Advertisement

The Influence of Enzymes on Neurohypophysial Hormones and Similar Peptides

  • Hans Tuppy
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 23)

Abstract

Oxidizing, reducing and, particularly, proteolytic enzymes have proved capable of affecting oxytocin, vasopressin and related peptides. Their action has been studied for several reasons. Neurohypophysial hormones can be distinguished from each other and from unrelated biologically active compounds by their different susceptibility to enzymatic inactivation. Specifically acting enzymes are valuable tools in studies of hormone structure and structure-activity relationship. The occurrence, distribution and biological significance of enzymes, which may be involved in the metabolism of the neurohypophysial hormones under normal and pathological conditions, have of course been of particular interest. Enzymes may possibly play a physiological role in the release of the hormones from the sites of their synthesis or storage. Enzymes may influence the hormone levels in the circulation. Certainly, enzymes are involved in the breakdown of the hormones in various tissues. The insight into the role and mode of action of the enzymes involved in hormone metabolism has stimulated the synthesis of hormone analogues resistant to enzymatic attack and of hormone precursors which will release active hormones in enzyme-catalyzed reactions. Moreover, compounds have been studied which will either inhibit or activate the hormone-degrading enzymes and thus, it is hoped, enhance or depress, respectively, the action of the hormones themselves.

Keywords

Leucine Aminopeptidase Similar Peptide Pregnancy Serum Neurohypophysial Hormone Placental Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ACTH

adrenocorticotropic hormone

CAP

cystine aminopeptidase

EDTA

ethylene diamine tetraacetate

GSH

glutathione

GSSG

oxide form of glutathione

LAP

leucine aminopeptidase

β-MSH

β-melanocyte-stimulating hormone

NADP+

nicotinamide adenine dinucleotide phosphate

NADPH

reduced form of nicotinamide adenine dinucleotide phosphate

PCMB

p-chloromercuribenzoate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acher, R.: Évolution moléculaire dans le domaine des hormones neurohypophysaires. VII Giornate Biochim. latine, p. 209-221 (1963).Google Scholar
  2. —, et J. Chauvet: La structure de la vasopressine de boeuf. Biochim. biophys. Acta (Amst.) 12, 487–488 (1953).Google Scholar
  3. —: La structure de la vasopressine de boeuf. Biochim. biophys. Acta (Amst.) 14, 421–429 (1954).Google Scholar
  4. —, M.T. Chauvet, et D. Crepy: Isolement d’une nouvelle hormone neurohypophysaire, l’isotocine, présente chez les poissons osseux. Biochim. biophys. Acta (Amst.) 58, 624–625 (1962).Google Scholar
  5. —, et D. Crepy: Phylogénie des peptides neurohypophysaires: Isolement de la meso-tocine (Ileu8-ocytocine) de la grenouille, intermédiaire entre la Ser4-Ileu8-ocytocine des poissons osseux et l’ocytocine des mammifères. Biochim. biophys. Acta (Amst.) 90, 613–615 (1964).Google Scholar
  6. —,et D. Crepy: Phylogénie des peptides neurohypophysaires: Isolement d’une nouvelle hormone, la glumitocine (Ser4-Gln8-ocytocine) présente chez un poisson cartilagineux, la raie (Raia clavata). Biochim. biophys. Acta (Amst.) 107, 393–396 (1965).Google Scholar
  7. —, et M.-T. Lenci: L’ocytocine et la vasopressine du cheval. Bull. Soc. Chim. biol. (Paris) 40, 2005–2018 (1958).Google Scholar
  8. Acher, R., J. Chauvet, et M.-T. Lenci: Purification et structure de l’ocytocine et de la vasopressine du cheval. Biochim. biophys. Acta (Amst.) 31, 545–548 (1959).Google Scholar
  9. M.-T. Lenci —, et C. Fromageot: Chimie des hormones neurohypophysaires. Ergebn. Physiol. 48, 285–327 (1955).Google Scholar
  10. Afonso, J.F., and N.G. Farnham: Studies of a new electrophoretic zone in labor and the puerperium and in newborn infants. Amer. J. Obstet. Gynec. 84, 199–205 (1962).PubMedGoogle Scholar
  11. Althabe, O., I.C. Arnt, L.A. Branda, and R. Caldeyro-Barcia: Comparison of the milk-ejecting potencies of oxytocin and deamino-oxytocin in lactating women. J. Endocr. 36, 7–14 (1966).PubMedGoogle Scholar
  12. Ames, R.G., and H.B. Van Dyke: Thioglycollate inactivation of posterior pituitary anti-diuretic principle as determined in the rat. Proc. Soc. exp. Biol. (N. Y.) 76, 576–578 (1951).Google Scholar
  13. Anastas’eva, N. V.: Effect of pituitrin, quinine, proserine and phenatine on the activity of blood serum oxytocinase of pregnant female rabbits. Nauchn. Zap. Uzhgorodsk. Gos. Univ. 45, 17–21 (1961). Chem. Abstr. 59, 15811 e (1963).Google Scholar
  14. Aragon, G. T.: An evaluation of plasma pitocinase determination in the toxemias of pregnancy. Amer. J. Obstet. Gynec. 55, 961–966 (1948).PubMedGoogle Scholar
  15. Arimura, A., and T. Yamaguchi: Serum protein-vasopressin binding and its influence on the pressor activity of the hormone. Jap. J. Physiol. 14, 90–101 (1964).Google Scholar
  16. Arst, H.E., R.T. Manning, and M. Delp: Serum leucine aminopeptidase activity: Findings in carcinoma of the pancreas, pregnancy, and other disorders. Amer. J. med. Sci. 238, 598–609 (1959).PubMedGoogle Scholar
  17. Audrain, L., et H. Clauser: Relation entre l’activité physiologique de rocytocine et l’état des son pont disulfure. Biochim. biophys. Acta (Amst.) 30, 191–192 (1958).Google Scholar
  18. —: Mécanisme de l’inactivation de l’ocytocine par le tissu utérin. Biochim. biophys. Acta (Amst.) 38, 494–501 (1960).Google Scholar
  19. Babuna, C., and E. Yenen: Enzymatic determination of placental function. A rapid method. Amer. J. Obstet. Gynec. 95, 925–934 (1966).Google Scholar
  20. Barnafi, L., R. Rosas, T. Pereda, and H. Croxatto: Effect of vasopressin structural modifications on rat renal excretion of Na, K and water. Amer. J. Physiol. 202, 593–596 (1962).PubMedGoogle Scholar
  21. Barnes, A.C., and I.B. Sawyer: Measurements of vasopressinase in maternal and cord blood. Amer. J. Obstet. Gynec. 79, 1053–1057 (1960).PubMedGoogle Scholar
  22. Barth, T., V. Pliška, and I. Rychlík: Chymotryptic and tryptic cleavage of oxytocin and vasopressin. Collection Czech. Chem. Commun. 32, 1058–1063 (1967).Google Scholar
  23. Barth, T., V. Pliška, and I. Rychlík —, and F. Šorm: Enzymic inactivation of oxytocin. V. Purification and some properties of enzymes from human retroplacental serum. Collection Czech. Chem. Commun. 32, 2327–2336 (1967).Google Scholar
  24. Barttk, M., and E. Michnova: Polarographic determination of oxytocinase and a contribution to the characteristics of aminopeptidases. Vet. Med. (Praha) 11, 645-653 (1966). Chem. Abstr. 66, 43882 (1967).Google Scholar
  25. Bartošek, I., V. Pliška, I. Rychlík, and F. Šorm: The inactivation of oxytocin in the liver. The proteolytic splitting. Probl. Evolyutsionnoi i Tekhn. Biokhim., Akad. Nauk Sssr, Inst. Biokhim., 276-286 (1964).Google Scholar
  26. —, I. Rychlík, and F. Šorm: The inactivation of oxytocin in tissues. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, 10, 185–188 (1964).Google Scholar
  27. Beckman, L., G. Björling, and C. Christodoulou: Pregnancy enzymes and placental polymorphism. II. Leucine aminopeptidase. Acta genet. (Basel) 16, 122–131 (1966a).Google Scholar
  28. C. Christodoulou —: Multiple molecular forms of leucine aminopeptidase in man. Acta genet. (Basel) 16, 223–230 (1966b).Google Scholar
  29. C. Christodoulou —, and M. Grivea: Variations in serum leucine aminopeptidase in pregnant women and in newborn children. Acta Paediat. Scand. 54, 578–580 (1965).PubMedGoogle Scholar
  30. Behal, F. J., R.D. Hamilton, C.B. Kanavage, and E.C. Kelly: Studies on aminopeptidases in human blood. Arch. Biochem. 100, 308–312 (1963).PubMedGoogle Scholar
  31. Beller, F.K., u. U. Göbelsmann: Der Abbau von natürlichem und synthetischem Oxytocin durch Oxytocinase. Klin. Wschr. 36, 1005–1008 (1958).PubMedGoogle Scholar
  32. —: Methodische Probleme der Serumoxytocinase-Bestimmung im Schwangerenserum. Acta endocr. (Kbh.) 31, 467–480 (1959a).Google Scholar
  33. —: Untersuchungen über die Serum-Oxytocinase. Bibl. Gynaec. (Basel) 20, 174–178 (1959b).Google Scholar
  34. —, u. H. Schniz: Quantitative Probleme der Oxytozininaktivierung. Geburtsh. u. Frauen-heilk. 20, 563–569 (1960).Google Scholar
  35. Beránková, Z., I. Rychiík, and F. Šorm: Inhibition of oxytocin inactivation by some pep-tides. Experientia (Basel) 15, 298–299 (1959).Google Scholar
  36. Beránková, Z., I. Rychlík, and F. Šorm: Enzymic inactivation of oxytocin. I. Selective inhibitors of oxytocin inactivation. Collection Czech. Chem. Commun. 25, 2575–2580 (1960).Google Scholar
  37. F. Šorm —: Enzymic inactivation of oxytocin. II. Fission of some peptide fragments of the oxytocin structure and their derivatives by pregnancy serum and liver cell sap. Collection Czech. Chem. Commun. 26, 1708–1715 (1961).Google Scholar
  38. F. Šorm —, and F. Šorm: Enzymic inactivation of oxytocin. III. Desthiooxytocin and S,S’-dibenzyldi-hydrooxytocin as oxytocinase inhibitors and substrates. Collection Czech. Chem. Commun. 26, 2557–2561 (1961).Google Scholar
  39. Beránková-Ksandrová, Z., G.W. Bisset, K. JoŠt, I. Krejčé, V. Pliška, J. Rudinger, I. Rychlík, and F. Šorm: Synthetic analogues to oxytocin acting as hormonogens. Brit. J. Pharmacol. 26, 615–632 (1966).PubMedGoogle Scholar
  40. K. JoŠt, I. Krejčé, V. Pliška, J. Rudinger, I. Rychlík, and F. Šorm —, I. Ryctttík, and F. Šorm: Oxytocin analogues with protracted effects. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, 10, 181–183 (1964).Google Scholar
  41. Birnie, J.H.: The inactivation of posterior pituitary antidiuretic hormone by liver extracts. Endocrinology 52, 33–38 (1953).PubMedGoogle Scholar
  42. —, K.E. Blackmore, and H. Heller: Changes in water diuresis and vasopressin inactivation in mice fed on protein deficient diets. Experientia (Basel) 8, 30–31 (1952).Google Scholar
  43. Bisset, G.W.: Effect of tyrosinase preparations on oxytocin, vasopressin and bradykinin. Brit. J. Pharmocol. 18, 405–420 (1962).Google Scholar
  44. —: The effect on milk-ejecting activity of modifying two functional groups in oxytocin. In: Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, 10, 21–30 (1964).Google Scholar
  45. Bonow, A., W. Carol, U. S. Wachtel: Die Bestimmung der Serum-Oxytocinase-Aktivität auf chemischem Wege. Zbl. Gynäk. 85, 1537–1542 (1963).Google Scholar
  46. Borov, V. l.: Activity of oxytocinase and cholinesterases at the end of pregancy and during labour. Akusherstwo i Ginekol. 42, 39-42 (1966). Chem. Abstr. 65, 17306f (1966).Google Scholar
  47. Braun-Falco, O., u. K. Salfeld: Über das Verhalten der Leucinaminopeptidase-Aktivität im Blutserum und Blaseninhalt. II. Untersuchungen an Patienten mit Psoriasis, Neuroder-matitis diffusa, Dermatitis, Ekzem und anderen Dermatosen. Arch. klin. exp. Derm. 205, 103–111 (1957).PubMedGoogle Scholar
  48. Bressler, R., and B.R. Forsyth: Serum leucine aminopeptidase activity in normal pregnancy and in patients with hydatidiform mole. New Engl. J. Med. 261, 746–748 (1959).PubMedGoogle Scholar
  49. —,and G. Klatskin: Serum leucine aminopeptidase activity in hepatobiliary and pancreatic disease. J. Lab. clin. Med. 56, 417–430 (1960).Google Scholar
  50. Campbell, B.J., B. Thysen, and F.S. Chu: Peptidase catalyzed hydrolysis of antidiuretic hormone in toad bladder. Life Sci. 4, 2129–2140 (1965).Google Scholar
  51. Camu, F., and V. Conard: Effect de l’ocytocine sur l’inactivation de l’insuline par le rein de rat normal in vitro. Arch. int. Pharmacodyn. 162, 247–252 (1966).PubMedGoogle Scholar
  52. Carballo, M. A.: Discussion remark. In: Oxytocin. Ed. by R. Caldeyro-Barcia and H. Heller. Proc. Int. Symp., Montevideo 1959, 343 (1961).Google Scholar
  53. —, and C. J. Méndez-Bauer: Evolution of oxytocinase during pregnancy and induced labour. Proc. 2nd Uruguayan Congr. Obstet. Ginecol. 2, 300–307 (1957a).Google Scholar
  54. —: Placental origin of oxytocinase. Proc. 2nd Uruguayan Congr. Obstet. Ginec. 2, 308–313 (1957b).Google Scholar
  55. Centaro, A., P. Periti, and G. De Laurentiis: Oxytocin and oxytocinase activity of the blood and myometrium of women in labor. Riv. Ostet. Ginec. 16, 297–326 (1961).PubMedGoogle Scholar
  56. Cespedes, J., and H. Croxatto: Action of oxidants (thiol antagonists) on the oxytocinase activity of blood serum. Bol. Soc. Biol. Santiago 7, 43–46 (1949).Google Scholar
  57. Chauvet, J., M.-T. Chauvet, et R. Acher: Les hormones neurohypophysaires des mammifêres: Isolement et caractérisation de l’ocytocine et de la vasopressine de la balaine (Ba-laenoptera physedus L.) Bull. Soc. Chim. Biol. (Paris) 45, 1369–1378 (1963).Google Scholar
  58. Christlieb, M.: Über den Abbau von Oxytocin und Vasopressin in vitro. Arch. Exp. Pathol. Pharmakol. 194, 44–51 (1940).Google Scholar
  59. Čihař, M., Z. Beránková, I. Rychlík, and F. Šorm: Enzymic inactivation of oxytocin. IV. Characterization of purified preparations of serum oxytocinase. Collection Czech. Chem. Commun. 26, 2632–2642 (1961).Google Scholar
  60. Cooper, D.W.: A serum protein present in pregnant women. Nature (Lond.) 200, 892 (1963).Google Scholar
  61. Crewther, W.G., and F.G. Lennox: Preparation of crystals containing protease from Aspergillus oryzae. Nature (Lond.) 165, 680 (1950).Google Scholar
  62. Croxatto, H.: Hypertensinase action. Inactivation of hypertensin and pressor and oxytocic principles of the posterior pituitary in the organism. Rev. Med. Aliment. (Santiago) 5, 259–271 (1942/1943).Google Scholar
  63. —, J. Alliende, and R. Croxatto: Action of aminopolypeptidase of yeast and hypertensinase of kidney extracts on the oxytocic principle of the posterior pituitary. Rev. Med. Aliment. (Santiago) 5, 228–229 (1942/43a).Google Scholar
  64. Croxatto, H., J. Alliende, and R. Croxatto: Action of trypsin and chymotrypsin on the oxytocic principle of the posterior pituitary. Rev. Med. Aliment. (Santiago) 5, 230–231 (1942/43b).Google Scholar
  65. R. Croxatto —, W. Badia, and R. Croxatto: Effect of fibrinolysin on oxytocin, vasopressin and hyper-tensinogen. Proc. Soc. exp. Biol. (N. Y.) 69, 422–425 (1948).Google Scholar
  66. R. Croxatto —, and J. Cespedes: Action of cytochrome C on the oxytocinase and vasopressinase activity of blood serum. Bol. Soc. Biol. Santiago 7, 54–57 (1950).Google Scholar
  67. R. Croxatto —, and S. Daza: The effect of thiosorbitol on the inactivation of oxytocin and vasopressin by blood plasma. Bol. Soc. Biol. Santiago 8, 96–100 (1951).Google Scholar
  68. R. Croxatto —, R. Croxatto, and J. Alliende: Destruction of oxytocin by the aminopeptidase of beer yeast and by extracts of hypertensive kidneys. Rev. Soc. argent. Biol. 18, 441–453 (1942).Google Scholar
  69. R. Croxatto —, G. Illanes, and H. Salvestrini: Action of chymotrypsin and trypsin on hypertensin and pressor and oxytocic principles of the posterior pituitary. Rev. Med. Aliment. (Santiago) 5, 300–302 (1942/1943).Google Scholar
  70. R. Croxatto, G. Illanes —, and M. Reyes: The effect of hypertensin on the inactivation of oxytocin by the serum of pregnant women. Science 108, 658–659 (1948).PubMedGoogle Scholar
  71. R. Croxatto —, and M. Rioseco: Action of carboxypeptidase on pepsitensin, vasopressin and oxytocin. Rev. Soc. argent. Biol. 21, 23–29 (1945).Google Scholar
  72. R. Croxatto — C. Donoso, and R. Croxatto: Effect of amino acids on the inactivation of oxytocin by kidney hypertensinase extracts. Bol. Soc. Biol. Santiago 5, 51–53 (1948a).Google Scholar
  73. R. Croxatto —, G. Illanes, H. Salvestrini, and R. Croxatto: Action of aminopolypeptidase and hypertensinase extracts from kidney on the pressor principle of the post-pituitary. Rev. Med. Aliment. (Santiago) 5, 226–228 (1942/1943).Google Scholar
  74. R. Croxatto —, and J. De la Maza: Action of tyrosinase (extracts of Psalliota Campestris) on vasopressin. Bol. Soc. Biol. Santiago 2, 46–48 (1944).Google Scholar
  75. —, T. Pereda, and B. Zamorano: Oxytocic substances in blood serum. In: Oxytocin. Proc. Int. Symp., Montevideo 1959, 412-424 (Publ. 1961).Google Scholar
  76. R. Croxatto —, and M. Reyes: Effect of cysteine and glutathione on the oxytocinase activity of blood plasma. Bol. Soc. Biol. Santiago 5, 80–82 (1948).Google Scholar
  77. R. Croxatto —, R. Rosas, and L. Barnafi: Effect of vasopressin and oxytocin on excretion of water and electrolytes (Na, Cl, and K) in the albino rat. Acta physiol. lat.-amer. 6, 147–152 (1956).PubMedGoogle Scholar
  78. R. Croxatto —, A. Trautmann, and R. Croxatto: Destruction of hypertensin and the pressor and oxytocic principles of the posterior pituitary by extracts of red blood cells and kidney. Rev. Med. Aliment. (Santiago) 5, 305–308 (1943).Google Scholar
  79. R. Croxatto —, C. Vera, and L. Barnafi: Inactivation of antidiuretic hormone by blood serum of the pregnant woman. Proc. Soc. exp. Biol. (N. Y) 83, 784–786 (1953).Google Scholar
  80. Croxatto, R., H. Croxatto, and J. Sorolla: Aminopeptidase character of hypertensinase. Rev. Med. Aliment. (Santiago) 5, 135–136 (1942/1943).Google Scholar
  81. J. Sorolla —, C. Donoso, and H. Croxatto: Effect of amino acids on the inactivation of vasopressin by kidney hypertensinase extracts. Bol. Soc. Biol. (Santiago) 5, 54–56 (1948b).Google Scholar
  82. Dale, H.H., and H.W. Dudley: On the pituitary active principles and histamine. J. Pharmacol, exp. Ther. 18, 27–42 (1921).Google Scholar
  83. Dicker, S.E.: The inactivation of vasopressin and of oxytocin, in vitro. In: Polypeptides which affect smooth muscles and blood vessels, p. 79-82. Ed. by M. Schachter. Proc. Symp., London 1959, (Pub. 1960).Google Scholar
  84. —, and M. Ginsburg: Some observations on the antidiuretic activity of rat serum. Brit. J. Pharmacol. 5, 497–504 (1950).Google Scholar
  85. —, and A. L. Greenbaum: The degree of inactivation of the antidiuretic activity of vasopressin by the kidneys and the liver of rats. J. Physiol. (Lond.) 126, 116–123 (1954).Google Scholar
  86. —: Inactivation of the antidiuretic activity of vasopressin by tissue homogenates. J. Physiol. (Lond.) 132, 199–212 (1956).Google Scholar
  87. —: The destruction of the antidiuretic activity of vasopressin by SH active compounds. J. Physiol. (Lond.) 141, 107–116 (1958).Google Scholar
  88. —, and C. Tyler: Inactivation of oxytocin and vasopressin by blood plasma of pregnant women. J. Obstet. Gynaec. Brit. Emp. 63, 690–696 (1956).Google Scholar
  89. —, and G.A. Whyley: Inactivation of oxytocin by plasma of pregnant women. J. Physiol. (Lond.) 146, 33–34 P (1959a).Google Scholar
  90. —: Inactivation of oxytocin by plasma of pregnant women. J. Obstet. Gynaec. Brit. Emp. 66, 605–609 (1959b).Google Scholar
  91. — The role of oxytocinase during pregnancy in man and animals. Acta endocr. (Kbh.) 34, (Suppl. 51), 145 (1960).Google Scholar
  92. Dieckmann, W. J., G.F. Egenolf, B. Morley, and R.E. Pottinger: The inactivation of the antidiuretic hormone of the posterior pituitary gland by blood from pregnant patients. Amer. J. Obstet. Gynec. 60, 1043–1050 (1950).PubMedGoogle Scholar
  93. Dlouhá, H., M. Kraus, J. Křeček, and V. Pliška: Sensitivity of rats to vasopressin in the weaning period. Physiol. bohemoslov. 14, 217–224 (1965).PubMedGoogle Scholar
  94. Drewntak, K.: Evaluation of a biochemical method of determining the term of delivery. Ginek. pol. 35, 27–32 (1964a).Google Scholar
  95. —: Clinical evaluation of the biochemical method of determining the term of delivery. In: Oxytocin and its analogues, p. 55-58. Ed. by R. Klimek and W. Krol. Polish Endocr. Soc, Krakow (1964b).Google Scholar
  96. Dudley, H.W.: Some observations on the active principles of the pituitary gland. J. Pharmacol, exp. Ther. 14, 295–312 (1919).Google Scholar
  97. Van Dyke, H.B., B.F. Chow, R.O. Greep, and A. Rothen: The isolation of a protein from the pars neuralis of the ox pituitary with constant oxytocic, pressor and diuresis-inhibiting activities. J. Pharmacol, exp. Ther. 74, 190–209 (1942).Google Scholar
  98. Ehrensing, R.H.: Plasma oxytocinase, cystine and leucine naphthylamidases of snake, turtle and chicken. Proc. Soc. exp. Biol. (N. Y.) 117, 370–373 (1964).Google Scholar
  99. El-Kammah, B.M., and H. Tuppy: Unpublished experiments.Google Scholar
  100. Elliott, D.F., and W.S. Peart: The amino acid sequence in a hypertensin. Biochem. J. 65, 246–254 (1957).PubMedGoogle Scholar
  101. Embrey, M. P.: The action of desamino-oxytocin on the human pregnant uterus. J. Endocr. 31, 185–189 (1965).PubMedGoogle Scholar
  102. Eversole, W. J., J.H. Birnie, and R. Gaunt: Inactivation of posterior pituitary antidiuretic hormone by the liver. Endocrinology 45, 378–382 (1949).PubMedGoogle Scholar
  103. Fekete, K.: Beiträge zur Physiologie der Gravidität. Endokrinologie 7, 364–369 (1930).Google Scholar
  104. —: Gibt es während der Schwangerschaft ein aktives Hypophysen-Hinterlappenhormon im Blute? Endokrinologie 10, 16–23 (1932).Google Scholar
  105. —: Beiträge zur Erklärung des Geburtseintrittes. Endokrinologie 12, 183–192 (1933).Google Scholar
  106. Folk, J.E., and P.W. Cole: Chymotrypsin C. II. Enzymatic specificity toward several poly-peptides. J. biol. Chem. 240, 193–197 (1965).Google Scholar
  107. Fraser, A. M.: The effect of arginase and of tyrosinase on the activity and composition of posterior pituitary extracts. Rev. canad. Biol. 9, 54–61 (1950).PubMedGoogle Scholar
  108. Freudenberg, K., E. Weiss U. H. Biller: Notiz über Oxytocin. Z. Physiol. Chem. 233, 172–173 (1935).Google Scholar
  109. U. H. Biller —, u. H. Eyer: Über Insulin und Pitutocin. Naturwissenschaften 20, 685 (1932).Google Scholar
  110. Fried, R., u. L. Wüst: Über ein Oxytocin-abbauendes Ferment aus Schweineovarien. Naturwissenschaften 41, 238 (1954).Google Scholar
  111. Fuhrmann, K.: Kolorimetrische Bestimmung und histochemischer Nachweis der Aminopep-tidase an Geweben weiblicher Genitalorgane. Zbl. Gynäk. 81, 1105–1123 (1959).Google Scholar
  112. Fylling, P.: Serum and plasma oxytocinase activity during induction of labour. Acta obstet, gynec. scand. 42, 227–239 (1963).Google Scholar
  113. —: Plasma oxytocinase activity, oestriol and pregnanediol excretion and the effect of induction of labour. Acta obstet, gynec. scand. 43, 58–63 (1964 a).Google Scholar
  114. —: Plasma oxytocinase activity following a single injection of pitocin. Acta obstet, gynec. scand. 43, 103–106 (1964b).Google Scholar
  115. —: Serum and plasma leucine aminopeptidase activity during induction of labor. Scand. J. clin. Lab. Invest. 16, 172–176 (1964c).PubMedGoogle Scholar
  116. Ginsburg, M., H. Heller, and S.M. A. Zaidi: Re-appraisal of the evidence for the metabolic conversion of vasopressin into a less active derivative. Nature (Lond.) 178,803–804 (1956).Google Scholar
  117. —, and M.W. Smith: The fate of oxytocin in male and female rats. Brit. J. Pharmacol. 14, 327–333 (1959).PubMedGoogle Scholar
  118. Di Girolamo, M., D. Rudman, M.F. Malkin, and L.A. Garcia: Inactivation of insulin by adipose tissue. Diabetes 14, 87–92 (1965).Google Scholar
  119. Glendening, M.B., M.A. Titus, S.A. Schroeder, G. Mohun, and E.W. Page: The destruction of oxytocin and vasopressin by the aminopeptidases in sera from pregnant women. Amer. J. Obstet. Gynec. 92, 814–820 (1965).PubMedGoogle Scholar
  120. Goebelsmann, U., and F.K. Beller: Separation of cystine-aminopeptidase and leucine-aminopeptidase and their determination in pregnant and nonpregnant women. Z. klin. Chem. 3, 49–54 (1965).Google Scholar
  121. Golubow, J., W. Y. Chan, and V. Du Vigneaud: Effect of human pregnancy serum on avian depressor activities of oxytocin and desamino-oxytocin. Proc. Soc. exp. Biol. (N. Y.) 113, 113–115 (1963).Google Scholar
  122. —, and V. Du Vigneaud: Comparison of susceptibility of oxytocin and desamino-oxytocin to inactivation by leucine aminopeptidase and α-chymotrypsin. Proc. Soc. exp. Biol. (N.Y.) 112, 218–219 (1963).Google Scholar
  123. González-Panizza, V.H., Y. Sica-Blanco, and C. Méndez-Bauer: The fate of injected oxytocin in the pregnant woman near term. In: Oxytocin, p. 347-357. Ed. by R. Caldeyro-Barcia and H. Heller. Proc. Int. Symp., Montevideo 1959 (1961).Google Scholar
  124. Green, M.N., K.-C. Tsou, R. Bressler, and A.M. Seligman: The colorimetric determination of leucine aminopeptidase activity with L-leucine-ß-naphthylamide hydrochloride. Arch. Biochem. 57, 458–474 (1955).PubMedGoogle Scholar
  125. Gulland, J.M., and T.F. Macrae: The action of proteolytic enzymes on the oxytocic principle of the pituitary gland. Nature (Lond.) 131, 470 (1933a).Google Scholar
  126. —: The oxytocic hormone of the posterior lobe of the pituitary gland. III. The action of preparations of plant proteolytic enzymes. Biochem. J. 27, 1237–1247 (1933b).PubMedGoogle Scholar
  127. —: The oxytocic hormone of the posterior lobe of the pituitary gland. IV. The action of preparations of animal proteolytic enzymes, and some observations on the nature of the hormone. Biochem. J. 27, 1383–1393 (1933c).PubMedGoogle Scholar
  128. Güntelberg, A.V., and M. Ottesen: Preparation of crystals containing the plakalbumin-forming enzyme from Bacillus subtilis. Nature (Lond.) 170, 802 (1952).Google Scholar
  129. Haller, E.W., H. Sachs, N. Sperelakis, and L. Share: Release of vasopressin from isolated guinea pig posterior pituitaries. Amer. J. Physiol. 209, 79–83 (1965).PubMedGoogle Scholar
  130. Hankiss, J.E., M. Keszthelyi, and P. Demény: Inactivation of vasopressin by heart muscle. Tohoku J. exp. Med. 87, 168–174 (1965).PubMedGoogle Scholar
  131. Hanon, F., and M. Brunaud: Determinism of uterine contraction at parturition. C. R. Soc. Biol. (Paris) 141, 163–164 (1947).Google Scholar
  132. Hanson, H., U. H.G. Mannsfeldt: Zur Aktivitätsbestimmung der Serum-Oxytocinase des menschlichen Schwangeren-Serums unter Verwendung chromogener Substrate. In prepn. (1967a). Untersuchungen über die Angreifbarkeit von Serum-Oxytocinase-Substraten durch Gewebs-Enzyme („Gewebs-Oxytocinase“) tierischer Organe. In prepn. (1967b). Über die Humanplacenta als Synthese-Organ der schwangerschaftsspezifischen Serum-Oxytocinase des Menschen. In prepn. (1967 c)Google Scholar
  133. Hardy, S.M., and J.M. Ritchie: Determination of serum oxytocinase (l-cystine-aminopepti-dase) activity. Nature (Lond.) 209, 76–77 (1966).Google Scholar
  134. Hashimoto, T.: Studies on l-cystine-aminopeptidase. I. Biochemical aspect. J. Jap. obstet. gynaec. Soc. 8, 87–95 (1961a).Google Scholar
  135. —: Studies on l-cystine-aminopeptidase. II. Clinical observations. J. Jap. obstet, gynaec. Soc. 8,96–104 (1961b)Google Scholar
  136. Hawker, R.W.: Inactivation of antidiuretic hormone and oxytocin during pregnancy. Quart. J. exp. Physiol. 41, 301–308 (1956).PubMedGoogle Scholar
  137. —: Antidiuretic substance (ADS) in normal pregnancy and pre-eclamptic toxaemia. J. Endocr. 14, 400–410 (1957).PubMedGoogle Scholar
  138. —: Oxytocin and an unidentified oxytocic substance in extracts of blood. In: Oxytocin, 425-436. Proc. Int. Symp., Montevideo 1959 (Publ. 1961).Google Scholar
  139. —, and P.A. Robertson: Oxytocin and lactation. J. clin. Endocr. 17, 448–451 (1957).PubMedGoogle Scholar
  140. —: Are there two oxytocic hormones? Med. J. Aust. 1958 I, 671–672.Google Scholar
  141. —, C.F. Walmsley, V. S. Roberts, and P. A. Robertson: Further observations on oxytocin and oxytocic substance. Med. J. Aust. 1959 I, 460–461.Google Scholar
  142. Heller, H.: The metabolism and fate of the neurohypophysial principles. In: The neurohypo-physis, p. 77–96. Ed. by H. Heller. London: Butterworths Scientific Publications (1957).Google Scholar
  143. —: Inactivation of vasopressin and oxytocin in vivo. In: Polypeptides which affect smooth muscles and blood vessels, p. 59-69. Ed. by M. Schachter. Proc. Symp., London 1959 (Pub. 1960).Google Scholar
  144. —, and F. F. Urban: The fate of the antidiuretic principle of postpituitary extracts in vivo and in vitro. J. Physiol. (London) 85, 502–518 (1935).Google Scholar
  145. —, and S.M.A. Zaidi: The metabolism of exogenous and endogenous antidiuretic hormone in the kidney and liver in vivo. Brit. J. Pharmacol. 12, 284–292 (1957).PubMedGoogle Scholar
  146. Hess, R.: Arylamidase activity related to angiotensinase. Biochim. biophys. Acta (Amst.) 99, 316–324 (1965).Google Scholar
  147. Hill, R.L., and E.L. Smith: Leucine aminopeptidase. VII. Action on long chain polypeptides and proteins. J. biol. Chem. 228, 577–600 (1957).PubMedGoogle Scholar
  148. —: Complete hydrolysis of glucagon by leucine aminopeptidase. Biochim. biophys. Acta (Amst.) 31, 257–258 (1959).Google Scholar
  149. Hilton, J.G., and R.F. Johnson: Changes in blood oxytocinase during parturition. Amer. J. Obstet. Gynec. 78, 479–482 (1959).PubMedGoogle Scholar
  150. Hirschfeld, J., and U. Söderberg: Immuno-electrophoretic demonstration of precipitating components in sera from pregnant women. Nature (Lond.) 187, 332–333 (1960).Google Scholar
  151. Hooper, K. C.: The action of inhibitors on enzymes from human placentae. J. Physiol. (London) 148, 283–290 (1959).Google Scholar
  152. —: The preparation of soluble vasopressinase from human placenta. Biochem. J. 74, 297–300 (1960a).PubMedGoogle Scholar
  153. Hooper, K. C.: Some properties of enzymes destroying oxytocin and vasopressin. In: Poly-peptides which affect smooth muscles and blood vessels, p. 83-86. Ed. by M. Schachter. Proc. Symp. (London) 1959 (Pub. 1960b).Google Scholar
  154. —: The preparation and properties of cystine esterase. Biochem. J. 78, 409–412 (1961a).PubMedGoogle Scholar
  155. —: The catabolism of bradykinin, oxytocin, substance P and vasopressin by homogenate of dog hypothalamus. Biochem. J. 81, 44 P (1961b).Google Scholar
  156. —: The catabolism of some physiologically active polypeptides by homogenate of dog hypothalamus. Biochem. J. 83, 511–517 (1962a).PubMedGoogle Scholar
  157. —: The intracellular distribution of enzymes inactivating oxytocin in the dog hypothalamus. Biochem. J. 85, 8 P (1962b).Google Scholar
  158. —: The enzymic inactivation of some physiologically active polypeptides by different parts of the nervous system. Biochem. J. 88, 398–404 (1963a).PubMedGoogle Scholar
  159. —: The effect of pregnancy on the distribution of hypothalamic enzymes inactivating oxytocin. Biochem. J. 88, 67 P (1963b).Google Scholar
  160. —: The distribution of hypothalamic peptidases in pregnant and non-pregnant dogs. Biochem. J. 90, 584–587 (1964).PubMedGoogle Scholar
  161. —: Some observations on the behaviour of hypothalamic enzymes during the time of blastocyst implantation in the rabbit. Biochem. J. 99, 128–132 (1966a).PubMedGoogle Scholar
  162. —: The metabolism of oxytocin during lactation in the rabbit. Biochem. J. 100, 823–826 (1966b).PubMedGoogle Scholar
  163. — and D.C. Jessup: The distribution of enzymes destroying oxytocin and vasopressin in human placentae. J. Physiol. (Lond.) 146, 539–549 (1959).Google Scholar
  164. Hopsu, V.K., S. Ruponen, and S. Talanti: Leucine aminopeptidase in the placenta of the rat. Acta histochem. (Jena) 12, 305–309 (1961).Google Scholar
  165. Hugtjenin, R.L., and R.A. Boissonnas: Synthèse de la (N-méthyl-Tyr)2-oxytocine. Helv. chim. Acta 44, 213–231 (1961).Google Scholar
  166. Ichaliotis, S.D., and Th. C. Lambrinopotjlos: Preeclampsia associated with decrease in serum oxytocinase. Obstet, and Gynec. 24, 659–661 (1964).Google Scholar
  167. —: Serum oxytocinase in twin pregnancy. Obstet, and Gynec. 25, 270–272 (1965).Google Scholar
  168. Itoh, S., and T. Kikuchi: Inactivation of antidiuretic activity of vasopressin by hypothalamic tissue in the presence of pyridoxal. Jap. J. Physiol. 9, 401–405 (1959).Google Scholar
  169. James, N.T.: Histochemical demonstration of oxytocinase in the human placenta. Nature (Lond.) 210, 1276–1277 (1966).Google Scholar
  170. Johnson, M.J.: Isolation and properties of a pure yeast polypeptidase. J. biol. Chem. 137, 575–586 (1941).Google Scholar
  171. Jones, A.M., and W. Schlapp: The action and fate of injected posterior pituitary extracts in the decapitated cat. J. Physiol. (Lond.) 87, 144–157 (1936).Google Scholar
  172. Jošt, K., and J. Rudinger: Amino acids and peptides. XXXIV. Some peptides of S-ben-zylcysteine. Collection Czech. Chem. Commun. 26, 2345–2354 (1961).Google Scholar
  173. —, and F. Šorm: Analogues of oxytocin exerting protracted biological effects. Collection Czech. Chem. Commun. 28, 2021–2030 (1963).Google Scholar
  174. Kanazawa, T.: Supplementary studies on blood pitocinase. J. Jap. obstet. gynaec. Soc. 1, 42–72 (1954).Google Scholar
  175. Karlin, A.: The in vitro release by the toad bladder of an inhibitor of oxytocin. Biochem. biophys. Res. Commun. 11, 44–49 (1963).PubMedGoogle Scholar
  176. Kasafirek, E., K. Jost, J. Rudinger, and F. Srm: Amino acids and peptides. LIV. Synthesis of further extended-chain analogues of oxytocin. Collection Czech. Chem. Commun. 30, 2600–2608 (1965).Google Scholar
  177. —, V. Rábek, J. Rudinger, and F. Šorm: Amino acids and peptides. Lxvi. Synthesis of ten extended-chain analogues of lysine vasopressin. Collection Czech. Chem. Commun. 31, 4581–4591 (1966).Google Scholar
  178. Katzen, H. M., and D. Stetten: Hepatic glutathione-insulin transhydrogenase. Diabetes 11, 271–280 (1962).PubMedGoogle Scholar
  179. —, F. Tietze, and D. Stetten: Further studies on the properties of hepatic glutathione-insulin transhydrogenase. J. biol. Chem. 238, 1006–1011 (1963).PubMedGoogle Scholar
  180. Kazda, S.: Discussion remark. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963,10,150 (1964).Google Scholar
  181. Kleiner, H., et M. Van Rymenant: Détermination placentaire de l’ocytocinase sérique dans l’insuffisance et la mort fétale “in utero”. Rev. franç. Étud. clin. biol. 9, 321–323 (1964).PubMedGoogle Scholar
  182. Klimek, R.: Discussion remark. Proc. 2nd. Int. Pharmacol. Meeting, Prague 1963,10, 150 to 151 (1964a).Google Scholar
  183. —: Pregnancy and delivery in the light of studies on the oxytocin-oxytocinase system. In: Oxytocin and its analogues, p. 27-38. Ed. by R. Klimek and W. Krol, Polish Endocrinol. Soc, Krakow (1964b).Google Scholar
  184. —, u. M. Pietrzycka: Biochemische Methode zur Bestimmung der Oxytocinase und ihre klinische Bewertung. Clin. chim. Acta 6, 326–330 (1961).PubMedGoogle Scholar
  185. Klimek, R., M. Pietrzycka, and J. Grochowski: The influence of operative trauma on blood levels of oxytocinase. Clin. chim. Acta 7, 398–402 (1962).PubMedGoogle Scholar
  186. Kowlessar, O.D., L.J. Haeffner, and E.M. Riley: Localization of serum leucine amino-peptidase, 5-nucleotidase, and nonspecific alkaline phosphatase by starch-gel electropho-resis: Clinical and biochemical significance in disease states. Ann. N. Y. Acad. Sci. 94, 836–843 (1961).PubMedGoogle Scholar
  187. Lambrinopoulos, T. C.: Prolonged pregnancy associated with increase in serum oxytocinase. Obstet, and Gynec. 23, 780–782 (1964).Google Scholar
  188. Larson, E.: Tolerance and fate of the pressor principle of posterior pituitary extract in anesthetized animals. J. Pharmacol, exp. Ther. 62, 346–362 (1938).Google Scholar
  189. —: Fate of the injected oxytocic principle of posterior pituitary in anesthetized cats and dogs. J. Pharmacol, exp. Ther. 67, 175–186 (1939).Google Scholar
  190. Lawler, H.C., S.P. Taylor, A.M. Swan, and V. DF Vigneaud: Prensence of glutamine and asparagine in enzymatic hydrolysates of oxytocin and vasopressin. Proc. Soc. exp. Biol. (N.Y.). 87, 550–552 (1954).Google Scholar
  191. —, and V. Du Vigneaud: Enzymatic evidence for intrinsic oxytocic activity of the pressor-antidiuretic hormone. Proc. Soc. exp. Biol. (N. Y.) 84, 114–116 (1953).Google Scholar
  192. Leblová, S., and I. Rychlík: Inhibition of enzymic inactivation of oxytocin by amino acids. Collection Czech. Chem. Commun. 25, 2926–2929 (1960).Google Scholar
  193. Lettow, E., u. Ch. Jaeger: Bestimmung der Leucin-Aminopeptidase-Aktivität im Seru trächtiger Hündinnen. Zbl. Vet.-Med. 12, 388–394 (1965).Google Scholar
  194. Lewis, J.: Serum leucine aminopeptidase values in patients with trophoblastic tumors and in normal pregnancy. Amer. J. Obstet. Gynec. 84, 1407–1411 (1962).Google Scholar
  195. Linderstrøm-Lang, K., and M. Ottesen: Formation of plakalbumin from ovalbumin. C. R. Lab. Carlsberg, Ser. Chim. 26, 403 (1949).Google Scholar
  196. Lineweaver, H., and D. Burk: The determination of enzyme dissociation constants. J. Amer. chem. Soc. 56, 658–666 (1934).Google Scholar
  197. MacLaren, J. A., R.D. Thornes, C.C. Roby, and D.E. Reid: An immunologic characteristic of the serum of normal pregnancy. Amer. J. Obstet. Gynec. 78, 939–946 (1959).PubMedGoogle Scholar
  198. Manunta, G.: On the inactivation of oxytocin in the cow. Boll. Soc. ital. Biol. Sper. 36, 281–284 (1960).PubMedGoogle Scholar
  199. —, and A. Marongiu: On the inactivation of oxytocin in Bos taurus, Equus caballus, Equus asinus, Ovis aries, Canis familiaris, Sus scrofa, Lepus cuniculus, Cavia cobaya, Mus nor-vegicus albinus, Mus musculus, Gallus gallus and Columbia livia. Boll. Soc. ital. Biol. Sper. 37, 1–2 (1961).PubMedGoogle Scholar
  200. Martin, G.J., J.N. Moss, and R.D. Smyth: Vasopressin potentiation and simulation by bromelain. Arch. int. Pharmacodyn. 152, 445–449 (1964).PubMedGoogle Scholar
  201. Martin, P.J., and H.O. Schild: Effect of thiols on oxytocin and vasopressin receptors. Nature (Lond.) 196, 382–383 (1962). Pharmacological antagonism between SH compounds and S-S polypeptides. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, 10, 109-116 (1964).Google Scholar
  202. De la Maza, J., and H. Croxatto: Action of tyrosinase on oxytocin. Bol. Soc. Biol. Santiago 2, 23–26 (1944).Google Scholar
  203. McCartney, C.P., F. J. Vallach, and R.E. Pottinger: Further studies on the inactivation of pitressin antidiuretic effect by the blood of pregnant women. Amer. J. Obstet. Gynec. 63, 847–853 (1952).PubMedGoogle Scholar
  204. Melander, S.: Plasma oxytocinase activity. A methodological and clinical study with special reference to pregnancy. Acta endocr. (Kbh.) 49, Suppl. 96, 1–94 (1965).Google Scholar
  205. Melander, S.E.J.: Oxytocinase activity of plasma of pregnant women. Nature (Lond.) 191, 176–177 (1961).Google Scholar
  206. Méndez-Bauer, C.J.: In: Oxytocin, p. 342. Proc. Int. Symp., Montevideo 1959 (Pub. 1961).Google Scholar
  207. —, and M.A. Carballo: Method for the quantitative determination of oxytocin. Proc. 2nd Congr. Urug. Obstet. Gynec. 2, 291–299 (1957).Google Scholar
  208. — —,H.M. Cabot, C.E. Negreiros De Paiva, and V.H. Gonzälez-Panizza: Studies on plasma oxytocinase. In: Oxytocin, Proc. Int. Symp., Montevideo 1959,325-335 (Pub. 1961).Google Scholar
  209. Mtlani, L.: Effect of pregnant blood serum on the uteromotor activity of the amniotic fluid. Boll. Soc. ital. Biol. Sper. 27, 679–682 (1951).Google Scholar
  210. —, and C. Pinetti: Pitocinase. I. Attempts to influence the inactivation of oxytocin by blood serum of the pregnant woman. Boll. Soc. ital. Biol. Sper. 27, 1–4 (1951).Google Scholar
  211. Miller, Z.B., E. Naor, L. Milkovtch, and W.M. Schmidt: Serum levels of cystine aminopeptidase, leucine aminopeptidase, and alkaline phosphatase in single and twin pregnancies. Obstet, and Gynec. 24, 707–715 (1964).Google Scholar
  212. Müller-Hartbtjrg, W., H. Nesvadba U. H. Tuppy: Die Anwendung einer chemischen Methode zur Bestimmung des Oxytocinasespiegels im Schwangerenserum. Arch. Gynäk. 191, 442–456 (1959).Google Scholar
  213. Munsick, R.A., W.H. Sawyer, and H.B. Van Dyke: Avian neurohypophysial hormones: pharmacological properties and tentative identification. Endocrinology 66, 860–871 (1960).Google Scholar
  214. Nagatsu, I., L. Gillespie, J.M. George, J.E. Folk, and G.G. Glenner: Serum aminopepti-dases, “angiotensinase”, and hypertension. II. Amino acid ß-naphthylamide hydrolysis by normal and hypertensive serum. Biochem. Pharmacol. 14, 853–861 (1965).Google Scholar
  215. Namiki, H. (1952), see Kanazawa (1954).Google Scholar
  216. Page, E.W.: The value of plasma pitocinase determinations in obstetrics. Amer. J. Obstet. Gynec. 52, 1014–1022 (1946).PubMedGoogle Scholar
  217. —: A blood test for estimating the week of pregnancy. Science 105, 292–293 (1947).PubMedGoogle Scholar
  218. —, M.A. Titus, G. Mohun, and M.B. Glendening: The origin and distribution of oxytoci-nase. Amer. J. Obstet. Gynec. 82, 1090–1095 (1961).PubMedGoogle Scholar
  219. Periti, P., A. Centaro, and G. De Laurenths: Oxytocinase activity in the uterus of women in labor and in different conditions of pregnancy. Boll. Soc. ital. Biol. Sper. 37, 453–455 (1961a).PubMedGoogle Scholar
  220. G. De Laurenths —: Oxytocinase in the blood of women in labor. Boll. Soc. ital. Biol. Sper. 37, 455–457 (1961b).PubMedGoogle Scholar
  221. Perks, A.M., M.H.I. Dodd, and J.M. Dodd: A neurohypophyseal principle in the elasmo-branch pituitary. Nature (Lond.) 185, 850–851 (1960).Google Scholar
  222. —, and W.H. Sawyer: A new neurohypophyseal principle in an elasmobranch, Raia ocellata. Nature (Lond.) 205, 154–156 (1965).Google Scholar
  223. Pliška, V., T. Barth, and I. Rychlík: Effect of human serum oxytocinase on the antidiu-retic action of lysine vasopressin and oxytocin in the rat. Experientia (Basel) 23, 196–197 (1967).Google Scholar
  224. Preddie, E.C.: Structure of a large polypeptide of bovine posterior pituitary tissue. J. biol. Chem. 240, 4194–4203 (1965).PubMedGoogle Scholar
  225. —, and M. Saffran: Isolation of a large polypeptide from bovine posterior pituitary powder. J. biol. Chem. 240, 4189–4193 (1965).PubMedGoogle Scholar
  226. Riad, A.M.: Studies on pregnancy serum cystine aminopeptidase activity’ oxytocinase†. J. Obstet. Gynaec. Brit. Emp. 69, 409–416 (1962).PubMedGoogle Scholar
  227. —: Changes in pregnancy serum oxytocinase activity during oxytocin infusion and their physiological significance. J. Obstet. Gynaec. Brit. Cwlth 73, 977–982 (1966).Google Scholar
  228. —, and F.J. Scandrett: Distribution of cystine aminopeptidase activity (oxytocinase) in human pregnancy sera. Nature (Lond.) 193, 372–373 (1962).Google Scholar
  229. Riniker, B., u. R. Schwyzer: Die sterische Einheitlichkeit des synthetischen Val5-Hyper-tensin II-Asp1-ß-amids. Helv. chim. Acta 44, 658–667 (1961).Google Scholar
  230. Rittner, Ch.: Über den immunologischen Nachweis von Aminopeptidasen, insbesondere der Oxytocinase (Cystinaminopeptidase). Z. Immun.-Forsch. 131, 422–433 (1966).Google Scholar
  231. Roth, M.: Fluorimetric assay of some peptidases. West European Symp. Clin. Chem. 4, 10–17 (1964). Chem. Abstr. 63, 2054 g (1965).Google Scholar
  232. Royce, P.C., and G. Sayers: Corticotropin releasing activity of a pepsin labile factor in the hypothalamus. Proc. Soc. exp. Biol. (N.Y.) 98, 677–680 (1958).Google Scholar
  233. Rudman, D., M.F. Malkin, S.J. Brown, L.A. Garcia, and L.L. Abell: Inactivation of adrenocorticotropin, α and β-melanocy te-stimulating hormones, vasopressin, and pituitary fraction H by adipose tissue. J. Lipid Res. 5, 38–45 (1964).PubMedGoogle Scholar
  234. —, L.A. Garcia, M. D.I. Girolamo, and L.L. Abell: Inactivation of the adipokinetic property of adrenocorticotropin, ßmelanocyte-stimulating hormone, vasopressin and pituitary fraction H by tissues of the rat and rabbit. Endocrinology 75, 867–876 (1964).PubMedGoogle Scholar
  235. Rychlík, I.: Inactivation of oxytocin and vasopressin by tissue enzymes: a basis for the design of analogues. Proc. 2nd. Int. Pharmacol. Meeting, Prague 1963, 10, 153–162 (1964).Google Scholar
  236. Rydén, G.: Cystine aminopeptidase and oxytocinase activity in pregnancy. A comparative study in human and rat tissues. Acta obstet, gynec. scand. 45, Suppl. 3 (1966).Google Scholar
  237. —, and I. Sjöholm: Assay of oxytocin by rat mammary gland in vitro. Brit. J. Pharmacol. 19, 136–141 (1962).Google Scholar
  238. Saameli, K.: Quantitative comparison between oxytocin and four related neurohypophysial peptides on the human uterus in situ. Brit. J. Pharmacol. 23, 176–183 (1964).PubMedGoogle Scholar
  239. Sachs, H., and Y. Takabatake: Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75, 943–948 (1964).PubMedGoogle Scholar
  240. Sasaki, N.: Antidiuretic substance in the bile. IX. The inactivation by a rat liver extract. Yamaguchi Igaku 9, 116–117 (1960).Google Scholar
  241. Sawyer, W. H.: Inactivation of oxytocin by homogenates of uteri and other tissues from normal and pregnant rats. Proc. Soc. exp. Biol. (N. Y.) 87, 463–465 (1954).Google Scholar
  242. Scalabrino, L., and R. Caracristi: Inhibitory action of liver homogenates in vitro toward oxytocin. Arch. Stud. Fisiopat. Ricambio 24, 525–530 (1960).Google Scholar
  243. Scalabrino, L., R. Caracristi, and P. Pebiti: Liver oxytocinase during experimental cirrhosis by carbon tetrachloride in the rabbit. Boll. Soc. ital. Biol. Sper. 37, 450–452 (1961).PubMedGoogle Scholar
  244. Schally, A.V., and J.F. Barrett: On the configuration of a lysine-vasopressin dimer. J. Amer. chem. Soc. 87, 2497–2499 (1965).Google Scholar
  245. —, C.Y. Bowers, A. Kuroshima, Y. Ishida, W.H. Carter, and T.W. Redding: Effect of lysine-vasopressin dimers on blood pressure and some endocrine functions. Amer. J. Physiol. 207, 378–384 (1964).PubMedGoogle Scholar
  246. —, and R. Guillemin: Some biological and chemical properties of a lysine-vasopressin dimer. J. biol. Chem. 239, 1038–1041 (1964).PubMedGoogle Scholar
  247. —, A. J. Kastin, J.F. Barrett, W.H. Carter, C.Y. Bowers, and W.F. White: On vasode-pressor activity in the hypothalamus. Biochem. Pharmacol. 15, 1805–1811 (1966).Google Scholar
  248. Schockaert, J.-A., and J. Lambillon: Sur la présence d’une substance antagoniste de la vasopressine dans le sérum de femmes enceintes. C. R. Soc. Biol. (Paris) 119, 1194–1197 (1935).Google Scholar
  249. —: Observations complémentaires sur la substance antagoniste de la vasopressine dans le sérum de la femme enceinte. C. R. Soc. Biol. (Paris) 122, 478–480 (1936a).Google Scholar
  250. —: Spécificité de la substance inhibant l’action hypertensive de la vasopressine dans le sérum de la femme enceinte. C. R. Soc. Biol. (Paris) 122, 481–484 (1936b).Google Scholar
  251. Schwartz, I.L., and L.M. Livingston: Cellular and molecular aspects of the antidiuretic action of vasopressins and related peptides. Vitam. and Horm. 22, 261–358 (1964).Google Scholar
  252. —, H. Rasmtjssen, M.A. Schoessler, L. Silver, and C.T.O. Fong: Relation of chemical attachment to physiological action of vasopressin. Proc. nat. Acad. Sci. (Wash.) 46, 1288 to 1298 (1960).Google Scholar
  253. Sciarra, J.J., and D.A. Burress: Serum leucine aminopeptidase in twin pregnancy. Proc. Soc. exp. Biol. (N. Y.) 104, 712–713 (1960).Google Scholar
  254. Segura-Cardona, R.: Inhibition of angiotensin, bradykinin and oxytocin by extracts from several organs. Rev. esp. Fisiol. 20, 27–35 (1964).PubMedGoogle Scholar
  255. Semm, K.: Die klinische Bedeutung der Oxytocinasebestimmung. Klin. Wschr. 33, 817–818 (1955).PubMedGoogle Scholar
  256. —: Der Abbau von synthetischem Oxytocin. Naturwissenschaften 44, 424 (1957).Google Scholar
  257. —: Die Bildungsstätte der Serum-Oxytocinase. Arch. Gynäk. 191, 57–64 (1958a).Google Scholar
  258. —: Oxytocin und Wehen. Fortschr. Geburtsh. Gynäk. 7, 81–88 (1958b).Google Scholar
  259. —: Das Wehenproblem mit besonderer Berücksichtigung des Oxytocin-Oxytocinasehaushaltes. Z. Geburtsh. Gynäk., Suppl. 154, 1–77 (1960).Google Scholar
  260. —: The significance of oxytocinase in pregnancy and labour. In: Oxytocin, p. 336-340. Proc. Int. Symp., Montevideo 1959, (Pub. 1961).Google Scholar
  261. —: Der Abbau von Hypophysenhinterlappenhormon durch eine Phytooxytocinase. Naturwissenschaften 49, 59 (1962 a).Google Scholar
  262. —: Der Abbau von Hypophysenhinterlappenhormon durch pflanzliche Enzyme. Arzneimittel-Forsch. 12, 252–260 (1962b).Google Scholar
  263. —: Der Abbau von Oxytocin durch menschliche und pflanzliche Enzyme. Geburtsh. u. Frauenheilk. 22, 980–982 (1962c).Google Scholar
  264. —: Serum-Oxytocinase-Aktivität in der Placenta. Arch. Gynäk. 199, 265–270 (1963).Google Scholar
  265. —: Oxytocin: Abbau durch Enzyme. Gynaecologia (Basel) 159, 61–63 (1965).Google Scholar
  266. —: Anstieg der Serum-Oxytocinase-Aktivität im Blut nach 17-α-Hydroxyprogesteronkapro-nat-oder Allylöstrenol-Zufuhr. Arch. Gynäk. 202, 459–461 (1965).Google Scholar
  267. —: Desamino-Oxytocin, ein von Schwangerenblut nicht inaktivierbares Wehenhormon. Geburtsh. u. Frauenheilk. 27, 36–42 (1967).Google Scholar
  268. —, and J. Bernhard: Zur Diagnostik des placentaren Stoffwechsels durch die Serum-Oxyto-cinase-Bestimmung im mütterlichen Blut. Arch. Gynäk. 199, 271–278 (1963).Google Scholar
  269. —, and E. Waidl: Histochemische Untersuchungen über die Serum-Oxytocinase-Bildung im menschlichen Trophoblasten. Z. Geburtsh. Gynäk. 158, 165–171 (1962).Google Scholar
  270. —, and H.-J. Wiendl: Über Oxytocin inaktivierende Gewebeextrakte. Zbl. Gynäk. 84, 1669–1674 (1962).Google Scholar
  271. Siegel, I.A.: Leucine aminopeptidase in pregnancy. Obstet, and Gynec. 14, 488–490 (1959).Google Scholar
  272. Sjöholm, I.: Enzymatic inactivation of oxytocin. Acta chem. scand. 18, 889–898 (1964).Google Scholar
  273. —: Biochemical studies on oxytocin and oxytocinase. Acta pharm. Suecica 4, 81–96 (1967).Google Scholar
  274. —, and G. Rydén: Half-life of oxytocin and lysine-vasopressin in blood of rat at different hormonal stages. Acta pharm. Suecica 4, 23–30 (1967).Google Scholar
  275. —, and Å. Ryrfeldt: A procedure for determination of radioactive metabolites from tritiated oxytocin in tissues. Acta pharm. Suecica 4, 77–80 (1967).Google Scholar
  276. —, and L. Yman: Preparation of highly purified oxytocinase (cystine aminopeptidase) from retroplacental serum. Acta pharm. Suecica 3, 377–388 (1966a). Electrophoretic studies on oxytocinase (cystine aminopeptidase). Relation between electrophoretically found “isozymes”. Acta pharm. Suecica 3, 389-396 (1966b).Google Scholar
  277. Sjöholm, L., and L. Yman: Degradation of oxytocin, lysine-vasopressin, angiotensin II and angiotensin-II-amide by oxytocinase (cystine aminopeptidase). Acta pharm. Suecica 4, 65–76 (1967).Google Scholar
  278. —, and F. Sandberg: Purification of oxytocinase (cystine aminopeptidase) by ethanol fractionation. Acta pharm. Suecica 2, 261–266 (1965).Google Scholar
  279. Smith, E.E., E.P. Pineda, and A.M. Rutenburg: Localization of serum leucine aminopeptidase activity by paper electrophoresis. Proc. Soc. exp. Biol. (N. Y.). 110, 683–687 (1962).Google Scholar
  280. —, and A. M. Rutenburg: Electrophoretic behaviour of an aminopeptidase of human tissues and serum. Nature (Lond.) 197, 800–801 (1963).Google Scholar
  281. Smith, M.W., and H. Sachs: Inactivation of arginine vasopressin by rat-kidney slices. Bio-chem. J. 79, 663–669 (1961).Google Scholar
  282. Smithies, O.: Zone electrophoresis in starch gels and its application to studies of serum proteins. Advanc. Protein Chem. 14, 65–113 (1959).Google Scholar
  283. Spackman, D.H., E.L. Smith, and D.M. Brown: Leucine aminopeptidase. IV. Isolation and properties of the enzyme from swine kidney. J. biol. Chem. 212, 255–269 (1955).PubMedGoogle Scholar
  284. Stepankovskaya, G. K.: The role of oxytocic substances and enzymes destroying them in protracted gestations. Akush. i Ginek. 40, 19–23 (1964). Chem. Abstr. 61, 12465b (1964).Google Scholar
  285. Stoklaska, E., u. E. Wintersberger: Zum Mechanismus des Oxytocin-und Vasopressin-Abbaues durch Schwangerenserum. Arch. Exp. Pathol. Pharmakol. 236, 358–364 (1959).Google Scholar
  286. — Beeinflussung der Oxytocinaseaktivität durch Thymusextrakt. Wien. klin. Wschr. 74, 944–946 (1962).PubMedGoogle Scholar
  287. —: Über die Oxytocinasehemmstoffe im Thymusextrakt. Wien. klin. Wschr. 75, 16–17 (1963).PubMedGoogle Scholar
  288. Suska-Brzezińska, E., and Z. Ewy: Oxytocinase in hen serum. Bull. Acad. pol. Sci., Ser. Sci. Biol. 13, 17–19 (1965).Google Scholar
  289. —, M. Golebska, and Z. Ewy: Biological and chemical determinations of tissue oxytocinase in cows. Acta physiol. pol. 16, 151–158 (1965).PubMedGoogle Scholar
  290. Thorn, N. A.: Some chemical properties of antidiuretic material in the urine of rats. Acta endocr. (Kbh.) 32, 128–133 (1959).Google Scholar
  291. —, and L. Silver: Chemical form of circulating antidiuretic hormone in rats. J. exp. Med. 105, 575–583 (1957).PubMedGoogle Scholar
  292. —, and N.B.S. Willumsen: Inhibitory action of calcium on the inactivation of antidiuretic hormone by rat-kidney slices. Acta endocr. (Kbh.) 44, 563–569 (1963).Google Scholar
  293. Thorpe, W. V.: Experiments on the chemical nature of the oxytocic principle of the pituitary gland. Biochem. J. 20, 374–378 (1926).PubMedGoogle Scholar
  294. Titus, M.A., D.H. Reynolds, M.B. Glendening, and E.W. Page: Plasma aminopeptidase activity (oxytocinase) in pregnancy and labor. Amer. J. Obstet. Gynec. 80, 1124–1128 (1960).PubMedGoogle Scholar
  295. Tuppy, H.: The amino-acid sequence in oxytocin. Biochim. biophys. Acta (Amst.) 11, 449 to 450 (1953).Google Scholar
  296. —: Enzymic inactivation and degradation of oxytocin and vasopressin. In: Polypeptides which affect smooth muscles and blood vessels, p. 49-58. Ed. by M. Schachter. Proc. Symp., London 1959 (Pub. 1960).Google Scholar
  297. —: Biochemical studies of oxytocinase. In: Oxytocin, p. 315-324. Proc. Int. Symp., Montevideo 1959 (Pub. 1961).Google Scholar
  298. —, u. G. Kreil: Über die beim tryptischen Abbau von Pferde-Cytochrom C entstehenden Peptide. Mh. Chem. 93, 780–794 (1962).Google Scholar
  299. —, u. H. Michl: Über die chemische Struktur des Oxytocins. Mh. Chem. 84, 1011–1020 (1953).Google Scholar
  300. —, u. H. Nesvadba: Über die Aminopeptidaseaktivität des Schwangerenserums und ihre Beziehung zu dessen Vermögen, Oxytocin zu inaktivieren. Mh. Chem. 88, 977–988 (1957).Google Scholar
  301. —, U. Wiesbauer u. E. Wintersberger: Aminosäure-p-nitroanilide als Substrate für Aminopeptidasen und andere proteolytische Fermente. Z. Physiol. Chem. 329, 278–288 (1962).Google Scholar
  302. E. Wintersberger —: Über die Einwirkung von Neuraminidase auf die Serumoxytocinase. Mh. Chem. 94, 321–328 (1963).Google Scholar
  303. —, u. E. Wintersberger: Reinigung und Eigenschaften der Serum-Oxytocinase. Mh. Chem. 91, 1001–1010 (1960).Google Scholar
  304. —: Investigations of pregnancy serum oxytocinase. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, 10, 143–151 (1964).Google Scholar
  305. Du Vigneaud, V., P.S. Fitt, M. Bodanszky, and M. O’connell: Synthesis and somepharma cological properties of a peptide derivative of oxytocin: glycyloxytocin. Proc. Soc. exp. Biol. (N.Y.) 104, 653–656 (1960).Google Scholar
  306. Du Vigneaud, V., H.C. Lawler, and E.A. Popenoe: Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor antidiuretic hormone of the posterior pituitary. J. Amer. chem. Soc. 75, 4880–4881 (1953).Google Scholar
  307. —, C. Kessler, J.M. Swan, C. W. Roberts, and P.G. Katsoyannis: The synthesis of oxyto-cin. J. Amer. chem. Soc. 76, 3115–3121 (1954).Google Scholar
  308. —, and S. Trippett: The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. biol. Chem. 205, 949–957 (1953).Google Scholar
  309. Vorherr, H., U. G. Hüskens: Adiuretinabbau und Aminopeptidaseaktivität in Placenta-extrakten. Klin. Wschr. 41, 926–928 (1963).PubMedGoogle Scholar
  310. Werle, E.: Discussion remark. In: Polypeptides which affect smooth muscles and blood vessels, p. 89-90. Ed. by M. Schachter (1960).Google Scholar
  311. —, u. G. Effkemann: Über die oxytocinabbauende Fähigkeit des Schwangerenblutes. Arch. Gynäk. 171, 286–290 (1941).Google Scholar
  312. —, A. Hevelke U. K. Buthmann: Zur Kenntnis des oxytocinabbauenden Prinzips des Blutes. Biochem. Z. 309, 270–282 (1941).Google Scholar
  313. —, u. A. Kalvelage: Über die Vasopressin-inaktivierende Kraft des Blutes von Schwangeren und die Natur des inaktivierenden Prinzips. Biochem. Z. 308, 405–412 (1941).Google Scholar
  314. —, u. L. Maier: Über den Abbau von Oxytocin und Vasopressin durch Milchdrüsenextrakte der Kuh. Naturwissenschaften 41, 380 (1954).Google Scholar
  315. —, u. K. Semm: Aktivitätsbestimmung der Serum-Oxytocinase als Schwangerschaftsnachweis. Klin. Wschr. 29, 544–545 (1951).Google Scholar
  316. —: Methode zur Schwangerschaftsdiagnose mit Bestimmung des Alters der Frucht. Arch. Gynäk. 187, 106–111 (1955).Google Scholar
  317. —: Über die Oxytocinase des Schwangerenblutes. Arch. Gynäk. 187, 449–457 (1956).Google Scholar
  318. —,u. R. Enzenbach: Über die Oxytocinase des Schwangerenblutes und der Erythrocyten. Arch. Gynäk. 177, 211–217 (1950).Google Scholar
  319. Wilken, H.: Die sogenannte „pregnancy zone“, ein neuer Serumfaktor bei Schwangeren. Arch. Gynäk. 199, 243–256 (1963).Google Scholar
  320. Winkhaus, B.: Oxytocinase-Bestimmung bei Kühen unter Berücksichtigung der Bedeutung des Hormons Oxytocin bei der Milchentleerung und Geburtsauslösung. Vet. Med. Diss., München (1954).Google Scholar
  321. Wintersberger, E., u. K.P. Chatterjee: Reinigung und Eigenschaften einer Aminopepti-dase der menschlichen Erythrocyten. Mh. Chem. 93, 1268–1278 (1962).Google Scholar
  322. —, W. Müller-Hartburg U. H. Tuppy: Eine einfache Methode zur chemischen Bestimmung der Oxytocinaseaktivität in Schwangerenseren. Clin. chim. Acta 14, 786–792 (1966).Google Scholar
  323. —, E. Stoklaska, H.D. Moed, U. J. Van Dijk: Substituierte Amide des Cystins als Inhibitoren des Oxytocinabbaues durch die Oxytocinase des Schwangerenserums. Rec. Trav. chim. Pays-Bas 83, 1061–1068 (1964).Google Scholar
  324. —, u. H. Tuppy: Zonen-Elektrophorese von Aminopeptidasen in Stärkegel. Mh. Chem. 91, 406–411 (1960).Google Scholar
  325. —, u. E. Stoklaska: Über ein kompetitives Substrat der Oxytocinase. Mh. Chem. 91, 577–581 (1960).Google Scholar
  326. Woodbury, R.A., R.P. Ahlquist, B. Abreu, R. Torpin, and W.G. Watson: The inactiva-tion of pitocin and pitressin by human pregnancy blood. J. Pharmacol, exp. Ther. 86, 359–365 (1946).Google Scholar
  327. Yano, F.: Antidiuretic substance in the bile. VI. The stability in some digestive juices and digestive enzymes. Yamaguchi Igaku 9, 107–109 (1960).Google Scholar
  328. Yman, L., and I. Sjöholm: Some physicochemical properties of oxytocinase (cystine amino-peptidase). Acta pharm. Suecica 4, 13–22 (1967).Google Scholar
  329. Zamello, J., and J.M. Zgliczynski: Blood peroxidase activity in women in the perinatal period. Ginek. pol. 36, 147–151 (1965).PubMedGoogle Scholar
  330. Zaoral, M., V. Pliška, K. Řežábek, and F. Šorm: Synthesis of two lysine-vasopressin analogues with protracted hormonal activity. Collection Czech. Chem. Commun. 28, 747–749 (1963).Google Scholar
  331. —, and F. Šorm: Preparation and biological activity of some new lysine vasopressin analogues. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, 10, 167–171 (1964).Google Scholar
  332. —: Amino acids and peptides LV. Synthesis of Gly-Cys1-lysine-vasopressin and Gly-Cys1-Tyr(Me)2-lysine vasopressin. Collection Czech. Chem. Commun. 30, 2812–2816 (1965).Google Scholar
  333. Zasztowt, O.: On the behaviour of oxytocinase during pregnancy. Roczn. Akad. Med. Mar-chlewskiego 9, 3–7 (1963).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • Hans Tuppy

There are no affiliations available

Personalised recommendations