44–51 (1940).Google Scholar
  102. Clark, B. J., and M. Rocha E Silva Jr.: Independent release of vasopressin by carotid occlusion. J. Physiol. (Lond.) 186, 142–143 (1966).Google Scholar
  103. Clemente, C.D., J. Sutin, and J.T. Silverstone: Changes in electrical activity of the medulla on the intravenous injections of hypertonic solutions. Amer. J. Physiol. 188,193–198 (1957).PubMedGoogle Scholar
  104. Coch, J.A. J. Brovetto, H.M. Cabot, C.A. Fielitz, and R. Caldeyro-Barcia: Oxytocin-equivalent activity in the plasma of women in labour and during the puerperium. Amer. J. Obstet. Gynec. 91, 10–17 (1965).PubMedGoogle Scholar
  105. Collin, R., et J. Racadot: La chute du taux de la substance gomari-positive neuro-hypophysaire dans la postpartum chez le cobaye. Ann. Endocr. (Paris) 14, 546 (1953).Google Scholar
  106. Cowie, A.T., S. J. Folley, B. A. Cross, G. W. Harris, D. Jacobsohn, and K.C. Richardson: Terminology for use in lactational physiology. Nature (Lond.) 168, 421 (1951).CrossRefGoogle Scholar
  107. —: Quoted in Folley (1952).Google Scholar
  108. Craig, F.N., F.E. Visscher, and C.R. Houck: Renal function in dogs under ether or cyclopropane anaesthesia. Amer. J. Physiol. 143, 108–118 (1945).Google Scholar
  109. Crawford, J.P., and B. Pinkham: The removal of circulating antidiuretic hormone by the body. Endocrinology 55, 699–700 (1954).PubMedCrossRefGoogle Scholar
  110. Cross, B.A.: Suckling antidiuresis in rabbits. J. Physiol. (Lond.) 114, 447–453 (1951).Google Scholar
  111. —: The hypothalamus and the mechanism of sympathetico-adrenal inhibition of milk-ejection. J. Endocr. 12, 15–28 (1955a).PubMedCrossRefGoogle Scholar
  112. —: Neurohumoral mechanisms in the emotional inhibition of milk-ejection. J. Endocr. 12, 29–37 (1955b).PubMedCrossRefGoogle Scholar
  113. —: On the mechanism of labour in the rabbit. J. Endocr. 16, 261–271 (1958).PubMedCrossRefGoogle Scholar
  114. — and H.B. Van Dyke: The effects of highly purified posterior pituitary principles on the lactating mammary gland of the rabbit. J. Endocr. 9, 232–235 (1953).PubMedCrossRefGoogle Scholar
  115. —, and J. D. Green: Activity of single neurones in the hypothalamus. Effect of osmotic and other stimuli. J. Physiol. (Lond.) 148, 554–569 (1959).Google Scholar
  116. —, and G.W. Harris: The role of the neurohypophysis in the milk-ejection reflex. J. Endocr. 8, 148–161 (1952).PubMedCrossRefGoogle Scholar
  117. Currie, J.C.M., and E. Ullman: Polyuria during experimental modifications of breathing. J. Physiol. (Lond.) 155, 438–455 (1961).Google Scholar
  118. Czaczkes, J. W., and C.R. Kleeman: The effect of various states of hydration and the plasma concentration on the turnover of antidiuretic hormone in mammals. J. clin. Invest. 43, 1649–1658 (1964).PubMedCrossRefGoogle Scholar
  119. —, and M. Koenig: Physiologic studies of antidiuretic hormone by its direct measurement in human plasma. J. clin. Invest. 43, 1625–1648 (1964).PubMedCrossRefGoogle Scholar
  120. Dale, H.H.: The action of extracts of the pituitary body. Biochem. J. 4, 427–447 (1909).PubMedGoogle Scholar
  121. Dandy, W.E.: Section of the human hypophysial stalk. J. Amer. med. Ass. 114, 312–314 (1946).Google Scholar
  122. Daniel, A.R., and K. Lederis: Hormone release from the neurohypophysis in vitro. Gen. Comp. Endocrinol. 3, 693–694 (1963).Google Scholar
  123. —: Effect of ether anaesthesis and haemorrhage on hormone storage and ultrastructure of the rat neurohypophysis. J. Endocr. 34, 91–104 (1966).PubMedCrossRefGoogle Scholar
  124. —: Effects of acetylcholine on the release of neurohypophysial hormones in vitro. J. Endocr. 34, X–XI (1966b).CrossRefGoogle Scholar
  125. Darmady, E.M., J. Durandt, E.R. Matthews, and F. Strannach: Location of I131pitressin in the kidney by autoradiography. Clin. Sci. 19, 229–236 (1960).PubMedGoogle Scholar
  126. Dawson, A. B.: The early appearance of secretion in the neurohypophysis and hypothalamic nuclei of the rat. Anat. Rec. 117, 620 (1953).CrossRefGoogle Scholar
  127. Dearborn, E.H., and L. Lasagna: The antidiuretic action of epinephrine and novepin-ephrine. J. Pharmacol. 106, 122–128 (1952).Google Scholar
  128. Debackere, M., and G. Peeters: The influence of vaginal distention on milk-ejection and diuresis in the lactating cow. Arch. Int. Pharmacodyn. 123, 402–471 (1960a).Google Scholar
  129. —: Le mechanism de l’ejection du lait par distention vaginale chez le mouton. Arch. Int. Pharmacodyn. 126, 486–488 (1960b).Google Scholar
  130. —, and M. Tuyttens: Reflex release of an oxytocic hormone by stimulation of genital organs in male and female sheep studied by a crosscirculation technique. J. Endocr. 22, 321–334 (1961).PubMedCrossRefGoogle Scholar
  131. Dempster, W. J., and A.M. Joekes: Diuresis and antidiuresis in the auto-transplanted kidney in dogs. Quart. J. exp. Physiol. 38, 11–24 (1953).PubMedGoogle Scholar
  132. —: Emotional antidiuresis in the auto-transplanted kidney. J. Physiol. (Lond.) 128, 122 to 130 (1955).Google Scholar
  133. Denamur, R.: The hypothalamo-neurohypophysial system and the milk-ejection reflex. Dairy Sci. Abstr. 27, 193–224 and 263-280 (1965).Google Scholar
  134. —, et J. Martinet: Énervation de la mammelle et lactation chez la brebis et la chevre. C.R. Acad. Sci. (Paris) 148, 833–836 (1954).Google Scholar
  135. —: Les stimulus nerveux mammaires sont-ils necessaires a l’entretien de la lactation chez la chevre. C.R. Acad. Sci. (Paris) 248, 860–862 (1959a).Google Scholar
  136. — Entretien de la lactation chez la chevre apres section de la moelle epinière et sympathec-tomie lombaire. C.R. Acad. Sci. (Paris) 248, 743–746 (1959b).Google Scholar
  137. Denmark, M. R. Van, and R. L. Hays: Effect of stimulation of the reproductive organs of the cow on the release of an oxytocin-like substance. Endocrinology 52, 634–637 (1953).CrossRefGoogle Scholar
  138. —: Stimulatory action of breeding on the release of oxytocin as measured by intramammary pressure. J. Dairy Sci. 34, 496–497 (1951).Google Scholar
  139. Dexter, D., H.B. Stoner, and H.N. Green: The release of posterior pituitary antidiuretic hormone by adenosinetriphosphate. J. Endocr. 11, 141–159 (1954).CrossRefGoogle Scholar
  140. Dey, F.L., C. Fisher, and S.W. Ranson: Disturbances in pregnancy and labour in guinea pigs with hypothalamic lesions. Amer. J. Obstet. Gynec. 42, 459–466 (1941).Google Scholar
  141. Dicker, S.E.: A method for the assay of very small amounts of antidiuretic activity with a note on the antidiuretic titre of rat’s blood. J. Physiol. (Lond.) 122, 149–157 (1953).Google Scholar
  142. —: The fate of antidiuretic activity of pitressin in rats. J. Physiol. (Lond.) 124,464–475 (1954).Google Scholar
  143. —: The effect of methylpentynol on ethanol and on water metabolism in rats. J. Physiol. (Lond.) 144, 138–147 (1958).Google Scholar
  144. —: Possible independence of oxytocin and vasopressin secretion in the human being. J. Physiol. (Lond.) 147, 25 (1959).Google Scholar
  145. —: Release of vasopressin and oxytocin from isolated pituitary glands of adult and newborn rats. J. Physiol. (Lond.) 185, 429–444 (1966).Google Scholar
  146. —, and M.G. Eggleton: Hyaluronidase and antidiuretic activity in urine of man. J. Physiol. (Lond.) 154, 378–384 (1960).Google Scholar
  147. —: Renal excretion of hyaluronidase and calcium in man during the antidiuretic action of vasopressin and some analogues. J. Physiol. (Lond.) 157, 351–362 (1961).Google Scholar
  148. —, and A. L. Greenbaum: Inactivation of antidiuretic activity of vasopressin by the kidneys and the liver of rats. J. Physiol. (Lond.) 126, 116–123 (1956).Google Scholar
  149. —, and J. Nunn: The role of antidiuretic hormone during water deprivation in rats. J. Physiol. (Lond.) 136, 235 (1957).Google Scholar
  150. —: Antidiuresis in adult and old rats. J. Physiol. (Lond.) 141, 332–336 (1958).Google Scholar
  151. —, and C. Tyler: Vasopressor and oxytocic activities of the pituitary gland of rats, guinea pigs and cats and of human foetuses. J. Physiol. (Lond.) 121, 206 (1953).Google Scholar
  152. —: Inactivation of oxytocin and vasopressin by blood of pregnant women. J. Obstet. Gynaec. Brit. Emp. 63, 690–696 (1956).PubMedCrossRefGoogle Scholar
  153. —, and G. A. Whyley: Inactivation of oxytocin by plasma of pregnant women. J. Obstet. Gynaec. Brit. Emp. 66, 605–609 (1959).PubMedCrossRefGoogle Scholar
  154. Dicker, S.E., and G. A. Whyley: In: Release and metabolism of the neurohypophysial hormones. Quoted by S.E. Dicker. J. Pharm. Pharmacol. 13, 449–469 (1961).PubMedCrossRefGoogle Scholar
  155. Dieckmann, S.B., G.F. Egenolf, B. Morley, and R.E. Pottinger: The inactivation of the antidiuretic hormone of the posterior pituitary gland by blood from pregnant patients. Amer. J. Obstet. Gynec. 60, 1043–1050 (1950).PubMedGoogle Scholar
  156. Dingman, J. F.: Hypothalamus and the endocrine control of sodium and water metabolism in man. Amer. J. med. Sci. 235, 79–99 (1958).PubMedCrossRefGoogle Scholar
  157. Douglas, W. W.: A possible mechanism of neurosecretion. Release of vasopressin by depolarization and its dependence on calcium. Nature (Lond.) 197, 81–82 (1963).CrossRefGoogle Scholar
  158. —, and A. Ishida: The stimulant effect of cold on vasopressin release from neurohypophysis in vitro. J. Physiol. (Lond.) 179, 185–191 (1965).Google Scholar
  159. —, and A. M. Poisner: The effect of metabolic inhibitors on the release of vasopressin from the isolated neurohypophysis. J. Physiol. (Lond.) 181, 753–759 (1965).Google Scholar
  160. —, and A.M. Poisner: Release of vasopressin from the rat’s neurohypophysis in vitro. J. Physiol. (Lond.) 167, 55–56 (1963a).Google Scholar
  161. —: On the intimate mechanism of vasopressin secretion. Stimulus secretion coupling in the isolated neurohypophysis. Biochem. Pharmacol. 12, 225 (1963b).Google Scholar
  162. —: Stimulus-secretion coupling in a neurosecretory organ. The role of calcium in the release of vasopressin from the neurohypophysis. J. Physiol. (Lond.) 172, 1–18 (1964).Google Scholar
  163. —: Calcium movement in the neurohypophysis of the rat and its relation to the release of vasopressin. J. Physiol. (Lond.) 172, 19–30 (1964a).Google Scholar
  164. —, and R. P. Rubin: Efflux of adenine nucleotides from perfused adrenal glands exposed to nicotine and other chromaffin cell stimulants. J. Physiol. (Lond.) 179, 130–137 (1965).Google Scholar
  165. Drager, G.A., and E.C. Rennels: The independent behaviour of Gomori-positive neurosecretion and the oxytocic hormone in the rat neurohypophysis. Anat. Rec. 121, 287 (1955).Google Scholar
  166. Droz, B., and C.P. Leblond: Migration of proteins along axons of the sciatic nerve. Science 137, 1047–1048 (1962).PubMedCrossRefGoogle Scholar
  167. Drury, D.R., J.P. Henry, and J. Goodman: The effects of continuous pressure breathing on kidney function. J. clin. Invest. 26, 945 (1947).PubMedCrossRefGoogle Scholar
  168. Duchen, L.W.: Effects of ingestion of hypertonic saline on pituitary gland. A morphological study of pars intermedia and posterior lobe. J. Endocr. 25, 161–168 (1962).CrossRefGoogle Scholar
  169. Duke, H.N., and M. Pickford: Observations on the action of acetylcholine and adrenaline on the hypothalamus. J. Physiol. (Lond.) 114, 325–332 (1951).Google Scholar
  170. —, and J.A. Watt: The immediate and delayed effects of di-isopropyl-fluorophosphate injected into the supraoptic nuclei of dogs. J. Physiol. (Lond.) 111, 81–88 (1950).Google Scholar
  171. Dyball, R.E.J.: Stimuli for the release of antidiuretic hormone. J. Physiol. (Lond.) 186, 99–100 (1966).Google Scholar
  172. —: Personal communication (1967).Google Scholar
  173. Dyke, H.B. Van: Die Verteilung der wirksamen Stoffe der Hypophyse auf die verschiedenen Teile derselben. Arch. Exp. Pathol. Pharmakol. 114, 261–274 (1926).Google Scholar
  174. —, K. Adamson Jr., and S.L. Engel: Aspects of the biochemistry and physiology of the neuro-hypophyseal hormones. Recent Progr. Hormone Res. 11, 1–35 (1955).Google Scholar
  175. —, R.G. Ames, and I.C. Plough: The excretion of antidiuretic hormone in the urine of patients with cirrhosis of the liver. Trans. Ass. Amer. Phycns 63, 35–38 (1950).Google Scholar
  176. —: Alcohol diuresis. Acta endocr. (Kbh.) 7, 110–121 (1951).Google Scholar
  177. —, B.P. Chow, H. O. Greep, and A. Rothen: The isolation of a protein from the pars neuralis of the ox pituitary with constant oxytocic, pressor and diuresis-inhibiting effects. J. Pharmacol. (Kyoto) 74, 190–209 (1941).Google Scholar
  178. Eayers, J. J., and R.M. Baddeley: Neural pathways in lactation. J. Anat. (Lond.) 90, 161 to 171 (1956).Google Scholar
  179. Edstrom, J.E., and D. Eichner: Relationship between nucleolar volume and cell body content of ribonucleic acid in supraoptic neurones. Nature (Lond.) 181, 619 (1958).CrossRefGoogle Scholar
  180. —, and M. Schor: Quantitative ribonucleic acid measurements in functional studies of nucleus supraopticus. In: Regional neurochemistry. Ed. by S.E. Kety and J. Elkes. Oxford: Pergamon Press 1961.Google Scholar
  181. Eggleton, M.G.: The diuretic action of alcohol in man. J. Physiol. (Lond.) 101, 172–191 (1942).Google Scholar
  182. Eliahou, H.E., S.D. Clarke, and G.M. Bull: Atrial pulsation during acute distention and its possible significance in the regulation of blood volume. Clin. Sci. 19, 377 (1960).PubMedGoogle Scholar
  183. Ely, F., and W.E. Peterson: Factors involved in the ejection of milk. J. Dairy Sci. 24, 211–223 (1941).CrossRefGoogle Scholar
  184. Eranko, O., O. Freberg, and M. J. Karvonen: The effect of the act of copulation on water diuresis in the rat. Acta endocr. (Kbh.) 12, 197–200 (1953).Google Scholar
  185. Euler, C. v.: A preliminary note on slow hypothalamic “osmopotentials”. Acta physiol. scand. 29, 133–136 (1953).CrossRefGoogle Scholar
  186. Eversole, W.J., J.H. Birnie, and R. Gaunt: Inactivation of posterior pituitary antidiuretic hormone by the liver. Endocrinology 45, 378–382 (1949).PubMedCrossRefGoogle Scholar
  187. Fang, H.S., H.M. Lui, and S.C. Wang: Liberation of antidiuretic hormone following hypo-thalamic stimulation in the dog. Amer. J. Physiol. 202, 212–216 (1962).PubMedGoogle Scholar
  188. Fekete, K. v.: Beiträge zur Physiologie der Gravidität. Endokrinologie 7, 364–369 (1930).Google Scholar
  189. Ferguson, J.K.W.: A study of the motility of the intact uterus at term. Surg. Gynec. Obstet. 73, 359–366 (1941).Google Scholar
  190. Ficq, A., and J. Flament-Durand: Autoradiography in endocrine research. In: Techniques in endocrine research, pp. 73-85. Ed. by P. Eckstein and F. Knowles (1964).Google Scholar
  191. Fisher, C., W.R. Ingram, and S.W. Ranson: Diabetes insipidus and the neurohormonal control of water balance. Ann. Arbor, Michigan: Edwards Bros. Inc. 1938.Google Scholar
  192. —, H. W. Magoun, and S.W. Ranson: Dystocia in diabetes insipidus. The relation of pituitary oxytocin to parturition. Amer. J. Obstet. Gynec. 36, 1–9 (1938).Google Scholar
  193. Fitzpatrick, R. J.: The estimation of small amounts of oxytocin in blood. In: Oxytocin, pp. 358–379. Ed. by R. Caldeyro-Barcia and H. Heller. Oxford: Pergamon Press 1961.Google Scholar
  194. —: The posterior pituitary gland and the female reproductive tract. In: The pituitary gland, Vol. 3, pp. 453–504. Ed. by G.W. Harris and B.T. Donovan. London: Butterworths 1966.Google Scholar
  195. —, and C. F. Walmsley: The concentration of oxytocin in bovine blood during parturition. J. Physiol. (Lond.) 163, 13–14 (1962).Google Scholar
  196. —: The release of oxytocin during parturition. In: Advances in oxytocin. Ed. by J. Pinkerton. Oxford: Pergamon Press 1965.Google Scholar
  197. Flament-Durand, J.: Etude des relations hypothalamo-hypophysaire a l’aide de radioisotopes marques au soufre 35. C.R. Acad. Sci. (Paris) 252, 3487–3489 (1961).Google Scholar
  198. Follenius, E.: Etude comparative de la cytologie fine au noyau preoptiques (NPO) et du noyau lateral du tuber (NLT) chez la truite (Salmo irideus Gibb) et chez la perche (Perçafluviatilis) comparison des deux types de neurosecretion. Gen. comp. Endocr. 3, 66–89 (1963).CrossRefGoogle Scholar
  199. Folley, S.J.: Aspects of pituitary-mammary gland relationships. Recent Progr. Hormone Res. 7, 107–133 (1952).Google Scholar
  200. — and G.S. Knaggs: Observations on oxytocin release in ruminants. J. Reprod. Fertil. 8, 265–266 (1964).CrossRefGoogle Scholar
  201. —: Levels of oxytocin in the jugular vein blood of goats during parturition. J. Endocr. 33, 301–315 (1965).PubMedCrossRefGoogle Scholar
  202. —: Milk-ejection activity (oxytocin) in the external jugular vein blood of the cow, goat and sow, in relation to the stimulus of milking or suckling. J. Endocr. 34, 197–214 (1966).PubMedCrossRefGoogle Scholar
  203. Fong, C.J.O., L. Silver, D.R. Christman, and T.L. Schwarz: On the mechanism of action of the antidiuretic hormone (vasopressin). Proc. nat. Acad. Sci. (Wash.) 46, 1273–1277 (1960).CrossRefGoogle Scholar
  204. Ford, D.H., and A. Hirschman: The localisation of S35labelled l-cystine in the central nervous system of rat. Anat. Rec. 130, 302 (1958).Google Scholar
  205. —, R. Rhines, and S. Zimberg: The rate of uptake and radioautographic localisation of S35 in the central nervous system, pituitary and skeletal muscle of horned male rats after the injection of S35 cystine. Exp. Neurol. 4, 444–459 (1961).PubMedCrossRefGoogle Scholar
  206. Fourman, J., and G.C. Kennedy: An effect of antidiuretic hormone on the flow of blood through the vasa recta of the rat kidney. J. Endocr. 35, 173–176 (1966).PubMedCrossRefGoogle Scholar
  207. Frankland, B.J.B., M.D. Hollenberg, D.B. Hope, and B.A. Schachter: Dissociation of oxytocin and vasopressin from their carrier protein by chromatography on Sephadex G 25. Brit. J. Pharmacol. 26, 502–510 (1966).PubMedGoogle Scholar
  208. Freedman, P., R. Moulton, and A.G. Spencer: The effect of intravenous calcium gluconate on the renal excretion of water and electrolytes. Clin. Sci. 17, 247–263 (1958).PubMedGoogle Scholar
  209. Frey, E.: Die Hinderung der Wasserdiurese durch die Narkose. Pflügers Arch. ges. Physiol. 120, 66–92 (1907).CrossRefGoogle Scholar
  210. Friberg, O.: The antidiuretic effect of coitus in human subjects. Acta endocr. (Kbh.) 12, 193–196 (1953).Google Scholar
  211. Friedman, S.M., A.M. Hinke, and C.L. Friedman: Neurohypophysial responsiveness in the normal and senescent rat. J. Geront. 1956 II, 286–291.CrossRefGoogle Scholar
  212. Fuchs, A.R.: Oxytocin and the onset of labour in rabbits. J. Endocr. 30, 217–224 (1964).PubMedCrossRefGoogle Scholar
  213. —: Inhibitory effect of alcohol on oxytocin release in rabbit parturition. J. Endocr. 35, 125–134 (1966).PubMedCrossRefGoogle Scholar
  214. —, and G. Wagner: Effect of alcohol on release of oxytocin. Nature (Lond.) 198, 92–94 (1963a).CrossRefGoogle Scholar
  215. —: The effect of alcohol on release of oxytocin in rabbits. Acta endocr. (Kbh.) 44, 593–605 (1963b).Google Scholar
  216. Fugo, N.W.: The antidiuretic action of Yohimbine. Endocrinology 34, 143–148 (1944).CrossRefGoogle Scholar
  217. Fujita, H., and J.F. Hartmann: Electron microscopy in normal, adrenalin-treated and pilo-carpine-treated rabbits. Z. Zeilforsch. 54, 734–763 (1961).CrossRefGoogle Scholar
  218. Fuller, G.R., and C.H. Sawyer: Electroencephalographic changes in the cat associated with antidiuretic response to intracarotid injection of hypertonic solutions. Fed. Proc. 15, 69–70 (1956).Google Scholar
  219. Gaitan, E., E. Coba, and M. Mizrachi: Evidence for the differential secretion of oxytocin and vasopressin in man. J. clin. Invest. 43, 2310–2322 (1964).PubMedCrossRefGoogle Scholar
  220. Gaitonde, M.K., and D. Richter: The metabolic activity of the proteins of the brain. Proc. roy. Soc. B 45, 83–99 (1956).CrossRefGoogle Scholar
  221. Gauer, O.H., and J.P. Henry: Circulatory basis of fluid volume control. Physiol. Rev. 43, 423–481 (1963).PubMedGoogle Scholar
  222. —, O.H. Sieker, and W.E. Wendt: The effect of negative pressure breathing on urine flow. J. clin. Invest. 33, 287 (1954).PubMedCrossRefGoogle Scholar
  223. Gerschenfeld, H.M., J.M. Tramezzani, and E. De Robertis: Ultrastructure and function in neurohypophysis of the toad. Endocrinology 66, 741–762 (1960).PubMedCrossRefGoogle Scholar
  224. Gersh, I.: Structure and function of the parachymatous glandular cells in the neurohypophysis of the rat. Amer. J. Anat. 64, 467–443 (1939).CrossRefGoogle Scholar
  225. Giarman, M.J., L.R. Mattie, and W.F. Stephenson: Studies on the antidiuretic action of morphine. Science 117, 225–226 (1953).PubMedCrossRefGoogle Scholar
  226. Giere, F. A., and W. J. Eversole: Effects of adrenal medullary hormones on antidiuretic substances in blood serum. Science 120, 395–396 (1954).PubMedCrossRefGoogle Scholar
  227. Ginsburg, M.: The clearance of vasopressin from the splanchnic vascular area and the kidneys. J. Endocr. 16, 217–226 (1957).PubMedCrossRefGoogle Scholar
  228. —: Unpublished observations (1960).Google Scholar
  229. —, and L. M. Brown: Effect of anaesthetics and haemorrhage on the release of neurohypo-physial antidiuretic hormone. Brit. J. Pharmacol. 14, 327–333 (1956).Google Scholar
  230. —: The effects of haemorrhage and plasma hypertoxicity on the neurohypophysis. In: The neurohypophysis. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  231. —, and H. Heller: Antidiuretic activity in blood obtained from various parts of the cardiovascular system. J. Endocr. 9, 274–282 (1953a).PubMedCrossRefGoogle Scholar
  232. —, The clearance of injected vasopressin from the circulation and its fate in the body. J. Endocr. 9, 283–291 (1953b).PubMedCrossRefGoogle Scholar
  233. —, and S.M.A. Zaidi: Re-appraisal of the evidence for the metabolic conversion of vasopressin into a less active metabolite. Nature (Lond.) 178, 803–804 (1956).CrossRefGoogle Scholar
  234. —, and M. Ireland: The hormone binding protein of the neurohypophysis. J. Physiol. (Lond.) 169, 15 (1963).Google Scholar
  235. —: Binding of vasopressin and oxytocin to protein in extracts of bovine and rabbit neuro-hypophyses. J. Endocr. 30, 131–145 (1964a).PubMedCrossRefGoogle Scholar
  236. — —: Unpublished observations (1964b).Google Scholar
  237. —: The preparation of bovine neurohypophysis and the estimation of its maximum capacity to bind oxytocin and arginine vasopressin. J. Endocr. 32, 187–198 (1965a).PubMedCrossRefGoogle Scholar
  238. — —: Unpublished observations (1965b).Google Scholar
  239. —: The role of neurophysin in the transport and release of neurohypophysial hormones. J. Endocr. 35, 289–298 (1966).PubMedCrossRefGoogle Scholar
  240. —, K. Jayasena, B. J. Pickering, and P. J. Thomas: Unpublished observations (1966).Google Scholar
  241. — —: Unpublished observations (1967).Google Scholar
  242. —, and P. J. Thomas: Preparation and properties of porcine neurophysin and the influence of calcium on the hormone-neurophysin complex. J. Physiol. (Lond.) 184, 387–401 (1966a).Google Scholar
  243. —, and M. W. Smith: The fate of oxytocin in male and female rats. Brit. J. Pharmacol. 14, 327–333 (1959).PubMedGoogle Scholar
  244. Gomez, E. T.: Relations of the posterior hypophysis in the maintenance of lactation in hypo-physectomised rats. J. Dairy Sci. 22, 488 (1939).Google Scholar
  245. Gomori, G.: Observations with differential stains on human islets of Langerhans. Amer. J. Path. 17, 395–406 (1941).PubMedGoogle Scholar
  246. Gonzalez-Panizza, V.M., Y. Sica-Blanco, and C.J. Mendez-Batjer: Fate of injected oxytocin in the pregnant women near term. In: Oxytocin. Ed. by R. Caldeyro-Barcia and H. Heller. London: Pergamon Press 1961.Google Scholar
  247. Gopalan, C.: Antidiuretic factor in the urine of patients with nutritional oedema. Lancet 1950 I, 304–306.CrossRefGoogle Scholar
  248. Green, J.D., and V.L. Van Breeman: Electron microscopy of pituitary and observations on neurosecretion. Amer. J. Anat. 97, 177–227 (1955).PubMedCrossRefGoogle Scholar
  249. Green, J.D., and D.J. Maxwell: The comparative anatomy of the hypophysis and observations on the mechanism of neurosecretion. In: Comparative endocrinology, pp. 368–392. Ed. by A. Gorbman. New York: Wiley 1959.Google Scholar
  250. Greenberg, E., M.B. Divertie, and L.B. Woolner: A review of unusual systemic manifestations associated with carcinoma. Amer. J. Med. 36, 106–120 (1964).PubMedCrossRefGoogle Scholar
  251. Groot, J. De, and J.E. Hartfield: Quantitative changes in rat pituitary neurosecretory material in altered adrenocortical function. Acta neuroveg. (Wien) 22, 177–183 (1960).CrossRefGoogle Scholar
  252. Grosvenor, C.E., and C.W. Turner: Evidence for adrenergic and cholinergic components in milk let-down reflex in lactating rats. Proc. Soc. exp. Biol. (N.Y.) 95, 719–722 (1957).Google Scholar
  253. Gunther, M.: The posterior pituitary and labour. Brit. med. J. 1948 I, 567.CrossRefGoogle Scholar
  254. Hall, C. A., B. Frame, and V. A. Drill: Renal excretion of water and antidiuretic substances in patients with hepatic cirrhosis and rats with dietary liver injury. Endocrinology 44, 76–82 (1949).PubMedCrossRefGoogle Scholar
  255. Haller, E.W., N. Sperelakis, H. Sachs, and L. Shore: Release of vasopressin from guinea pig posterior pituitary. Amer. J. Physiol. 209, 79–83 (1965).PubMedGoogle Scholar
  256. Hammond, J.: The physiology of milk and butterfat secretion. Vet. Rec. 48, 519–535 (1936).Google Scholar
  257. Hanenson, T.B., B. Goluboff, J. Grossman, R.E. Weston, and L. Leiter: Studies on water excretion following intravenous hydration and the administration of pitressin or nicotine in congestive heart failure. Circulation 13, 242–251 (1956).PubMedCrossRefGoogle Scholar
  258. Hankiss, J., M. Keszthelyi, and B. Siro: A new type of diabetes insipidus due to hormone inactivation. Its incidence in clinical material. Amer. J. med. Sci. 242, 605–611 (1961).PubMedCrossRefGoogle Scholar
  259. Hansen, J.D.L., and L.A. Smith: The effects of witholding fluid intake in the immediate post-natal period. Amer. J. Dis. Child. 84, 477–478 (1952).Google Scholar
  260. Harris, G. W.: The innervation and action of the neurohypophysis. An investigation using the method of remote control stimulation. Phil. Trans. B 232, 385–441 (1947).CrossRefGoogle Scholar
  261. —: The excretion of an antidiuretic substance by the kidney after electrical stimulation of the neurohypophysis in the unanaesthetised rabbit. J. Physiol. (Lond.) 107, 430–435 (1948).Google Scholar
  262. —: Neural Control of the Pituitary Gland. London: Arnold 1955.Google Scholar
  263. —, and D. Jacobsohn: Functional grafts of the anterior pituitary gland. Proc. roy. Soc. B 149, 263–276 (1952).CrossRefGoogle Scholar
  264. —, and G. Kahlson: In: Ciba Colloquia on Endocrinology, Vol. 4, p. 186. London: J. and A. Churchill (1952).Google Scholar
  265. —, and V.R. Pickles: Reflex stimulation of the neurohypophysis (posterior pituitary gland) and the nature of posterior pituitary hormones. Nature (Lond.) 172, 1049 (1953).CrossRefGoogle Scholar
  266. Harvey, Nancy, J. J. Jones, and J. Lee: The renal clearance and plasma binding of vasopressin in the dog. J. Endocr. 38, 163–172 (1967).PubMedCrossRefGoogle Scholar
  267. Hasselbach, C.H., et A.R. Piguet: Nature et purification partielle de l’ocytocine sur les hormones hypophysaires. 1. Helv. Clin. Acta 35, 2131 (1952).CrossRefGoogle Scholar
  268. Haterius, H.O., and J.K.W. Ferguson: Evidence for the hormonal nature of the oxytocic principle of the neurohypophysis. Amer. J. Physiol. 124, 314–321 (1938).Google Scholar
  269. —: Evidence of pituitary involvement in the experimental control of water diuresis. Amer. J. Physiol. 128, 506–513 (1940).Google Scholar
  270. Hawker, R. W.: Inactivation of antidiuretic hormone and oxytocin during pregnancy. Quart. J. exp. Physiol. 41, 301–308 (1956).PubMedGoogle Scholar
  271. —: Oxytocin in lactating and non-lactating women. J. clin. Endocr. 18, 54–60 (1958).PubMedCrossRefGoogle Scholar
  272. —, and V. S. Roberts: Oxytocin in lactating cows and goats. Brit. vet. J. 113,459–464 (1957).Google Scholar
  273. —, and C.F. Walmsley: Oxytocin and oxytocic substance in blood extracts before and during copulation in in sheep. Endocrinology 64, 309–310 (1959).PubMedCrossRefGoogle Scholar
  274. —, and P. H. Robertson: Some properties of an oxytocic substance found in blood extracts. Endocrinology 63, 242–249 (1958).PubMedCrossRefGoogle Scholar
  275. —, C.F. Walmsley, V.S. Roberts, J.K. Blackshaw, and J.C. Downes: Oxytocic activity in blood of parturient and lactating women. J. Clin. Endocrin. 21, 985–995 (1961).CrossRefGoogle Scholar
  276. Hebb, C.O., and G.M.H. Waithes: Choline acetylase in antero-and retrograde degeneration of a cholinergic nerve. J. Physiol. (Lond.) 132, 667–671 (1956).Google Scholar
  277. Heller, H.: Antidiuretic hormone in pituitary glands of new-born rats. J. Physiol. (Lond.) 106, 28–32 (1947).Google Scholar
  278. —: The effects of dehydration on adult and new-born rats. J. Physiol. (Lond.) 108, 303–314 (1949).Google Scholar
  279. —: The state and concentration of the neurohypophysial hormones in blood. Ciba Found. Coll. Endocr. 11, 609–630 (1957).Google Scholar
  280. —, and K. Lederis: Cited by H. Heller (1957).Google Scholar
  281. —: Maturation of the hypothalamo-neurohypophysial system. J. Physiol. (Lond.) 147, 299–314 (1959).Google Scholar
  282. —: Characteristics of isolated neurosecretory vesicles from mammalian neural lobes. Mem. Soc. Endocrinol. 12, 35–50 (1962).Google Scholar
  283. Heller, H., and A.Q. Safi: Unpublished observations (1966).Google Scholar
  284. —, and F.H. Smirk: The influence of binding on animal, of its body temperature and of external losses of water upon diuresis. J. Physiol. (Lond.) 76, 23–38 (1932a).Google Scholar
  285. —: Studies concerning the alimentary absorption of water and tissue hydration in relation to diuresis. IV. The influence of anaesthetics and hypnotics on the absorption and excretion of water. J. Physiol. (Lond.) 76, 292–302 (1932b).Google Scholar
  286. —, and F. F. Urban: The fate of antidiuretic principle of post-pituitary extracts in vivo and in vitro. J. Physiol. (Lond.) 85, 502–518 (1935).Google Scholar
  287. —, and S.M.A. Zaidi: The metabolism of exogenous and endogenous antidiuretic hormone in the liver and kidney in vivo. Brit. J. Pharmacol. 12, 284–292 (1957).PubMedGoogle Scholar
  288. —, and E. J. Zaimis: The antidiuretic and oxytocic hormones in the posterior pituitary glands of new-born infants and adults. J. Physiol. (Lond.) 109, 162–169 (1949).Google Scholar
  289. Heller, J.: The physiology of the antidiuretic hormone. IV. The effect of certain anaesthetics on the antidiuretic activity of rat blood plasma. Physiol. bohemoslov. 9, 283–288 (1960).Google Scholar
  290. Hellman, K., and J.S. Weiner: Antidiuretic substances in urine following exposure to high temperatures. J. appl. Physiol. 6, 194–198 (1953).Google Scholar
  291. Hendricks, C. H.: The neurohypophysis in pregnancy. Obstet, gynec. Surv. 9,323–341 (1954).CrossRefGoogle Scholar
  292. —, T. Helfand, and R. Caldeyro-Barcia: Amer. J. Obstet. Gynec. 77, 387 (1959).Google Scholar
  293. Henry, J.P., O.H. Gauer, and J.L. Reeves: Evidence of the atrial location of receptors influencing urine flow. Circulat. Res. 4, 85 (1956).PubMedCrossRefGoogle Scholar
  294. —, and J. W. Pearce: The possible role of cardiac stretch receptors in the induction of changes in urine flow. J. Physiol. (Lond.) 131, 572 (1956).Google Scholar
  295. Hild, W.: Experimentell-morphologische Untersuchung über das Verhalten der „Neurosekretonischen Bahn“ nach Hypophysenstieldurchschneidung bei Eingriffen in den Wasserhaushalt und Belastung der Osmoregulation. Virchows Arch. path. Anat. 319, 526–546 (1951).Google Scholar
  296. —, and G. Zetler: Über das Vorkommen der Hypophysenhinterlappenhormone im Zwischenhirn. Arch. Exp. Pathol. Pharmakol. 213, 139–153 (1951).CrossRefGoogle Scholar
  297. —: Über die Funktion des Neurosekretsim Zwischenhirnneurohypophysensystem als Trägersubstanz für Vasopressin, Adiuretin und Oxytocin. Z. ges. exp. Med. 120,236–243 (1953a).PubMedCrossRefGoogle Scholar
  298. —: Experimenteller Beweis für die Entstehung der sog. Hyperphysenhinterlappenwirk-stoffe im Hypothalamus. Pflügers Arch. ges. Physiol. 257, 169–201 (1953b).CrossRefGoogle Scholar
  299. Hilton, J.G., and R.F. Johnson: Changes in blood oxytocinase during parturition. Amer. J. Obstet. Gynec. 78, 479–482 (1959).PubMedGoogle Scholar
  300. Hipsley, E.H., and J.W. McKellar: Vasopressin binding capacity of plasma. J. Endocr. 19, 345–352 (1960).CrossRefGoogle Scholar
  301. Holland, R.C., B.A. Cross, and C.H. Sawyer: E.E.G. correlates of osmotic activation of the neurohypophysial milk-ejection mechanism. Amer. J. Physiol. 196, 796–802 (1959).PubMedGoogle Scholar
  302. —, J.W. Sundsten, and C.H. Sawyer: Anat. Rev. 130, 316 (1958).CrossRefGoogle Scholar
  303. Holmes, R.L.: Phosphatase and cholinesterase in the hypothalamo-hypophysial system in the monkey. J. Endocr. 23, 63–67 (1961).PubMedCrossRefGoogle Scholar
  304. —, and J.A. Kiernan: The fine structure of the infundibular process of hedgehog. Z. Zell-forsch. 61, 894–912 (1964).CrossRefGoogle Scholar
  305. Hooper, K. C.: The catabolism of some physiologically active polypeptides by homogenate of dog hypothalamus. Biochem. J. 83, 511–517 (1962).PubMedGoogle Scholar
  306. Hope, D. B., and M. D. Hollenberg: Isolation of a new hormone-binding protein from the posterior lobes of bovine pituitary glands. Biochem. J. 99, 5–6 p. (1966).Google Scholar
  307. Howe, A., and P.A. Jewell: Effects of water deprivation upon the neurosecretory material of the desert rat (Meriones meriones) compared with the laboratory rat. J. Endocr. 18, 118–123 (1959).PubMedCrossRefGoogle Scholar
  308. —, and A.G.E. Pearce: A histochemical investigation of neurosecretory substance in the rat. J. Histochem. Cytochem. 4, 561–569 (1956).PubMedCrossRefGoogle Scholar
  309. Hulet, W.H., and H.W. Smith: Negative pressure respiration, water diuresis and natriuresis in normotensive, hypertensive and prehydrated normotensive subjects. J. clin. Invest. 38, 1972–1980 (1959).PubMedCrossRefGoogle Scholar
  310. Hunter, J., M. Kalant, and J.C. Ogilvie: A simple method for the assay of small amounts of antidiuretic hormone. Canad. J. Biochem. 37, 1218–1225 (1959).Google Scholar
  311. Hyden, H.: Protein metabolism in the nerve cell during growth and function. Acta physiol. scand. 6, suppl. 17, 1–136 (1943).Google Scholar
  312. —, and A. Pigon: A cytophysiological study of the functional relationship between oligo-dendroglial cells and nerve cells of Deiter’s nucleus. J. Neurochem. 6, 57–72 (1960).PubMedCrossRefGoogle Scholar
  313. Isbister, C.: A clinical study of the draught reflex in human lactation. Arch. Dis. Childh. 29, 66 (1954).PubMedCrossRefGoogle Scholar
  314. Ism, S., I. Yasumasu, H. Kobayashi, Y. Oota, T. Hirano, and A. Tanaka: Isolation of neurosecretory granules and nerve endings from bovine posterior lobe. Annotationes Zool. Japon. 35, 121–127 (1962).Google Scholar
  315. Ishtkama, T., K. Koizumi, and C.M. Brooks: Electrical activity recorded in pituitary stalk of the cat. Amer. J. Physiol. 210, 427–431 (1966).Google Scholar
  316. Itoh, S.: The release of antidiuretic hormone from the posterior pituitary body on exposure to heat. Jap. J. Physiol. 4, 185–190 (1945).CrossRefGoogle Scholar
  317. —: Mammalian antidiuretic hormone. Sogo Igaku 11, 395 (1954).Google Scholar
  318. Jahn, H., F. Stephan, and J. Stahl: Diuretic activity in blood and urine after bleeding in the dog. Arch. Sci. physiol. 14, 421–433 (1960).Google Scholar
  319. Jewell, P. A.: The occurrence of vesiculated neurones in the hypothalamus of the dog. J. Physiol. (Lond.) 121, 167–181 (1953).Google Scholar
  320. —, and E. B. Verney: An experimental attempt to determine the site of the neurohypophysial and osmoreceptors in the dog. Phil. Trans. B 240, 197–324 (1957).CrossRefGoogle Scholar
  321. Jones, A.M., and W. Schlapp: The action and fate of injected posterior pituitary extracts in the decapitated cat. J. Physiol. (Lond.) 87, 144–157 (1936).Google Scholar
  322. Kalliala, H., and M. J. Karvonen: Antidiuresis during suckling in women. Ann. Med. exp. Fenn. 29, 233–241 (1951).PubMedGoogle Scholar
  323. Kandel, E.R.: Spike and synaptic potentials in hypothalamic neuroendocrine cells. Fed. Proc. 21, 361 (1962).Google Scholar
  324. Kelsall, A.R.: The inhibition of water diuresis in man by ischaemic muscle pain. J. Physiol. (Lond.) 109, 150–161 (1949).Google Scholar
  325. —: The urinary excretion of adrenaline during inhibition of water diuresis in man by ischaemic muscle pain. J. Physiol. (Lond.) 112, 54–58 (1951).Google Scholar
  326. Kivalo, E., and H. Arko: The effect of noradrenaline and acetylcholine on water diuresis and neurosecretory substance of the rat. Ann. Med. exp. Fenn. 35, 398–403 (1957).PubMedGoogle Scholar
  327. Kivalo, I.: Effect of some anaesthetic agents on diuresis and hypothalamo-hypophysial neuro-secretion in the rat. Ann. J. Med. exp. Biol. Fenn., Suppl. 5, 44, 1–60 (1966).Google Scholar
  328. Klisiecki, A., M. Pickford, P. Rothschild, and E. B. Verney: The absorption and excretion of water by the mammal. Proc. roy. Soc. B 112, 496–547 (1933).CrossRefGoogle Scholar
  329. Knaggs, G. S.: Blood oxytocin levels in the cow during milking and in the parturienr goat. J. Endocr. 26, Xxiv–XXV (1963).Google Scholar
  330. —: Biological half-life of intravenously injected oxytocin in the sow. J. Endocr. 37, 229–230 (1967).PubMedCrossRefGoogle Scholar
  331. Knowles, F.G.W.: In: 2nd Int. Symposium on neurosecretion. Ed. by W. Bargmann, B. Haustron, and E. Scharrer. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  332. Koelle, G. B.: A proposed dual neurohumoral role of acetylcholine; its function at the pre-and postsynaptic sites. Nature (Lond.) 190, 208–211 (1961).CrossRefGoogle Scholar
  333. —, and C. Geesey: Localisation of acetylcholine-esterase in the neurohypophysis and its functional implications. Proc. Soc. exp. Biol. (N.Y.) 100, 625–628 (1961).Google Scholar
  334. Koizumi, K., T. Ishtkawa, and C. McC. Brooks: Control of activity of neurons in the supra-optic nucleus. J. Neurophysiol. 27, 878–892 (1964).PubMedGoogle Scholar
  335. Kovacs, K., D. Bachrach, A. Jakobovits, E. Horvath U. B. Korpassy: Hypothalamohypo-physeale Beziehungen der Flüssigkeitsentziehung bei Ratten. Endokrinologie 31, 17–29 17-29 (1954).PubMedGoogle Scholar
  336. Kramer, K., K. Thurau U. P. Deetjen: Hämodynamik des Nierenmarks. 1. Capillare Passagezeit, Blutvolumen, Durchblutung, Gewebshämatokrit und O2-Verbrauch des Nierenmarks in situ. Pflügers Arch. ges. Physiol. 270, 251–269 (1960).CrossRefGoogle Scholar
  337. Krecek, J., H. Dlouha, and J. Kreckova: Cited by Krecek and Heller (1962).Google Scholar
  338. —, and J. Heller: Neurohypophysis and the regulation of water and electrolyte metabolism in infant mammals. Proc. Xxii Int. Congr. Physiol. Sci., Vol. 1, pp. 53–69 (1962).Google Scholar
  339. Labella, F.S., G. Beaulieu, and R. J. Reiffenstein: Evidence for the existence of separate vasopressin and oxytocin-containing granules in the neurohypophysis. Nature (Lond.) 193, 172–173 (1962).CrossRefGoogle Scholar
  340. Larson, E.: Tolerance and fate of the pressor principle of posterior pituitary extract in anaesthetised animals. J. Pharmacol. (Kyoto) 62, 346–361 (1935).Google Scholar
  341. Lasser, R.P., M.R. Schoenfeld, D.F. Allen, and C.K. Friedberg: Reflex circulatory effects elicited by hypertonic and hypotonie solutions injected into femoral and bracheal arteries of the dog. Circulat. Res. 8, 913–919 (1960).PubMedCrossRefGoogle Scholar
  342. Lauson, H.D.: Unpublished experiments. Cited by Lauson (1960).Google Scholar
  343. —: Vasopressin and oxytocin in the plasma of man and other mammals. In: Hormones and human plasma, pp. 225–293. Ed. by H.N. Antoniades. Boston: Little, Brown and Co. 1960.Google Scholar
  344. —: Antidiuretic hormone. Fed. Proc. 24, 731–736 (1965).PubMedGoogle Scholar
  345. —, and M. Bocanegra: Clarance of exogenous vasopressin from plasma in dogs. Amer. J. Physiol. 200, 493–497 (1961).PubMedGoogle Scholar
  346. —, and C. F. Beuzeville: Hepatic and renal clearance of vasopressin from plasma of dogs. Amer. J. Physiol. 209, 199–214 (1965).PubMedGoogle Scholar
  347. Lederis, K.: Vasopressin and oxytocin in the mammalian hypothalamus. Gen. Comp. Endocr. 1, 80–89 (1961).PubMedCrossRefGoogle Scholar
  348. —: Ultrastructure of the hypothalamo-neurohypophysial system in teleost fishes and isolation of the hormone containing granules from the neurohypophysis. Z. Zellforsch. 58, 192–213 (1962).PubMedCrossRefGoogle Scholar
  349. —: Hormonal and ultrastructural changes in the hypothalamo-neurohypophysial system following osmotic stimulation. Gen. Comp. Endocr. 3, 714–715 (1963).Google Scholar
  350. —: Fine structure and hormone content of the hypothalamo-neurohypophysial system of the rainbow trout (Salmo irideus) exposed to sea water. Gen. Comp. Endocr. 4, 638–661 (1964).CrossRefGoogle Scholar
  351. —: An electron microscopical study of the human neurohypophysis. Z. Zellforsch. 65, 847 to 868 (1965).PubMedCrossRefGoogle Scholar
  352. —: Personal communication (1966).Google Scholar
  353. —, and H. Heller: Intracellular storage of vasopressin and oxytocin in the posterior pituitary lobe. Acta endocr. (Kbh.), Suppl. 51, 115–116 (1960).Google Scholar
  354. —, and A. Livingstone: Acetylcholinesterase content of rabbit neurohypophyses. J. Physiol. (Lond.) 186, 37–38 (1966).Google Scholar
  355. Ledsome, J.R., R. J. Linden, and W. J. O’connor: The mechanism by which distention of the left atrium produces diuresis. J. Physiol. (Lond.) 159, 86–90 (1961).Google Scholar
  356. Lee, J.: Antidiuretic activity in the blood and urine in cirrhosis of the liver. Acta endocrin. (Kbh.), Suppl. 51, 129–130 (1960).Google Scholar
  357. —, J. J. Jones, and M.A. Barraclough: Inappropriate secretion of vasopressin. Lancet 1964 n, 792-793.Google Scholar
  358. —, and D.N.S. Kerr: The concentrations of vasopressin in the blood in patients with hepatic cirrhosis. Clin. Sci. 28, 375–384 (1963).Google Scholar
  359. Leveque, J. E., and M. Small: The relationship of the pituicyte to the posterior lobe hormones. Endocrinology 65, 909–915 (1959).PubMedCrossRefGoogle Scholar
  360. Levitt, M.F., M.H. Halpern, D.P. Polimeros, A.Y. Sweet, and D. Gribetz: The effect of abrupt changes in plasma calcium concentration on renal function and electrolyte excretion in man and monkey. J. clin. Invest. 37, 294–305 (1958).PubMedCrossRefGoogle Scholar
  361. Lewis, A.A.G.: The control of the renal excretion of water. Ann. roy. Coll. Surg. Engl. 13, 36–54 (1953).Google Scholar
  362. —, and T.M. Chalmers: A nicotine test for the investigation of diabetes insipidus. Clin. Sci. 167, 137–144 (1951).Google Scholar
  363. Leyden-Webb, J.: Metabolic Inhibitors. New York: Academic Press 1963.Google Scholar
  364. Liddle, G.W., D.P. Island, R.L. Ney, W.E. Nicholson, and N. Shdhiza: Non-pituitary neoplasm and Cushing’s syndrome. Arch. Inst. Med. iii, 471–475 (1963).Google Scholar
  365. Lindner, E.B., A. Elmquist, and J. Porath: Gel filtration as a method of purification of protein bound peptides exemplified by oxytocin and vasopressin. Nature (Lond.) 184, 1565 (1959).CrossRefGoogle Scholar
  366. Linzell, J.L.: Some observations on the contractile tissue of the mammary glands. J. Physiol. (Lond.) 130, 257–267 (1955).Google Scholar
  367. —: Some observations on the contractile tissue of the mammary gland. J. Physiol. (Lond.) 130, 257–267 (1955).Google Scholar
  368. Lipsett, M.B., W.D. Odell, L.E. Rosenberg, and T.A. Waldmann: Humoral syndromes associated with non-endocrine tumours. Ann. intern. Med. 61, 733–756 (1964).PubMedCrossRefGoogle Scholar
  369. Little, J.B., L.M. Klevay, E.P. Radford, and R.B. McGandy: Antidiuretic hormone in-activation by isolated perfused rat liver. Amer. J. Physiol. 211, 786–792 (1966).PubMedGoogle Scholar
  370. —, and E.P. Radford: Circulating antidiuretic hormone in rats. Effects of dietary electrolytes and protein. Amer. J. Physiol. 207, 821–825 (1964).PubMedGoogle Scholar
  371. —, V.W. Smith, A. G. Jessiman, H. Selenkow, W. Van’t Hoff, J. M. Elgin, and F.D. Moore: Hypophysectomy during pregnancy in a patient with cancer of the breast. A case report with hormone studies. J. clin. Endocr. 18, 425–443 (1958).PubMedCrossRefGoogle Scholar
  372. Lloyd, C.W.: In: The neurohypophysis. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  373. Love, A.H., R. A. Roddie, J. Rosensweig, and R.C. Shanks: The effect of pressure changes in the respirai air on the renal excretion of water and electrolytes. Clin. Sci. 16, 281–296 (1957).PubMedGoogle Scholar
  374. MacArthur, C.G.: A new posterior pituitary preparation. Science 73, 448 (1931).PubMedCrossRefGoogle Scholar
  375. Macauley, M.: Quoted in Folley (1952).Google Scholar
  376. Macfarlane, W.V., and K.W. Robinson: Seasonal changes in plasma antidiuretic activity produced by standard heat stimulus. J. Physiol. (Lond.) 135, 1–11 (1957).Google Scholar
  377. Malandra, B.: Etude preliminaire du systeme neurosecretaire diencephalique neurohypo-physaire par S35. In: Proc. 2nd Int. Symposium on Neurosecretion. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  378. Manfnta, G., e A. Marongui: Inattivazione dell’oxitocina in vivo negli ovini. Boll. Soc. ital. Biol. sper. 37, 510–512 (1961).Google Scholar
  379. Mathe, G., et J. Altman: Contribution experimentale a l’étude de l’inactivation hepatique de la pitressin. Presse med. 62, 983–985 (1954).PubMedGoogle Scholar
  380. Mayer, F. S.: Identification of the antidiuretic substance in human urine. Acta endocr. (Kbh.) 35, 568–574 (1960).Google Scholar
  381. Mazer, A., J. Allegrini, et R. Lemaire: Localisation des zones vaso-sensibles carotidiens responsable de la secretion de l’hormone antidiuretique chez le chien. C.R. Soc. Biol. (Paris) 156, 718–721 (1962a).Google Scholar
  382. R. Lemaire —: Influence des hypotensions moderees sur le reflex antidiuretique a prend depas carotidien. C.R. Soc. Biol. (Paris) 156, 730–732 (1962b).Google Scholar
  383. Mikulas, L., and H. Dlotjha: Cited by Krecek and Heller (1962).Google Scholar
  384. Miles, B.E., and H.E. De Wardener: Renal vasoconstriction produced by ether and cyclopropane anaesthesia. J. Physiol. (Lond.) 118, 140–144 (1952).Google Scholar
  385. Miller, G. E., and C. E. Townsend: The in vitro inactivation of Pitressin by normal and cirrho-tic human liver. J. clin. Invest. 33, 549–553 (1954).PubMedCrossRefGoogle Scholar
  386. Mills, E., and S.C. Wang: Liberation of antidiuretic hormone; pharmacologic blockade of ascending pathways. Amer. J. Physiol. 207, 1405–1410 (1964).PubMedGoogle Scholar
  387. Mitiken, J.M., and W. W. Douglas: Effect of Ca++ and other ions on vasopressin release from rat neurohypophysis stimulated electrically in vitro. Nature (Lond.) 207, 302 (1965).Google Scholar
  388. Moll, J.: Regeneration of the supraoptico-hypophyseal tracts in the hypophysectomised rat. Z. Zellforsch. 46, 686–709 (1957).PubMedCrossRefGoogle Scholar
  389. Moller-Christenson, E.: Investigations on the inactivation of vasopressin in the liver. Acta endocr. (Kbh.) 6, 153–160 (1951).Google Scholar
  390. Monaci, M., et P. Nocentini: La ‘neuricrinie’ hypothalamo-hypophysaire au cours du choc et de l’hyperthermie generalisee controllee. Anesthesie 12, 3–17 (1955).PubMedGoogle Scholar
  391. Morel, F.: Quelques aspects de la regulation endocrienne de l’equilibre hydroaineral enregistres chez le rat a l’aide du radio sodium Na24. Bull. Biol. France Belg., Suppl. 39, 1–110 (1955).Google Scholar
  392. Morita, H., T. Ishibashi, and S. Yamashita: Synaptic transmission in neurosecretory cells. Nature (Lond.) 191, 183 (1961).CrossRefGoogle Scholar
  393. Morris, G.C., A. S. Keats, J.H. Moyer, and M.E. De Bakey: Renal function during anaesthesia for cardiovascular surgery. Anaesthesiology 20, 608–612 (1959).CrossRefGoogle Scholar
  394. Moses, A.M., T.F. Leveque, M. Giambatista, and C.W. Lloyd: Dissociation between the content of vasopressin and neurosecretory material in the rat neurohypophysis. J. Endocr. 26, 273–278 (1963).PubMedCrossRefGoogle Scholar
  395. Motzfeldt, K.: Experimental studies on the relation of the pituitary body to renal function. J. exp. Med. 25, 153–188 (1917).PubMedCrossRefGoogle Scholar
  396. Müller-Hartberg, W., H. Nesvadba, and H. Tuppy: Arch. Gynaecol. 191, 442. Quoted by H. Tuppy. In: Polypeptides which affect smooth muscles and blood vessels. Ed. by M. Schachter. Oxford: Pergamon Press 1959.Google Scholar
  397. Murakami, M.: Neurosekretorische Zellen im Hypothalamus der Maus. Z. Zellforsch. 56, 277–299 (1962).PubMedCrossRefGoogle Scholar
  398. Murdaugh, H.V., H.O. Sieker, and F. Manfredi: Effects of altered intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J. clin. Invest. 38, 834 (1959).PubMedCrossRefGoogle Scholar
  399. Newton, M.: Human lactation. Chapter 7. In: Milk; the mammary gland and its secretion. Ed. by S.K. Kon and A.T. Cowie. London: Academic Press 1961.Google Scholar
  400. Nibbelink, D.W.: Paraventricular nuclei, neurohypophysis and parturition. Amer. J. Physiol. 200, 1229–1232 (1961).PubMedGoogle Scholar
  401. Nielsen, B.: Correlation between antidiuretic hormone effect and the renal excretion of calcium and magnesium in man. Acta endocr. (Kbh.) 45, 151–160 (1964).Google Scholar
  402. Nishioka, R. S., H. A. Bern, and L. R. Mewaldt: Ultrastructural aspects of the neurohypophysis of the white-crowned sparrow Zonotrichia leueophrys gambeii, with special reference to the relation of neurosecretory axons to ependyma in the pars nervosa. Gen. Comp. Endo-crinol. 4, 304–313 (1964).CrossRefGoogle Scholar
  403. Noble, R.L., and N. B. G. Taylor: Antidiuretic substances in human urine after haemorrhage, fainting, dehydration and acceleration. J. Physiol. (Lond.) 122, 220–237 (1953).Google Scholar
  404. Noodle, B.: Metabolism of oxytocin in the mammary gland. Proc. Int. Union Physiol. XXII Int. Congr. Leiden, Abstr. Comm. No. 523 (1962).Google Scholar
  405. O’connor, W. J.: The role of the neurohypophysis of the dog in determining urinary changes and the antidiuretic activity of urine following administration of sodium chloride. Quart. J. exp. Physiol. 36, 21–48 (1950).Google Scholar
  406. —: Renal Function. London: Edward Arnold 1962.Google Scholar
  407. —, and E.B. Verney: The effect of removal of the posterior lobe of the pituitary on the inhibition of water diuresis by emotional stress. Quart. J. exp. Physiol. 31, 393–408 (1942).Google Scholar
  408. —: The effect of increased activity of the sympathetic system in the inhibition of water diuresis by emotional stress. Quart. J. exp. Physiol. 33, 77–90 (1945).Google Scholar
  409. Oltvecbona, H.: Paraventricular nucleus and pituitary gland. Acta physiol. scand. 40, Suppl. 136 (1957).Google Scholar
  410. Oota, Y., and H. Kobayashi: Fine structure of the median eminence and pars nervosa of the pigeon. Annotationes Zool. Japon. 35, 128–138 (1962).Google Scholar
  411. Ortmann, R.: Über experimentelle Veränderungen der Morphologie des Hypophysen-Zwi-schenhirnsystems und die Beziehung der sog. „Gomori-Substanz“ zum Adiuretin. Z. Zellforsch. 36, 92–140 (1951).PubMedCrossRefGoogle Scholar
  412. Ott, I., and J.C. Scott: The action of infundibulin upon the mammary secretion. Proc. Soc. exp. Biol. (N.Y.) 8, 48–49 (1910).Google Scholar
  413. Page,, E.W. The value of plasma pitocinase determination in obstetrics. Amer. J. Obstet. Gynec. 52, 1014–1021 (1946).PubMedGoogle Scholar
  414. Palay, S.L.: An electron microscope study of the neurohypophysis in normal, hydrated and dehydrated rats. Anat. Rec. 121, 348 (1955).Google Scholar
  415. —: The fine structure of the neurohypophysis. In: Ultrastructure and cellular chemistry of neural tissue, pp. 31–49. Ed. by H. Waelsch. New York: Hoeber 1957.Google Scholar
  416. —: The fine structure of secretory neurones in the preoptic nucleus of the goldfish (Carassius auratus). Anat. Rec. 138, 417–443 (1960).PubMedCrossRefGoogle Scholar
  417. Pardoe, A.V., and M. Weatherall: Intracellular localization of oxytocic and vasopressor substances in pituitary glands of rats. J. Physiol. (Lond.) 127, 201–212 (1955).Google Scholar
  418. Pearce, M.L., and E.V. Newman: Some postural adjustments of salt and water excretion. J. clin. Invest. 33, 1089 (1954).PubMedCrossRefGoogle Scholar
  419. Peeters, G., and R. Coussens: The influence of the milking acts on the diuresis of the lactat-ing cow. 84, 209–220 (1950).Google Scholar
  420. —, and G. Sierens: Physiology of the nerves to the bovine mammary gland. Arch. Int. Pharmacodyn. 79, 75–82 (1949).PubMedGoogle Scholar
  421. —, G. Sierens, and M. Silver: The exclusion of milk in the isolated perfused udder of the cow. Arch. int. Pharmacodyn. 88, 413–424 (1952).PubMedGoogle Scholar
  422. —, H. Stormorken, and F. Vanschoubroek: The effect of different stimuli on milk-ejection and diuresis in the lactating cow. J. Endocr. 20, 163–172 (1960).PubMedCrossRefGoogle Scholar
  423. Pepler, W.J., and A.G.E. Pearse: The histochemistry of the esterase of rat brains with special reference to those of the hypothalamic nuclei. J. Neurochem. 1, 193–202 (1957).PubMedCrossRefGoogle Scholar
  424. Perlmutt, J. H.: Reflex antidiuresis after occlusion of common carotid arteries in hydrated dogs. Amer. J. Physiol. 204, 197–201 (1963).PubMedGoogle Scholar
  425. Peters, J.P.: Body water. Springfield: C.C. Thomas 1935.Google Scholar
  426. Petersdorf, R.G., and L.G. Welt: The effect of an infusion of hyperoncotic albumin on the excretion of water and solutes. J. clin. Invest. 32, 283–291 (1953).PubMedCrossRefGoogle Scholar
  427. Petersen, M. J., and I.S. Edelman: Calcium inhibition of the action of vasopressin on the urinary bladder of the toad. J. clin. Invest. 43, 583–594 (1964).PubMedCrossRefGoogle Scholar
  428. Peterson, W.E., and T.M. Ludwick: The humoral nature of the factor causing the let-down of milk. Fed. Proc. 1, 66–67 (1942).Google Scholar
  429. Pickford, M.: The inhibitory effect of acetylcholine on diuresis in the dog and its pituitary transmission. J. Physiol. (Lond.) 95, 226–238 (1939).Google Scholar
  430. —: The action of acetylcholine on the supraoptic nucleus of the chloralosed dog. J. Physiol. (Lond.) 106, 264–270 (1947).Google Scholar
  431. —: The release of oxytocin and vasopressin in polypeptides which affect smooth muscles and blood vessels, pp. 42–47. Ed. by M. Schachter. Oxford: Pergamon Press 1960.Google Scholar
  432. —, and J. A. Watt: A comparison of the effects of intravenous and intracarotid injections of acetylcholine in the dog. J. Physiol. (Lond.) 114, 333–335 (1951a).Google Scholar
  433. —: Comparison of the action of adrenaline and nor-adrenaline on the kidney. Quart. J. exp. Physiol. 36, 205–212 (1951b).PubMedGoogle Scholar
  434. Pickles, V.R.: Blood flow estimations as indices of mammary activity. J. Obstet. Gynaec. Brit. Cwlth 60, 301–311 (1953).CrossRefGoogle Scholar
  435. Preddie, E.C.: Structure of a large polypeptide of bovine posterior pituitary tissue. J. biol. Chem. 240, 4194–4203 (1965).PubMedGoogle Scholar
  436. —, and M. Saffran: Isolation of a large polypeptide from bovine posterior pituitary powder. J. biol. Chem. 240, 4189–4193 (1965).PubMedGoogle Scholar
  437. Ralli, E.P., J.S. Robson, D. Clarke, and C.L. Hoagland: Factors influencing ascites in patients with cirrhosis of the liver. J. clin. Invest. 24, 316–325 (1945).PubMedCrossRefGoogle Scholar
  438. Ralph, C. L.: Some effects of hypothalamic lesions on gonadotrophin release in the hen. Anat. Rec. 134, 411–421 (1959).PubMedCrossRefGoogle Scholar
  439. Ramchandran, L.K., and T. Winnick: Peptides of neuro-intermediate lob of hog pituitary gland. Biochim. biophys. Acta (Amst.) 23, 533–540 (1957).CrossRefGoogle Scholar
  440. Rasmussen, A.T.: Innervation of the hypophysis. Endocrinology 23, 263–278 (1938).CrossRefGoogle Scholar
  441. Read, B.C., and J.A. Vick: Cholinergic-like effects of hypertonic solution. Amer. J. Physiol. 200, 233 (1961).PubMedGoogle Scholar
  442. Rennels, E.G.: Effects of lactation on the neurohypophysis of the rat. Tex. Rep. Biol. Med. 16, 219–231 (1958).PubMedGoogle Scholar
  443. —, and G. V. Drager: Relationship of pituicytes to neurosecretion. Anat. Rec. 122, 193–203 (1955).PubMedCrossRefGoogle Scholar
  444. Rinne, V.K.: Neurosecretory material around the hypophysial portal vessels in the median eminence of the rat. Studies on its histological and histochemical properties and functional significance. Acta endocr. (Kbh.) 35, Suppl. 57, 1–108 (1960).Google Scholar
  445. Robertis, E. De: Histophysiology of synapses and neurosecretion. Oxford: Pergamon Press 1964.Google Scholar
  446. Robinson, K. W., and M. V. Macfarlane: The influence of environmental temperature on the level of plasma antidiuretic substances in the rat. Aust. J. biol. Sci. 9, 130–138 (1957).Google Scholar
  447. Rodeck, H.: Neurosekretion und Wasserhaushalt bei Neugeborenen und Säuglingen. Beih. Arch. Kinderheilk. 36, 1–62 (1958).Google Scholar
  448. —: Zusammenhänge zwischen Neurosekret und den sogenannten Hypophysenhinterlappen-hormonen. III. Mitt. Untersuchungen zur farbtechnischen Darstellung von synthetischem Oxytocin. Z. ges. exp. Med. 132, 122–135 (1959a).PubMedCrossRefGoogle Scholar
  449. —: Zusammenhänge zwischen Neurosekret und den sogenannten Hypophysenhinterlappen-hormonen. IV. Mitt. Untersuchungen an schwefelhaltigen Aminsoäuren. Z. ges. exp. Med. 132, 225–235 (1959b).PubMedCrossRefGoogle Scholar
  450. —, u. R. Caesar: Zur Entwicklung des neurosekretorischen Systems bei Saugern und Mensch und der Regulationsmechanismen des Wasserhautshaltes. Z. Zellforsch. 44,666–691 (1956).PubMedCrossRefGoogle Scholar
  451. Rosenfeld, M.: The native hormones of the posterior pituitary gland; the pressor and oxy-tocic principles. Bull. Johns Hopk. Hosp. 66, 398–403 (1940).Google Scholar
  452. Rothballer, A. B.: Changes in rat neurohypophysis induced by painful stimuli with particular reference to neurosecretory material. Anat. Rec. 115, 21–41 (1953).PubMedCrossRefGoogle Scholar
  453. Rubini, M.E., A.V. Wolf, and W.V. Moroney: Effects of sea water on the metabolism of men without food or sufficient water. Research report Wrair, 190–56. Cited from Wolf. Thirst. Springfield: C.C. Thomas 1958.Google Scholar
  454. Ruch, W.: Estimation of antidiuretic hormone in the urine of healthy subjects and patients with inappropriate secretion of vasopressin (Schwartz-Bartter Syndrome). Acta endocr. (Kbh.) 54, 113–121 (1967).Google Scholar
  455. Rydin, A., and E.B. Verney: The inhibition of water diuresis by emotional stress and muscular exercise. Quart. J. exp. Physiol. 27, 343–374 (1938).Google Scholar
  456. Sachs, H.: Vasopressin biosynthesis. I. In vivo studies. J. Neurochem. 5, 297–303 (1960).PubMedCrossRefGoogle Scholar
  457. —: Studies in the intracellular distribution of vasopressin. J. Neurochem. 10, 289–297 (1963a).PubMedCrossRefGoogle Scholar
  458. —: Vasopressin biosynthesis. II. Incorporation of 35S cysteine into vasopressin and protein associated with cell fractions. J. Neurochem. 10, 299–311 (1963b).CrossRefGoogle Scholar
  459. —, and Y. Takabatake: Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75, 943–948 (1964).PubMedCrossRefGoogle Scholar
  460. Samuels, A. J., L.L. Bajarsky, R.W. Gerard, B. Libet, and M. Brust: Distribution, exchange and migration of phosphate compounds in the nervous system. Amer. J. Physiol. 164, 1–15 (1951).PubMedGoogle Scholar
  461. Sato, G.: Über die Beziehung des Diabetes insipidus zum Hypophysenhinterlappen und zum Tuber cinereum. Arch. Exp. Pathol. Pharmakol. 131, 45–69 (1928).CrossRefGoogle Scholar
  462. Sawyer, C. H.: Cholinesterases in degenerating and regenerating peripheral nerves. Amer. J. Physiol. 146, 266–253 (1946).Google Scholar
  463. —, and B.E. Gernandt: Effects of intracarotid and intravenous injections of hypertonic solution on electrical activity of the rabbit brain. Amer. J. Physiol. 185, 209–216 (1956).PubMedGoogle Scholar
  464. Sawyer, W. H.: Inactivation of oxytocin by homogenates of uteri and other tissues from normal and pregnant rats. Proc. Soc. exp. Biol. (N.Y.) 87, 463–465 (1954).Google Scholar
  465. —: Neurohypophysial peptides and water excretion in the vertebrates. Mem. Soc. Endocrinol. No. 13, 45–48 (1963).Google Scholar
  466. —, W.Y. Chan, and H. B. Van Dyke: Antidiuretic responses to neurohypophysial hormones and some of their analogues in dogs and rats. Endocrinology 71, 536–540 (1962).PubMedCrossRefGoogle Scholar
  467. —, H. Valtin, and A.W. Sokol: Neurohypophysial principles in rats with familial diabetes insipidus (Brattleboro’ strain). Endocrinology 74, 153–155 (1964).PubMedCrossRefGoogle Scholar
  468. Schapiro, S., and L. Stjarne: Evidence for the granular localization of the posterior pituitary hormones. Nature (Lond.) 189, 669 (1961).CrossRefGoogle Scholar
  469. Scharrer, B.: The role of neurosecretion in neuroendocrine integration. In: Comparative endocrinology, pp. 134–148. Ed. by A. Gorbman. New York: Wiley 1959.Google Scholar
  470. Scharrer, E.: The final common path in neuroendocrine integration. Arch. Anat. micr. Morph. exp. 54, 359–370 (1965).PubMedGoogle Scholar
  471. —: The maturation of the hypothalamic-hypophyseal neurosecretory system in the dog. Anat. Rec. 118, 437 (1954).Google Scholar
  472. Scharrer, E., and S. Brown: Electron-microscopic studies of neurosecretory cells in lumbricus terrestris. Mem. Soc. Endocrinol. No. 12, 103–108 (1962).Google Scholar
  473. —, and B. Scharrer: Secretory cells within the hypothalamus. Res. Publ. Ass. nerv. ment. Dis. XX, 170–194 (1940).Google Scholar
  474. —: Neurosecretion. In: Handbuch der mikroskopischen Anatomie des Menschen. Ed. by W. Bargmann, Vol. VI, part 5. Berlin-Göttingen-Heidelberg: Springer 1954.Google Scholar
  475. Scheer, R., L.G. Raisz, and C.W. Lloyd: Change in diabetes insipidus during pregnancy and lactation. J. clin. Endocr. 19, 805–811 (1959).PubMedCrossRefGoogle Scholar
  476. Schiebler, T.H.: Zur Histochemie des neurosekretonischen hypothalamisch-neurohypo-physaren Systems. Arch. Anat. 13, 233–255 (1951).Google Scholar
  477. —: Die chemischen Eigenschaften der neurosekretonischen Substanz in Hypothalamus und Neurohypophyse. Exp. Cell Res. 3, 249–250 (1952a).CrossRefGoogle Scholar
  478. —: Cytochemische und elektronenmikroskopische Untersuchungen an granulären Fraktionen der Neurohypophyse des Rindes. Z. Zellforsch. 36, 563–576 (1952b).PubMedGoogle Scholar
  479. Schlichtegroll, A. V.: Vasopressorische und oxytosische Wirkung in Hypothalamus und Hypophysenhinterlappenextrakten. Naturwissenschaften 41, 188–189 (1954).CrossRefGoogle Scholar
  480. Schnieden, H.: Comparison between the effects of intravenous and intraportal vasopressin in normal rats, malnourished rats, and rats treated with carbon tetrachloride. J. Endocr. 24, 397–402 (1962).CrossRefGoogle Scholar
  481. —, and E.K. Blackmore: The effect of nalorphine on the antidiuretic action of morphine in rat and man. Brit. J. Pharmacol. 10, 45–50 (1955).PubMedGoogle Scholar
  482. Schockhaert, J. A., et J. Lambillon: Sur la presence d’une substance antagoniste de la vaso-pressine dans le serum des femmes enceintes. C.R. Soc. Biol. (Paris) 119, 1194–1197 (1935).Google Scholar
  483. Schroder, R., and D. Rott: Über die Bestimmung und das Verhalten von ADH im menschlichen Plasma. Klin. Wschr. 37, 1175–1181 (1959).CrossRefGoogle Scholar
  484. Schwartz, W.B., W. Bennet, S. Curelop, and F.C. Bartter: Syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Amer. J. Med. 23, 529–542 (1957).PubMedCrossRefGoogle Scholar
  485. Selye, H., and E.C. Hall: Further studies concerning the action of sodium chloride on the pituitary. Anat. Rec. 86, 579–583 (1943).CrossRefGoogle Scholar
  486. Shannon, J. A.: Control of the renal excretion of water; rate of liberation of posterior pituitary antidiuretic hormone in the dog. J. exp. Med. 76, 387–399 (1942).PubMedCrossRefGoogle Scholar
  487. Share, L.: Acute reduction in extracellular fluid volume and the concentration of antidiuretic hormone in blood. Endocrinology 69, 925–933 (1961).PubMedCrossRefGoogle Scholar
  488. —: Vascular volume and blood level of antidiuretic hormone. Amer. J. Physiol. 202, 791 (1962).PubMedGoogle Scholar
  489. —: Effects of carotid occlusion and left atrial distention on concentration of ADH in blood. Amer. J. Physiol. 208, 219–223 (1965).PubMedGoogle Scholar
  490. —, and M.N. Levy: Cardiovascular receptors and blood titre of antidiuretic hormone. Amer. J. Physiol. 203, 425–428 (1962).PubMedGoogle Scholar
  491. —: Effect of carotid chemoreceptor stimulation in plasma antidiuretic hormone titre. Amer. J. Physiol. 210, 157–161 (1966a).Google Scholar
  492. —: Carotid sinus pulse pressure as a déterminent of plasma antidiuretic hormone activity. Amer. J. Physiol. 211, 721–724 (1966b).PubMedGoogle Scholar
  493. Shirley, H. V., and A. V. Nalbandov: Effects of neurohypophysectomy in domestic chickens. Endocrinology 58, 477–483 (1956).PubMedCrossRefGoogle Scholar
  494. Sica-Blanco, Y., C. Mendez-Bauer, N. Sala, H.M. Cabot, e R. Caldeyro-Barcia: Neuro metudo para el Estudio de la functionalidad mammaria en la mujer. Arch. Ginec. Obstet. 17, 63–72 (1959).Google Scholar
  495. Siddiqi, S., and J.M. Walker: Oxytocin activity of blood applied directly to the “superfused” uterus of the rat. J. Physiol. (Lond.) 149, 12 p. (1959).Google Scholar
  496. Silver, L., I.E. Schwartz, C.T.O. Fong, A.F. Debons, and L.K. Dahl: Disappearance of plasma radioactivity after injection of H3 or I131 labelled arginine vasopressin. J. appl. Physiol. 16, 1097–1099 (1961).PubMedGoogle Scholar
  497. Skadhauge, E.: Effects of unilateral infusion of arginine vasotocin into the portal circulation of the avian kidney. Acta endocr. (Kbh.) 47, 321–330 (1964).Google Scholar
  498. Sloper, J. C.: Histochemical observations on the neurohypophysis in dog and cat with reference to the relationship between neurosecretory material and posterior lobe hormone. J. Anat. (Lond.) 88, 576 (1954).Google Scholar
  499. —: Hypothalamic neurosecretion in the dog and cat with particular reference to the identification of neurosecretory material with posterior lobe hormone. J. Anat. (Lond.) 89, 301–316. (1955).Google Scholar
  500. —: Hypothalamo-neurohypophysial secretion. Int. Rev. Cytol. 7, 337–389 (1958).CrossRefGoogle Scholar
  501. Sloper, J. C.: The experimental and cytopathological investigation of neurosecretion in the hypothalamus and pituitary. In: The pituitary gland, vol. II, pp. 131–239. Ed. by G. W. Harris and B.T. Donovan: Oxford: Butterworths 1965.Google Scholar
  502. —, and C. W.M. Adams: The hypothalamic elaboration of posterior pituitary principle in man; evidence derived from hypophysectomy. J. Path. Bact. 72, 587–602 (1956).CrossRefGoogle Scholar
  503. —, P. J. Arnott, and B. C. King: Sulphur metabolism in the pituitary gland and hypothalamus of the rat; a study of radioisotope uptake after the injection of 35S dl cysteine, methionine and sodium sulphate. J. Endocr. 20, 9 (1960).PubMedCrossRefGoogle Scholar
  504. —, and R.G. Batbson: Ultrastructure of neurosecretory cells in the supraoptic nucleus of the dog and rat. J. Endocr. 31, 139–150 (1965).PubMedCrossRefGoogle Scholar
  505. Smith, M. W.: The effect of hyaluronidase and cortisol on the inactivation of vasopressin by rat kidney slices. J. Endocr. 24, 415–424 (1962).PubMedCrossRefGoogle Scholar
  506. —: The effect of calcium on the inactivation of vasopressin by rat kidney slices. J. Physiol. (Lond.) 166, 22–23 (1963).Google Scholar
  507. —, and M. Ginsburg: The fate of synthetic oxytocin analogues in the rat. Brit. J. Pharmacol. 16, 244–252 (1961).PubMedGoogle Scholar
  508. —, and H. Sachs: Inactivation of arginine vasopressin by rat kidney slices. Biochem. J. 69, 663–669 (1961).Google Scholar
  509. —, and N. A. Thorn: The effects of calcium on protein-binding and metabolism of arginine vasopressin in rats. J. Endocr. 32, 141–151 (1965).PubMedCrossRefGoogle Scholar
  510. Smith, R.E., and M. Rosenfeld: Chromatographie study of the native oxytocin hormone of the neurohypophysis. J. Pharmacol. (Kyoto) 136, 1 (1961).CrossRefGoogle Scholar
  511. Smith, S.W.: Neurohypophyseal hormones. Discussion. In: Advances in neuroendocrinology, pp. 86–89. Ed. by A.V. Nalbandov. Urbana: University of Illinois Press 1963.Google Scholar
  512. Sokol, H.W., and H. Valtin: Morphology of the neurosecretory system in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro’ strain). Endocrinology 77, 692–700 (1965).PubMedCrossRefGoogle Scholar
  513. Sousa, R.C. De, B. Berde, et R.S. Mach: Syndrome de secretion inappropriée d’hormone antidiuretique (syndrome de Schwartz-Bartter). Secretion intrahumorale de l’arginine vasopressine ou d’analogues des vasopressines. Ann. Endocr. (Paris) 25, 756–763 (1965).Google Scholar
  514. Stouffer, J.E., D.B. Hope, and V. Du Vigneaud: Neurophysin, oxytocin and desamino-oxytocin. In: Perspectives in biology, pp. 75–80. Ed. by C.F. Cori, V.G. Foglia, L.F. Leloir, and S. Ochoa. Amsterdam: Elsevier Publ. Co. 1963.Google Scholar
  515. Stutinsky, F.: Sur l’origine de la substance Gomori-positive du complexe hypothalamo-hypo-physaire. C.R. Soc. Biol. (Paris) 145, 367–373 (1951).Google Scholar
  516. —: Effects de l’hypophysectomie totale ou partielle sur la neurosecretion hypothalamique du rat. C.R. Ass. Anat. 42ieme Reunion (1955).Google Scholar
  517. —: Recherches experimentales sur la complexe hypothalamo-neurohypophysaire. Arch. Anat. micr. Morph. exp. 46, 93–158 (1957).Google Scholar
  518. Sundsten, J.W., and C.H. Sawyer: Electroencephalographic evidence of osmosensitive elements in olfactory bulb of dog brain. Proc. Soc. exp. Biol. (N.Y.) 101, 524–527 (1956).Google Scholar
  519. — —: Osmotic activation of the neurohypophysial milk-ejection reflex in rabbits with “dience-phalic glands”. Fed. Proc. 19, 293, No. 7 (1960).Google Scholar
  520. —: Osmotic activation of neurohypophysial hormone release in rabbits with hypothalamic islands. Exp. Neurol. 4, 548–561 (1961).PubMedCrossRefGoogle Scholar
  521. Super, Z., and V. Eisen: The action of nervous depressants on the antidiuretic and chloruretic effect of nicotine. Arch. int. Pharmacodyn. 93, 75–82 (1953).Google Scholar
  522. Surtshin, A.J., A.J. Holtzenbein, and H.L. White: Some effects of negative pressure breathing on urine excretion. Amer. J. Physiol. 180, 612 (1955).PubMedGoogle Scholar
  523. Takabatake, Y., and H. Sachs: Vasopressin biosynthesis. III. In vitro studies. Endocrinology 75, 934–942 (1964).Google Scholar
  524. Talanti, S., and E. Kivalo: The infundibular recess in the brain of Camelus dromedarius with particular reference to neurosecretory pathways into the third ventricle. Experientia (Basel) 17, 470 (1961).CrossRefGoogle Scholar
  525. Tanaka, K., and S. Nakajo: Participation of neurohypophysial hormone in oviposition in the hen. Endocrinology 70, 453–458 (1962).PubMedCrossRefGoogle Scholar
  526. Taylor, N.B.G., J. Hunter, and W.H. Johnson: Antidiuresis as a measurement of laboratory induced motion sickness. Canad. J. Biochem. 35, 1017–1027 (1957).PubMedCrossRefGoogle Scholar
  527. —, and J.M. Walker: Antidiuretic substances in human urine after smoking. J. Physiol. (Lond.) 113, 312–418 (1951).Google Scholar
  528. Theobald, G.W.: The separate release of oxytocin and ADH. J. Physiol. (Lond.) 149, 443 to 461 (1959).Google Scholar
  529. Thomas, P. J., and M. Ginsburg: Inhibition by 1 cystine of the binding of lysine8-vasopressin by porcine neurophysin. Biochem. J. 100, 9C (1966a). Unpublished observations (1966b).PubMedGoogle Scholar
  530. Thompson, W.H.: Preliminary note on renal activity during anaesthesis. Brit. med. J. 1905 I, 649–650.CrossRefGoogle Scholar
  531. Thorn, N. A.: Binding in vitro of highly purified arginine vasopressin and synthetic oxytocin to rat serum globulin. Acta endocr. (Kbh.) 30, 472–476 (1959a).Google Scholar
  532. —: Some properties of antidiuretic material in the urine of rats. Acta endocr. (Kbh.) 32, 128 to 133 (1959b).Google Scholar
  533. —: Correlation between antidiuretic hormone effect and changes in renal excretion of calcium in rats and dogs. Acta endocr. (Kbh.) 38, 563–570 (1961).Google Scholar
  534. —: Role of calcium in the release of vasopressin and oxytocin from posterior pituitary protein. Acta endocr. (Kbh.) 50, 357–364 (1965).Google Scholar
  535. —: In vitro studies of the release mechanism for vasopressin in rats. Acta endocr. (Kbh.) 53, 644–654 (1966).Google Scholar
  536. —, and L. Silver: Chemical form of circulating antidiuretic hormone in rats. J. exp. Med. 105, 575–583 (1957).PubMedCrossRefGoogle Scholar
  537. —, and M. W. Smith: Renal excretion of synthetic arginine vasopressin injected in dogs. Acta endocr. (Kbh.) 49, 388–392 (1965).Google Scholar
  538. —, and I. Transbok: Hyponatremia and bronchogenic carcinoma associated with renal excretion of large amounts of antidiuretic material. Amer. J. Med. 35, 257–268 (1963).PubMedCrossRefGoogle Scholar
  539. —, and N.B.S. Willttmsen: Inhibitory action of calcium on the inactivation of antidiuretic hormone by rat kidney slices. Acta endocr. (Kbh.) 44, 563–569 (1963).Google Scholar
  540. Towbin, E. J., and C.B. Ferrell: Stop-flow study of renal excretion of tritiated vasopressin. J. clin. Invest. 42, 987 (1963).Google Scholar
  541. Tuppy, H.: Enzymic inactivation and degradation of oxytocin and vasopressin. In: Poly-peptides which stimulate smooth muscle and blood vessels. Ed. by M. Schachter. London: Pergamon Press 1960.Google Scholar
  542. —, u. H. Nesvadba: Über die Aminopeptidaseaktivität des Schwangerenserums und ihre Beziehung zu dessen Vermögen, Oxytocin zu inaktivieren. Mh. Chem. 88, 977–988 (1957).Google Scholar
  543. Turner, C.W., and I.S. Slaughter: The physiological effect of pituitary extract (posterior lobe) on the lactating mammary gland. J. Dairy Sci. 13, 8–24 (1930).CrossRefGoogle Scholar
  544. Usami, S., and S. Chien: Role of hepatic blood flow in regulating the concentration of antidiuretic hormone after haemorrhage. Proc. Soc. exp. Biol. (N.Y.) 113, 606–609 (1963).Google Scholar
  545. —, B. Peric, and S. Chien: Release of antidiuretic hormone due to common carotid occlusion and its relation with vagus nerve. Proc. Soc. exp. Biol. (N.Y.) 111, 189–193 (1962a).Google Scholar
  546. Usuelli, F., G. Piana, e G.M. Curto: Sui momenti secretori e sulle modalito d’azione dell’Ossitocina durante il parto. Bull. Soc. Ital. Biol. Sper. 28, 1677–1679 (1952).Google Scholar
  547. Valtin, H., W.H. Sawyer, and H.W. Sokol: Neurohypophysial principles in rats homo-zygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology 71, 701–706 (1965).CrossRefGoogle Scholar
  548. Verney, E. B.: Absorption and excretion of water. The antidiuretic hormone. Lancet 1946 II, 739–744 and 781-783 (1946).CrossRefGoogle Scholar
  549. —: The antidiuretic hormone and the factors which determine its release. Proc. roy. Soc. B 135, 25–106 (1947).CrossRefGoogle Scholar
  550. Vogt, M.: Vasopressor, antidiuretic and oxytocic activities of extracts of the dogs’ hypothalamus. Brit. J. Pharmacol. 8, 193–196 (1953).PubMedGoogle Scholar
  551. —: The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of dugs. J. Physiol. (Lond.) 123, 451–481 (1954).Google Scholar
  552. Waelsch, H., and A. Lajtha: Protein metabolism in the nervous system. Physiol. Rev. 709 to 736 (1961).Google Scholar
  553. Wagner, M. J., D. Grimsley, S. Kahan, and W. Stoller: Effects of intracarotid injection of hypertonic saline on spinal reflex excitability. Nature (Lond.) 197, 390–391 (1963).CrossRefGoogle Scholar
  554. Walker, J.M.: The effect of smoking on antidiuresis in men. Quart. J. Med. 18, 51–55 (1949).PubMedGoogle Scholar
  555. —: Release of vasopressin and oxytocin in response to drugs. In: The neurohypophysis, pp. 221–229. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  556. Walmsley, CF.: The concentration of oxytocin in blood in relation to reproduction. Thesis: University of Bristol 1963.Google Scholar
  557. Weil-Malherbe, H., L.G. Whitby, and J. Axelrod: Blood-brain barrier for catecholamines in different regions of the brain. In: Regional neurochemistry, p. 284. Ed. by S. S. Kety and J. Elkes. Oxford: Pergamon Press 1961.Google Scholar
  558. Weiner, J.S.: The diuretic response of men working in hot and humid conditions. J. Physiol. (Lond.) 103, 36–37 (1945).Google Scholar
  559. Weinstein, H., R.M. Berne, and H. Sachs: Vasopressin in blood. Effect of haemorrhage. Endocrinology 66, 712–718 (1960).PubMedCrossRefGoogle Scholar
  560. —, S. Malamud, and H. Sachs: Isolation of vasopressin-containing granules from the neurohypophysis of the dog. Biochim. biophys. Acta (Amst.) 50, 386–389 (1961).CrossRefGoogle Scholar
  561. Weiss, P.: Evidence by isotope tracers of perpetual replacement of mature nerve fibres from their cell body. Science 129, 1290 (1959).Google Scholar
  562. —: The concept of perpetual neuronal growths and proximo-distal substance convection. In: Regional neurochemistry. Ed. by S.E. Kety and J. Elkes. Oxford: Pergamon Press 1961.Google Scholar
  563. —, and M. W. Cavanaugh: Further evidence of perpetual growth of nerve fibres. Recovery of fibre diameter after the released of prolonged constrictions. J. Exp. Zool. 142, 461–473 (1959).PubMedCrossRefGoogle Scholar
  564. —, and H. B. Hiscoe: Experiments on the mechanism of nerve growth. J. Exp. Zool. 107, 315–395 (1948).PubMedCrossRefGoogle Scholar
  565. Welt, L.G., and J. Orloff: The effects of an increase in plasma volume on the metabolism and excretion of water and electrolytes in normal subjects. J. clin. Invest. 30, 751–752 (1951).PubMedCrossRefGoogle Scholar
  566. Werle, E., A. Hevelke u. K. Buthman: Zur Kenntnis des oxytocin-abbauenden Prinzips des Blutes. Biochem. Z. 309, 270 (1941).Google Scholar
  567. —, u. A. Kalvelage: Über die Vasopressin inaktivierende Kraft des Blutes von Schwangeren und die Natur des inaktivierenden Prinzips. Biochem. Z. 308, 405–412 (1941).Google Scholar
  568. —, u. L. Maier: Über den Abbau von Oxytocin und Vasopressin durch Milchdrüsenextrakte der Kuh. Naturwissenschaften 41, 380 (1954).CrossRefGoogle Scholar
  569. White, A. G.: Clinical implication of antidiuretic hormone activity. Arch, intern. Med. 102, 685–689 (1958).CrossRefGoogle Scholar
  570. —, G. Rubin, and L. Leiter: Studies in edema. III. The effect of pitressin on the renal excretion of water and electrolytes in patients with and without liver disease. J. clin. Invest. 30, 1287–1297 (1951).PubMedCrossRefGoogle Scholar
  571. L. Leiter —: Studies in edema. IV. Water retention and the antidiuretic hormone in hepatic and cardiac disease. J. clin. Invest. 32, 931–939 (1953).PubMedCrossRefGoogle Scholar
  572. Whittembury, G., N. Sugino, and A.K. Solomon: Effect of antidiuretic hormone and calcium on the equivalent pore radius of kidney slices from Necturus. Nature (Lond.) 187, 699–701 (1960).CrossRefGoogle Scholar
  573. Whittlestone, W.G.: J. Dairy Res. 21, 19 (1954).CrossRefGoogle Scholar
  574. —, E.G. Bassett, and C.W. Turner: Phylogenetic study of milk “let down” hormone. Proc. Soc. exp. Biol. (N.Y.) 80, 191 (1952).Google Scholar
  575. Wied, D. De: A simple automatic and sensitive method for the assay of antidiuretic hormone with notes on the antidiuretic potency of plasma under different experimental conditions. Acta physiol. pharmacol. neerl. 9, 69 (1960).PubMedGoogle Scholar
  576. —, and R. Jinks: Effect of chlorpromazine on antidiuretic response to noxious stimuli. Proc. Soc. exp. Biol. (N.Y.) 99, 44–45 (1958).Google Scholar
  577. Winkler, A.W., and O.F. Crankshaw: Chloride depletion in conditions other than Addison’s disease. J. clin. Invest. 17, 1–6 (1938).PubMedCrossRefGoogle Scholar
  578. Winnick, T., R.E. Winnick, R. Acher, and C. Fromageot: Amino-acids and peptides of posterior pituitary and hypothalamus tissues. Biochim. biophys. Acta (Amst.) 18, 488 to 494 (1955).CrossRefGoogle Scholar
  579. Wirz, H.: Der osmotische Druck in den corticalen Tubuli der Rattennieren. Helv. physiol. pharmacol. Acta 14, 353–362 (1956).PubMedGoogle Scholar
  580. Wolf, A.V., and H.A. Eddy: Effect of hydropenia and the ingestion of tap water and artificial sea waters in the fasting dog. Research report Wrair. 57–90. Cited from A. V. Wolf. Thirst. Springfield: C.C. Thomas 1957.Google Scholar
  581. Woodbury, R. A., R. R. Ahlqtjist, B. Abreu, R. Torpin, and W. G. Watson: The inactivation of pitocin and pitressin by human pregnancy blood. J. Pharmacol. (Kyoto) 86, 359–365 (1946).Google Scholar
  582. Woods, J.W., and P. Bard: Antidiuretic hormone secretion in the cat with a centrally de-nervated hypothalamus. Acta Endocr. 35 (suppl. 51), 113 (1960).Google Scholar
  583. Yagi, K., H.A. Bern, and T.R. Hagedorn: Action potentials of neurosecretory neurons in the leech Theromyzon rude. Gen. Comp. Endocrinol. 3,1, 490–495 (1963).CrossRefGoogle Scholar
  584. Zedeck, M.S., L.B. Melett, and E. J. Cafruny: The diuretic effects of Cyclophosphamide and nor-nitrogen mustard. Relationship to antidiuretic hormone. J. Pharmacol. 153, 550–561 (1966).Google Scholar
  585. Zuidema, G.D., and N.P. Clark: Central localization of the osmotic control centre. Amer. J. Physiol. 188, 616–618 (1957).PubMedGoogle Scholar
  586. —, and M.F. Minton: Osmotic regulation of body fluids. Amer. J. Physiol. 187, 85–88 (1956).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • Michael Ginsburg

There are no affiliations available

Personalised recommendations