Advertisement

Chemistry of the Neurohypophysial Hormones

  • R. A. Boissonnas
  • St. Guttmann
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 23)

Abstract

Seven chemically related hormones have been detected up to now in the neurohypophyses of mammals, birds, amphibians and fish: oxytocin, vasopressin, lysine-vasopressin, vasotocin, mesotocin, isotocin and glumitocin. As can be seen from their chemical structure (Fig. 1), they all consist of a peptide chain of nine amino acid residues and are therefore, strictly speaking, nonapeptides. The two half cystine residues occupying the 1st and the 6th positions of the chain are linked together by their sulphur atoms, thus forming a ring of 20 atoms. As these two half cystine residues constitute together one cystine residue, some authors formerly designated these hormones as octapeptides, but this nomenclature is now considered illogical, for it is impossible to apply it in the case of more complicated peptides like insulin, which have nevertheless the same 20 atom ring.

Keywords

Liquid Ammonia Disulphide Bridge Performic Acid Neurohypophysial Hormone Tosyl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acher, R.: The comparative chemistry of neurohypophysial hormones. Symp. Zool. Soc. London 9, 83–91 (1962).Google Scholar
  2. —, and J. Chauvet: La structure de la vasopressine de boeuf. Biochim. biophys. Acta (Amst.) 12, 487–488 (1953).CrossRefGoogle Scholar
  3. —: La structure de la vasopressine de boeuf. Biochim. biophys. Acta (Amst.) 14, 421–429 (1954).CrossRefGoogle Scholar
  4. —, and M. T. Chatjvet: Les hormones neurohypophysiaires des mammifères: Isolement et caractérisation de l’oxytocine et de la vasopressine de la baleine (Balaenoptera physalus L.). Bull. Soc. Chim. biol. (Paris) 45, 1369–1378 (1963).Google Scholar
  5. —, and D. Crepy: Les hormones neurohypophysaires des poissons: Isolement d’une vasotocine du tacaud (Gadus luscus L.). Biochim. biophys. Acta (Amst.) 51,419–420 (1961).CrossRefGoogle Scholar
  6. —: Isolement d’une nouvelle hormone neurohypophysaire, l’isotocine, présente chez les poissons osseux. Biochim. biophys. Acta (Amst.) 58, 624–625 (1962). Phylogénie des peptides neurohypophysaires: Isolement de la mesotocine (Ileu8-oxytocine) de la grenouille, intermédiaire entre la Ser4-Ileu8-oxytocine des poissons osseux et l’oxytocine des mammifères. Biochim. biophys. Acta (Amst.) 90, 613-615 (1964). Phylogénie des peptides neurohypophysaires: Isolement d’une nouvelle hormone, la glumitocine (Ser4-Gln8-oxytocine) présente chez un poisson cartilagineux, la raie (Raia davata). Biochim. biophys. Acta (Amst.) 107, 393-396 (1965).CrossRefGoogle Scholar
  7. —, and M. T. Lenci: L’oxytocine et la vasopressine du cheval. Bull. Soc. Chim. biol. (Paris) 40, 2005–2018 (1958a).Google Scholar
  8. —: Purification et structure de l’oxytocine et de la vasopressine du cheval. Biochim. biophys. Acta (Amst.) 31, 545–548 (1959a).CrossRefGoogle Scholar
  9. —: Purification et structure de l’oxytocine et de la vasopressine du mouton. Compt. Rend. 248, 1435–1438 (1959b).Google Scholar
  10. —: Isolement de l’oxytocine du poulet. Biochim. biophys. Acta (Amst.) 38, 344–345 (1960a).CrossRefGoogle Scholar
  11. —, F. Morel, and J. Maetz: Présence d’une vasotocine dans la neurohypophyse de la grenouille. Biochim. biophys. Acta (Amst.) 42, 379–380 (1960b).CrossRefGoogle Scholar
  12. —, et Cl. Fromageot: Chimie des hormones neurohypophysaires. Ergebn. Physiol. 48, 286–327 (1955).PubMedCrossRefGoogle Scholar
  13. —, A. Light, and V. Du Vigneaud: Purification of oxytocin and vasopressin by way of a protein complex. J. biol. Chem. 233, 116–120 (1958b).PubMedGoogle Scholar
  14. Agishi, Y., and J.F. Dingman: Specific tritiation of oxytocin by catalytic deiodination. Bio-chem. biophys. Res. Commun. 18, 92–97 (1965).CrossRefGoogle Scholar
  15. Bartlett, M.F., A. Joehl, R. Roeske, R.J. Stedman, F.H.C. Stewart, P.N. Ward, and V. Du Vigneaud: Studies on the synthesis of lysine-vasopressin. J. Amer. chem. Soc. 78, 2905–2906 (1956).CrossRefGoogle Scholar
  16. Berde, B., R. Huguenin, and E. Stürmer: The biological activities of arginine-vasotocin obtained by a new synthesis. Experientia (Basel) 18, 444–445 (1962)CrossRefGoogle Scholar
  17. E. Stürmer —, u. H. Konzett: Isoleucyl8-Oxytocin, ein biologisch hochwirksames Polypeptid. Med. exp. (Basel) 2, 317–322 (1960).CrossRefGoogle Scholar
  18. Beyermann, H.C., J.S. Bontekoe, and A.C. Koch: A synthesis of oxytocin. Rec. Trav. chim. Pays-Bas 78, 935–946 (1959).CrossRefGoogle Scholar
  19. Bodanszky, M.: Synthesis of peptides by aminolysis of nitrophenyl esters. Nature (Lond.) 175, 685 (1955).CrossRefGoogle Scholar
  20. —, J. Meienhofer, and V. Du Vigneaud: Synthesis of lysine-vasopressin by the nitrophenyl-ester method. J. Amer. ehem. Soc. 82, 3195–3198 (1960).CrossRefGoogle Scholar
  21. —, M.A. Ondetti, C.A. Birkhtmer, and P.L. Thomas: Synthesis of arginine-containing peptides through their ornithine analogs. Synthesis of arginine vasotocin and L-histidyl-L-phenylalanyl-L-arginyl-L-tryptophylglycine. J. Amer. chem. Soc. 86, 4452–4459 (1964).CrossRefGoogle Scholar
  22. —, M.A. Ondetti, C.A. Birkhtmer, P.L. Thomas, and V. Du Vigneaud: An improved synthesis of oxytocin. J. Amer. chem. Soc. 81, 2504 to 2507 (1959a).CrossRefGoogle Scholar
  23. —: A method of synthesis of long peptide chains using a synthesis of oxytocin as an example. J. Amer. chem. Soc. 81, 5688–5691 (1959b).CrossRefGoogle Scholar
  24. —: Synthesis of oxytocin by the nitrophenyl ester method. Nature (Lond.) 183,1324–1325 (1959c).CrossRefGoogle Scholar
  25. —: A new crystalline salt of oxytocin. Nature (Lond.) 184, 981–982 (1959d).CrossRefGoogle Scholar
  26. Boissonnas, R. A., St. Guttmann, P.-A. Jaquenoud, and J.-P. Waller: Une nouvelle synthèse de l’oxytocine. Helv. chim. Acta 38, 1491–1501 (1955).CrossRefGoogle Scholar
  27. P.-A. Jaquenoud, J.-P. Waller —, and R.L. Huguenin: Synthèse de la Lys8-oxytocine (lysine-vasotocine) et nouvelle synthèse de la lysine-vasopressine. Helv. chim. Acta 43, 182–190 (1960).CrossRefGoogle Scholar
  28. Carlsson, L., and I. Sjöholm: Synthesis of tritium-labelled oxytocin and lysine-vasopressin. Acta chem. scand. 20, 259–260 (1966).PubMedCrossRefGoogle Scholar
  29. Chauvet, J., M.T. Lenci, and R. Acher: L’oxytocine et la vasopressine du mouton: Reconstitution d’un complexe hormonal actif. Biochim. biophys. Acta (Amst.) 38, 266–272 (1960a).CrossRefGoogle Scholar
  30. R. Acher —: Présence de deux vasopressines dans la neurohypophyse du poulet. Biochim. biophys. Acta (Amst.) 38, 571–573 (1960b).CrossRefGoogle Scholar
  31. Condlite, P.G.: Partition chromatography of oxytocin and vasopressin. J. biol. Chem. 216, 455–464 (1955).Google Scholar
  32. Dudley, H. W.: Some observations on the active principles of the pituitary gland. J. Pharmacol, exp. Ther. 14, 295–312 (1919).Google Scholar
  33. Fong, C.T.O., I.L. Schwartz, E.A. Popenoe, L. Silver, and M.A. Schoessler: On the molecular bonding of lysine-vasopressin at its renal receptor site. J. Amer. chem. Soc. 81, 2592–2593 (1959).CrossRefGoogle Scholar
  34. E.A. Popenoe, L. Silver, M.A. Schoessler —, L. Silver, D.R. Christmas, and I.L. Schwartz: On the mechanisme of action of the antidiuretic hormone (vasopressin). Proc. nat. Acad. Sci. (Wash.) 46, 1273–1277 (1960).CrossRefGoogle Scholar
  35. Guttmann, ST.: Synthèse de la Ser4-Heu8-oxytocine, une éventuelle hormone hypophysaire de certains poissons (Isotocine). Helv. chim. Acta 45, 2622–2627 (1962).CrossRefGoogle Scholar
  36. —: Use of the S-ethylcarbamoyl group for protection of the thiol function of cysteine. Proc. 6th European Symposium, Athens, September 1963, p. 11-19. Ed. by L. Zervas. Perga-mon (1966).Google Scholar
  37. —: Synthèse du glutathion et de l’oxytocine à l’aide d’un nouveau groupe protecteur de la fonction thiol. Helv. chim. Acta 49, 83–96 (1966).CrossRefGoogle Scholar
  38. —, B. Berde, and E. Stürmer: The synthesis and some pharmacological effects of serine4-isoleucine8-oxytocin, a probable neurohypophysial hormone. Experientia (Basel) 18, 445–446 (1962).CrossRefGoogle Scholar
  39. Heaton, G.S., H.N. Rydon, and J.A. Schofield: The oxidation of some peptides of cysteine and glycine. J. chem. Soc. 1956, 3157-3168.Google Scholar
  40. Heller, H., and B. T. Pickering: Neurohypophysial hormones of nonmammalian vertebrates. J. Physiol. (Lond.) 155, 98–114 (1961).Google Scholar
  41. Huguenin, R.L., and R.A. Boissonnas: Synthèse de la Phe2-arginine-vasopressine et de la Phe2-arginine-vasotocine et nouvelles synthèses de l’arginine-vasopressine et de l’arginine-vasotocine. Helv. chim. Acta 45, 1629–1643 (1962).CrossRefGoogle Scholar
  42. Irving, G.W., M. M. Dyer, and V. Du Vigneaud: Purification of the pressor principle of the posterior lobe of pituitary gland by electrophoresis. J. Amer. chem. Soc. 63, 503–506 (1941).CrossRefGoogle Scholar
  43. Jaquenoud, P.-A., and R.A. Boissonnas: Synthèse de la Ileu8-oxytocine et de la Val8-oxytocine, deux analogues de l’oxytocine modifiés dans la chaîne latérale.Google Scholar
  44. Jöhl, A., A. Hartmann, and H. Rink: The synthesis of Ser4-Ileu8-oxytocin (Isotocin). Biochim. biophys. Acta (Amst.) 69, 193–195 (1963).CrossRefGoogle Scholar
  45. Jošt, K.: A new synthetic route of oxytocin and vasopressin suitable for the preparation of analogues modified in position 6. Collection Czech. Chem. Commun. 31, 2784 (1966).Google Scholar
  46. Kamm, O., T.B. Aldrich, I.W. Grote, L.W. Rowe, and E.P. Bugbee: The active principles of the posterior lobe of the pituitary gland. J. Amer. chem. Soc. 50, 573–601 (1928).CrossRefGoogle Scholar
  47. Katsoyannis, P. G., D.T. Gish, and V. Du Vigneaud: Synthetic studies of arginine-vaso-pressin: Condensation of s-benzyl-N-carbobenzoxy-L-cystemyl-L-tyrosyl-L-phenylalanyl-L-glutaminyl-L-asparagine and its o-tosyl derivative with s-benzyl-L-cysteinyl-L-prolyl-L-arginylglycinamide. J. Amer. chem. Soc. 79, 4516–4520 (1957).CrossRefGoogle Scholar
  48. V. Du Vigneaud —, and V. Du Vigneaud: Arginine-vasotocin, a synthetic analogue of the posterior pituitary hormones containing the ring of oxytocin and the side chain of vasopressin. J. biol. Chem. 233,1352–1354 (1958).PubMedGoogle Scholar
  49. V. Du Vigneaud —: Arginine vasotocin. Nature (Lond.) 184, 1465 (1959).CrossRefGoogle Scholar
  50. Lawer, H.C., S.P. Taylor, A.M. Swan, and V. Du Vigneaud: Presence of glutamine and asparagine in enzymatic hydrolysates of oxytocin and vasopressin. Proc. Soc. exp. Biol. (N.Y.) 87, 550–552 (1954).Google Scholar
  51. Light, A., and V. Du Vigneaud: On the nature of oxytocin and vasopressin from human pituitary. Proc. Soc. exp. Biol. (N.Y.) 98, 692–696 (1958).Google Scholar
  52. Lindner, E.B., A. Elmquist, and J. Porath: Gel filtration as a method for purification of protein-bound peptides, exemplified by oxytocin and vasopressin. Nature (Lond.) 184, 1565–1566 (1959).CrossRefGoogle Scholar
  53. Livermore, A.H., and V. Du Vigneaud: Preparation of high potency oxytocic material by the use of countercurrent distribution. J. biol. Chem. 180, 365–373 (1949).PubMedGoogle Scholar
  54. Maier-Hueser, H., H. Clauser, P. Fromageot, and P. Plongeront Préparation des hormones du lobe postérieur de l’hypophyse de boeuf. Biochim. biophys. Acta (Amst.) 11, 252–257 (1953).CrossRefGoogle Scholar
  55. Meienhofer, J., and V. Du Vigneaud: Preparation of lysine-vasopressin through a crystalline protected nonapeptide intermediate and purification of the hormone by chromatography. J. Amer. chem. Soc. 82, 2279–2282 (1960).CrossRefGoogle Scholar
  56. Méndez-Bauer, C.J., M.A. Carballo, H.M. Cabot, C.E. Negreiros De Patva, and Y.H. Gonzales-Panizza: In: Oxytocin. Ed. by R. Caldeyro-Barcia and H. Heller, p. 325. New York: Macmillan (Pergamon) 1961.Google Scholar
  57. Mueller, M.J., J.G. Pierce, H. Davoll, and V. Du Vigneaud: The oxydation of oxytocin with performic acid. J. biol. Chem. 191, 309–313 (1951).PubMedGoogle Scholar
  58. Munsick, R.A., W.H. Sawyer, and H.B. Van Dyke: Hormonal characteristics of the avian neurohypophysis. Fed. Proc. 18, 110 (1959).Google Scholar
  59. H.B. Van Dyke —: Avian neurohypophysial hormones: Pharmacological properties and tentative identification. Endocrinology 66, 860–871 (1960).CrossRefGoogle Scholar
  60. Photaki, I.: Synthesis of N-protected oxytocins. Experientia (Basel) 20, 487–488 (1964).CrossRefGoogle Scholar
  61. —: A new synthesis of oxytocin using s-acyl cysteins as intermediates. J. Amer. chem. Soc. 88, 2292–2299 (1966).CrossRefGoogle Scholar
  62. Pierce, J.G., S. Gordon, and V. Du Vigneaud: Further distribution studies on the oxytocic hormone of the posterior lobe of the pituitary gland and the preparation of an active cristalline flavianate. J. biol. Chem. 199, 929–940 (1952).PubMedGoogle Scholar
  63. V. Du Vigneaud —, and V. Du Vigneaud: Preliminary studies on amino acid content of a high potency preparation of the oxytocic hormone of posterior lobe of the pituitary gland. J. biol. Chem. 182, 359–366 (1950).Google Scholar
  64. Popenoe, E.A., H.C. Lawler, and V. Du Vigneaud: Partial purification and amino acid content ofvasopressin from hog posterior pituitary glands. J. Amer. chem. Soc. 74,3713 (1952).CrossRefGoogle Scholar
  65. V. Du Vigneaud —, and V. Du Vigneaud: Degradative studies on vasopressin and performic acid-oxidized vasopressin. J. biol. Chem. 205, 133–143 (1953).PubMedGoogle Scholar
  66. V. Du Vigneaud —: A partial sequence of amino acids in performic acid-oxidized vasopressin. J. biol. Chem. 206, 353–360 (1954).PubMedGoogle Scholar
  67. Porath, J.: Application of zone electrophoresis and cellulose in exchange chromatography to the fractionation of posterior pituitary hormones. Arkiv Kemi 11, 259–274 (1957).Google Scholar
  68. —, and A.V. Schally: Gel filtration of posterior pituitary hormones. Endocrinology 70, 738–742 (1962).PubMedCrossRefGoogle Scholar
  69. Potts, A.M., and T.F. Gallagher: Cystine, tyrosine and arginine content of high potency pressor and oxytocic pituitary hormones. J. biol. Chem. 143, 561–562 (1942).Google Scholar
  70. —: Separation of oxytocic and pressor principles of posterior pituitary extracts. J. biol. Chem. 154, 349–356 (1944).Google Scholar
  71. Rasmussen, H., and L. Craig: The isolation of arginine vasotocin from fish pituitary glands. Endocrinology 68, 1051–1055 (1961).PubMedCrossRefGoogle Scholar
  72. Ressler, Ch.: Inactivation of oxytocin suggesting peptide denaturation. Science 128, 1281 to 1282 (1958).PubMedCrossRefGoogle Scholar
  73. Rudinger, J., J. Honzl, and M. Zaoral: An alternative synthesis of oxytocin. Collection Czech. Chem. Commun. 21, 202–210 (1956).Google Scholar
  74. Rychlik, I.: Oxytocin, Vasopressin and their structural analogues. Proc. 2nd Int. Pharmacological Meeting, Prague, 1963. Ed. by J. Rudinger, p. 153. New York: Macmillan (Pergamon) 1964.Google Scholar
  75. Saffban, M., B. V. Caplan, S. Mishkin, and B. Muhlstock: Use of percolation for the extraction of vasopressin. Endocrinology 70, 43–46 (1962).CrossRefGoogle Scholar
  76. Sakaktbaba, S., Y. Nobtjhaba, Y. Shimonishi, and R. Kiyoi: A synthesis of oxytocin. Bull, chem. Soc. Japan 38, 120–123 (1965).CrossRefGoogle Scholar
  77. Schall Y., A.V., and R. Gxjillemin: Some biological and chemical properties of lysine-vaso-pressin dimer. J. biol. Chem. 239, 1038–1041 (1964).Google Scholar
  78. Sheehan, J.C., and J.P. Hess: A new method of forming peptide bonds. J. Amer. chem. Soc. 77, 1067–1068 (1955).CrossRefGoogle Scholar
  79. Sjöholm, I.: Enzymic inactivation of oxytocin. Acta chem. scand. 18, 889–898 (1964).CrossRefGoogle Scholar
  80. Smyth, D.G.: Reaction of cyanate with amino and hydroxyl groups; application to oxytocin. Acta Chim. Acad. Sci. Hung. 44, 197–204 (1965).Google Scholar
  81. Stehle, R.L., and A.M. Fbaseb: The purification of pressor and oxytocic hormones of the pituitary gland and some observations on the chemistry of the products. J. Pharmacol, exp. Ther. 55, 136–151 (1935).Google Scholar
  82. Sttjdeb, R.O.: Vergleich von synthetischem und natürlichem Arginin-Vasopressin. Chimia (Aarau) 17, 22 (1963a).Google Scholar
  83. —: Vergleich von synthetischem und natürlichem Arginin-Vasopressin. Helv. chim. Acta 46, 421–425 (1963b).CrossRefGoogle Scholar
  84. —:, and V. Du Vigneaud: Synthetic work related to arginine-vasopressin. J. Amer. chem. Soc. 82, 1499–1501 (1960).CrossRefGoogle Scholar
  85. Sturm, K., R. Geigeb U. W. Siedel: Verfahren zur Herstellung von Oxytocin. D.B.P. Nr. 1212533(1966).Google Scholar
  86. Tuppy, H.: The amino-acid sequence in oxytocin. Biochim. biophys. Acta (Amst.) 11,449–450 (1953).CrossRefGoogle Scholar
  87. —: Polypeptides which affect smooth muscles and blood vessels, p. 49–58. Ed. by M. Schach-TEB. New York: Macmillan (Pergamon) 1960.Google Scholar
  88. —: In: Oxytocin, p. 315–324. Ed. by R. Caldeyro-Babcia and H. Helleb. New York: Macmillan (Pergamon) 1961.Google Scholar
  89. —, u. H. Michl: Über die chemische Struktur des Oxytocins. Monatsh. Chem. 84, 1011–1020 (1953).CrossRefGoogle Scholar
  90. —, u. H. Nesvadba: Über die Aminopeptidaseaktivität des Schwangerenserums und ihre Beziehung zu dessen Vermögen, Oxytocin zu inaktivieren. Monatsh. Chem. 88,977–988 (1957).CrossRefGoogle Scholar
  91. —, u. E. Wintebsbebgeb: Reinigung und Eigenschaften der Serum-Oxytocinase. Monatsh. Chem. 91, 1001–1010 (1960).CrossRefGoogle Scholar
  92. Tubneb, R.A., J.G. Piebce, and V. Du Vigneaud: The purification and the amino acid content of vasopressin preparations. J. biol. Chem. 191, 21–28 (1951).Google Scholar
  93. Velluz, L., G. Amiabd, J. Babtos, B. Goffinet, and R. Heymès: Accès à l’oxytocine de synthèse, à l’aide d’intermédiaires S.N-tritylés. Bull. Soc. chim. Fr. 1956, 1464-1467.Google Scholar
  94. Vigneaud, V. Du, M. F. Babtlett, and A. Joehl: The synthesis of lysine-vasopressin. J. Amer. chem. Soc. 79, 5572–5575 (1957).CrossRefGoogle Scholar
  95. A. Joehl —, D. T. Gish, and P. G. Katsoyannis: A synthetic preparation possessing biological properties associated with arginine-vasopressin. J. Amer. chem. Soc. 76, 4751–4752 (1954b).CrossRefGoogle Scholar
  96. A. Joehl —, and G.P. Hess: Synthesis of the pressor antidiuretic hormone, arginine-vasopressin. J. Amer. chem. Soc. 80, 3355–3358 (1958).CrossRefGoogle Scholar
  97. A. Joehl —, H.C., Lawleb and E. A. Popenoe. Enzymic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J. Amer. chem. Soc. 75, 4880–4881 (1953c).CrossRefGoogle Scholar
  98. A. Joehl —, Ch. Ressleb, J.M. Swan, C.W. Robebts, P.G. Katsoyannis, and S. Gobdon. The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Amer. chem. Soc. 25, 4879–4880 (1953a).CrossRefGoogle Scholar
  99. A. Joehl —, C.W. Robebts and P.G. Katsoyannis. The synthesis of oxytocin. J. Amer. chem. Soc. 26, 3115–3121 (1954a).CrossRefGoogle Scholar
  100. A. Joehl —, and S. Tbipett. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. biol. Chem. 205, 949–957 (1953b).Google Scholar
  101. A. Joehl —, C.H. Schneideb, J.E. Stouffeb, V.V.S. Mubti, J.P. Aboskab and G. Winestock. Tritiation of oxytocin by the Wilzbach method and the synthesis of oxytocin from tritium labelled leucine. J. Amer. chem. Soc. 84, 409–413 (1962).CrossRefGoogle Scholar
  102. Wabd, D.N., and R. Gujllemin. A simple method for preparation of highly purified vasopressin. Proc. Soc. exp. Biol. (N.Y.) 96, 568–570 (1957).Google Scholar
  103. Yamashiro, D.: Partition chromatography of oxytocin on “Sephadex”. Nature (Lond.) 201, 76–77 (1964).CrossRefGoogle Scholar
  104. —, H.L. Aanntng, and V. Du Vigneaud: Inactivation of oxytocin by acetone. Proc. nat. Acad. Sci. (Wash.) 54, 166–171 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • R. A. Boissonnas
  • St. Guttmann

There are no affiliations available

Personalised recommendations