Advertisement

Antagonists of the Neurohypophysial Hormones

  • J. Rudinger
  • I. Krejčí
Chapter
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 23)

Abstract

Throughout the history of pharmacology the exploration of antagonism and the use of antagonists has played an important role both in the development of theoretical concepts and interpretations and in experimental practice. The use of antagonists to interfere with the physiological or pathological effects of endogenous mediators forms an important branch of rational drug therapy. The first synthesis of a peptide hormone — oxytocin — by du Vigneaud and his coworkers (1953) opened the way to structurally modified synthetic hormone analogues including, it was reasonable to hope, antagonists of the natural hormones. Moreover, synthesis made available unexceptionably homogeneous preparations of the individual hormones, thereby eliminated some of the uncertainties attaching to much of the earlier work with materials purified from natural sources, and in consequence stimulated extensive physiological and pharmacological studies including work on antagonism.

Keywords

Toad Bladder Competitive Antagonism Neurohypophysial Hormone Osmotic Flow Oxytocin Antagonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acher, R., J. Chauvet, M.T. Chauvet, and D. Crepy: Phylogénie des peptides neurohypo-physaires: Isolement de la mesotocine (Ileu8-ocytocine) de la grenouille, intermédiaire entre la Ser4-Ileu8-ocytocine des poissons osseux et l’ocytocine des mammifères. Biochim. biophys. Acta (Amst.) 90, 613–615 (1964).Google Scholar
  2. —, and G. Olivry: Sur l’existence éventuelle d’une hormone unique neurohypophysaire. I. Relations entre l’ocytocine, la vasopressine et la protéine de Van Dyke extraites de la neurohypophyse du boeuf. Biochim. biophys. Acta (Amst.) 22, 421–427 (1956).Google Scholar
  3. Ames, R.G., and H.B. Van Dyke: Thioglycollate inactivation of posterior pituitary anti-diuretic principle as determined in the rat. Proc. Soc. exp. Biol. (N.Y.) 76, 576–578 (1951).Google Scholar
  4. —, D.H. Moore, and H.B. Van Dyke: The excretion of posterior pituitary antidiuretic hormone in the urine and its detection in the blood. Endocrinology 46, 215–227 (1950).Google Scholar
  5. Andersen, B., and H.H. Ussing: Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta physiol. scand. 39, 228–239 (1957).PubMedGoogle Scholar
  6. Aonuma, S., T. Mimura, M. Okui, J. Mori, and K. Sasahara: Studies on posterior pituitary hormones. VI. The effects of thyroidhormone related compounds upon the uterine inhibitory responses to posterior pituitary hormones. Yakugaku Zasshi 85, 703–709 (1965) [in Japanese].PubMedGoogle Scholar
  7. Ariëns, E.J.: Molecular Pharmacology, Vol. 1. New York: Academic Press 1964.Google Scholar
  8. Audrain, L., and H. Clauser: Relation entre l’activité physiologique de l’ocytocine et l’état de son pont disulfure. Biochim. biophys. Acta (Amst.) 30, 191–192 (1958).Google Scholar
  9. Bartelstone, H.J., and P.A. Nasmyth: Vasopressin potentiation of catecholamine actions in dog, rat, cat, and rat aortic strip. Amer. J. Physiol. 208, 754–762 (1965).PubMedGoogle Scholar
  10. Bentley, P.J.: The effects of neurohypophysial extracts on water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J. Endocr. 17, 201–209 (1958).PubMedGoogle Scholar
  11. —: The effects of ionic changes on water transfer across the isolated urinary bladder of the toad Bufo marinus. J. Endocr. 18, 327–333 (1959).Google Scholar
  12. —: The effects of vasopressin on the short-circuit current across the wall of the isolated bladder of the toad, Bufo marinus. J. Endocr. 21, 161–170 (1960).Google Scholar
  13. —: The effects of N-ethylmaleimide and glutathione on the isolated rat uterus and frog bladder with special reference to the action of oxytocin. J. Endocr. 30, 103–113 (1964).PubMedGoogle Scholar
  14. Berankova, Z., I. Rychlík, K. Jost, J. Rudinger, and F. Šorm: Inhibition of the uterus-contracting effect of oxytocin by O-methyloxytocin. Collection Czech, chem. Commun. 26, 2673–2675 (1961).Google Scholar
  15. —, and F. Sorm: Enzymic inactivation of oxytocin. III. Desthiooxytocin and S,S’-diben-zyldihydrooxytocin as oxytocinase inhibitors and substrates. Collection Czech, chem. Commun. 26, 2557–2761 (1961).Google Scholar
  16. Berànkovà-Ksandrovà, Z., G.W. Bisset, K. Jošt, I. Krejčé, V. Pliška, J. Rudinger, I. Rychlik, and F. Šorm: Synthetic analogues of oxytocin acting as hormonogens. Brit. J. Pharmacol. 26, 615–632 (1966).PubMedGoogle Scholar
  17. Berde, B., and A. Cerletti: Über die Wirkung pharmakologischer Oxytocindosen auf die Milchdrüse. Acta endocr. (Kbh) 34, 543–557 (1960).Google Scholar
  18. —: Über die antidiuretische Wirkung von synthetischem Lysin-Vasopressin. Helv. phy-siol. pharmacol. Acta 19, 135–150 (1961).Google Scholar
  19. —, and H. Konzett: The biological activity of a series of peptides related to oxytocin. In: Oxytocin, pp. 247–264. Ed. by R. Caldeyro-Barcia and H. Heller. Proc. Int. Symp., Montevideo 1959. Oxford: Pergamon Press 1961.Google Scholar
  20. —, and K. Saameli: Evaluation of substances acting on the uterus. In: Methods in Drug Evaluation, pp. 481–514. Ed. by P. Mantegazza and F. Piccinini. Proc. Int. Symp., Milano 1965. Amsterdam: North-Holland 1966.Google Scholar
  21. Beyerman, H.C., and J.S. Bontekoe: Synthesis of a tyrosine “homologue” of lysine-vaso-tocin. Rec. Trav. chim. Pays-Bas 79, 1044–1049 (1960a).Google Scholar
  22. —: Synthesis of an analogue of lysine-vasopressin, with the phenylalanine “replaced” by two consecutive tyrosyl radicals. Rec. Trav. chim. Pays-Bas 79, 1165–1173 (1960b).Google Scholar
  23. —, and A.C. Koch: Synthesis of a tyrosine “homologue” of lysine-vasopressin. Rec. Trav. chim. Pays-Bas 79, 1034–1038 (1960c).Google Scholar
  24. A.C. Koch —: Synthesis of a tyrosine “homologue” of oxypressin. Rec. Trav. chim. Pays-Bas 79, 1039–1043 (1960d).Google Scholar
  25. Bianchini, P.: Attività di alcuni polipeptidi sul’utero in situ di ratta. Farmaco Ed. sci. 18, 773–779 (1963).Google Scholar
  26. Bisset, G. W.: The assay of oxytocin and vasopressin in blood and the mechanism of inacti-vation of these hormones by sodium thioglycollate. In: Oxytocin, pp. 380–398. Ed. by R. Caldeyro-Barcia and H. Heller. Proc. Int. Symp., Montevideo 1959. Oxford: Pergamon Press 1961.Google Scholar
  27. —: Synthetic analogues of oxytocin acting as antagonists. J. Physiol. (Lond.) 165, 69–71P (1962).Google Scholar
  28. —: The effect on milk-ejecting activity of modifying two functional groups in oxytocin. In: Oxytocin, Vasopressin and their Structural Analogues, pp. 21–29. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  29. —, J. Haldar and J.E. Lewin: Actions of oxytocin and other biologically active peptides on the rat uterus. In: Endogenous Substances affecting the Myometrium, pp. 185–197. Ed. by V.R. Pickles and R.J. Fitzpatrick. Mem. Soc. Endocrinol. No. 14. London: Cambridge University Press 1966.Google Scholar
  30. —, A. M. Poisner and D. G. Smyth: Carbamylation of oxytocin and arginine-vasopressin. Nature (Lond.) 199, 69–70 (1963).Google Scholar
  31. D. G. Smyth —: 1-N-Carbamyl-oxytocin — a new analogue with inhibitory properties toward oxytocin and vasopressin. J. Physiol. (Lond.) 170, 12–13P (1964).Google Scholar
  32. Bittar, E. E.: On the natriferic action of 8-lysine vasopressin. Biochem. biophys. Res. Commun. 23, 96–101 (1966).PubMedGoogle Scholar
  33. Bodanszky, M., and V. Du Vigneaud: Synthesis of a biologically active analog of oxytocin, with phenylalanine replacing tyrosine. J. Amer. ehem. Soc. 81, 1258–1259 (1959a).Google Scholar
  34. —: Synthesis of a biologically active analog of oxytocin, with phenylalanine replacing tyrosine. J. Amer. ehem. Soc. 81, 6072–6075 (1959b).Google Scholar
  35. Boissonnas, R.A., and S. Guttmann: Synthese d’analogues de Pocytocine et de la lysine-vasopressine contenant de la phenylalanine ou de la tyrosine en positions 2 et 3. Helv. chim. Acta 43, 190–200 (1960).Google Scholar
  36. — B. Berde and H. Konzett: Relationships between chemical structure and the biological properties of posterior pituitary hormones and their synthetic analogues. Experientia (Basel) 17, 377–390 (1961).Google Scholar
  37. Botting, J.H.: An isolated preparation with a selective sensitivity to vasopressin. Brit. J. Pharmacol. 24, 156–162 (1965).PubMedGoogle Scholar
  38. —: and D. G. Manley: The action of commercial preparations of oxytocin and vasopressin on the smooth muscle of the gut. J. Pharm. Pharmacol. 19, 66 (1967).PubMedGoogle Scholar
  39. Branda, L.A., and V. Du Vigneaud: Synthesis and pharmacological properties of 9-decarb-oxamido-oxytocin. J. med. Chem. 9, 169–172 (1966).PubMedGoogle Scholar
  40. Braude, R., and K.G. Mitchell: Observations on the relationship between oxytocin and adrenaline in milk ejection in the sow. J. Endocr. 8, 238–241 (1952).PubMedGoogle Scholar
  41. Breslow, E., and L. Abrash: The binding of oxytocin and oxytocin analogues by purified bovine neurophysins. Proc. nat. Acad. Sci. (Wash.) 56, 640–646 (1966).Google Scholar
  42. Brooks, F.P., and M. Pickford: The effect of posterior pituitary hormones on the excretion of electrolytes in dogs. J. Physiol. (Lond.) 142, 468–493 (1958).Google Scholar
  43. Brunner, H., G. Kuschinsky and G. Peters: Der Einfluß von Oxytocin auf die rénale Wasser-und Salzausscheidung der Ratte. Arch. exp. Pathol. Pharmakol. 228,457–473 (1956).Google Scholar
  44. Buchborn, E.: Nephrogener Diabetes insipidus und symptomatische ADH-Refraktärität. In: Normale und pathologische Funktionen des Nierentubulus, pp. 247–264. Ed. by K.J. Ullrich und K. Hierholzer. Bern und Stuttgart: Hans Huber 1965.Google Scholar
  45. Campbell, B.J., B. Thysen and F.S. Chu: Peptidase catalysed hydrolysis of antidiuretic hormone in toad bladder. Life Sci. 4, 2129–2140 (1965).Google Scholar
  46. Cash, W.D., and B.L. Smith: Synthesis and biological properties of l-acetyl-8-lysine-vaso-pressin. J. biol. Chem. 238, 994–997 (1963).PubMedGoogle Scholar
  47. Chan, W. Y.: Mechanism of epinephrine inhibition of the milk ejecting response to oxytocin. J. Pharmacol, exp. Ther. 147, 48–53 (1965).Google Scholar
  48. Civan, M.M., O. Kedem and A. Leaf: Effect of vasopressin on toad bladder under conditions of zero net sodium transport. Amer. J. Physiol. 211, 569–575 (1966).PubMedGoogle Scholar
  49. Clegg, P. C.: The effect of adrenergic blocking agents on the guinea-pig uterus in vitro, and a study of the histology of the intrinsic myometrial nerves. J. Physiol. (Lond.) 169, 73–90 (1963).Google Scholar
  50. Cort, J.H.: Discussion. In: Oxytocin, Vasopressin and their Structural Analogues, pp. 72–74. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  51. —, J. Rudinger, B. Lichardus and I. Hagemann: Effects of oxytocin antagonists on the saluresis accompanying carotid occlusion. Amer. J. Physiol. 210, 162–168 (1966).PubMedGoogle Scholar
  52. Crabbé, J., and P. De Weer: Action of aldosterone and vasopressin on the active transport of sodium by the isolated toad bladder. J. Physiol. (Lond.) 180, 560–568 (1965).Google Scholar
  53. Cross, B.A.: Sympathetico-adrenal inhibition of the neurohypophysial milk-ejection mechanism. J. Endocr. 9, 7–18 (1953).PubMedGoogle Scholar
  54. —: The hypothalamus and the mechanism of sympathetico-adrenal inhibition of milk ejection. J. Endocr. 12, 15–28 (1955a).PubMedGoogle Scholar
  55. —: Neurohormonal mechanisms in emotional inhibition of milk ejection. J. Endocr. 12, 29–37 (1955b).PubMedGoogle Scholar
  56. —: The motility and reactivity of the oestrogenized rabbit uterus in vivo; with comparative observations on milk ejection. J. Endocr. 16, 237–260 (1958).PubMedGoogle Scholar
  57. Csapo, A.: The effect of oxytocic substances on the excitability of the uterus. In: Oxytocin, Proc. Int. Symp., Montevideo 1959, pp. 100–121. Ed. by Caldeyro-Barcia and H. Heller. Oxford: Pergamon Press 1961.Google Scholar
  58. Curran, P. F., F.C. Herrera and W. J. Flanigan: The effect of Ca and antidiuretic hormon on Na transport across frog skin. II. Sites and mechanisms of action. J. gen. Physiol. 46, 1011–1027 (1963).PubMedGoogle Scholar
  59. Daniel, E.E., H. Sehdev and K. Robinson: Mechanisms for activation of smooth muscle. Physiol. Rev. 42, Suppl. 5, 228–260 (1962).Google Scholar
  60. Davoren, P.R., and E.W. Sutherland: The effect of L-epinephrine and other agents on the synthesis and release of adenosine 3′,5′-phosphate by whole pigeon erythrocytes. J. biol. Chem. 238, 3009–3015 (1963).PubMedGoogle Scholar
  61. Dekanski, J.: The quantitative assay of vasopressin. Brit. J. Pharmacol. 7, 567–572 (1952).PubMedGoogle Scholar
  62. Dicker, S.E.: The inactivation of vasopressin and of oxytocin, in vitro. In: Polypeptides which affect Smooth Muscles and Blood Vessels, pp. 79–82. Ed. by M. Schachter. Oxford: Pergamon Press 1960.Google Scholar
  63. —: The mechanism of action of oxytocin and vasopressin and their analogues on the kidney of mammals. In: Oxytocin, Vasopressin and their Structural Analogues, pp. 57–71. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  64. —, and A. L. Greenbaum: The destruction of the antidiuretic activity of vasopressin by —SH active compounds. J. Physiol. (Lond.) 141, 107–116 (1958).Google Scholar
  65. —, and H. Heller: The renal action of posterior pituitary extract and its fractions as analysed by clearance experiments on rats. J. Physiol. (Lond.) 104, 353–360 (1946).Google Scholar
  66. Drabarek, S.: Analogs of oxytocin containing glycine in place of tyrosine, isoleucine, or glutamine. J. Amer. chem. Soc. 86, 4477–4481 (1964).Google Scholar
  67. —, and V. Du Vigneaud: 2-D-Tyrosine-oxytocin and 2-D-tyrosine-deamino-oxytocin, diaste-reomers of oxytocin and deamino-oxytocin. J. Amer. chem. Soc. 87, 3974–3978 (1965).Google Scholar
  68. Van Dyke, H.B., B.F. Chow, R.O. Greep, and A. Rothen: The isolation of a protein from the pars neuralis of the ox pituitary with constant oxytocic, pressor and diuresis-inhibiting activities. J. Pharmacol, exp. Ther. 74, 190–209 (1942).Google Scholar
  69. —, and A. B. Hastings: The response of smooth muscle in different ionic environments. Amer. J. Physiol. 83, 563–570 (1928).Google Scholar
  70. Edelman, I.S., M.J. Petersen and P.F. Gulyassy: Kinetic analysis of the antidiuretic action of vasopressin and adenosine-3′,5′-monophosphate. J. clin. Invest. 43, 2185–2194 (1964).PubMedGoogle Scholar
  71. Edman, K.A.P., and H.O. Schild: The need for calcium in the contractile responses induced by acetylcholine and potassium in the rat uterus. J. Physiol. (Lond.) 161, 424–441 (1962).Google Scholar
  72. Eggleton, M.G.: The diuretic action of alcohol in man. J. Physiol. (Lond.) 101, 172–191 (1942).Google Scholar
  73. Eliasson, R.: Effect of posterior pituitary hormones on the myometrial response to prosta-glandin. Acta physiol. scand. 66, 249–250 (1966).PubMedGoogle Scholar
  74. Ely, F., and W.E. Petersen: Factors involved in the ejection of milk. J. Dairy Sci. 24, 211–223 (1941).Google Scholar
  75. Ferguson, D. R.: Effect of Frusemide on sodium and water transport by the isolated toad bladder. Brit. J. Pharmacol. 27, 528–531 (1966).PubMedGoogle Scholar
  76. Finn, A.L., J.S. Handler and J. Orloff: Relation between toad bladder potassium content and permeability response to vasopressin. Amer. J. Physiol. 210, 1279–1284 (1966).PubMedGoogle Scholar
  77. Fosker, A.P., and H.D. Law: Oxytocin and 4-glycine oxytocin. J. chem. Soc. 4922-4929 (1965).Google Scholar
  78. Fraser, A. M.: The diuretic action of the oxytocic hormone of the pituitary gland and its effect on the assay of pituitary extracts. J. Pharmacol, exp. Ther. 60, 89–95 (1937).Google Scholar
  79. —: Pituitary oxytocic hormone and urine secretion. J. Physiol. (Lond.) 101, 236–251 (1942).Google Scholar
  80. Frazier, H.S., E.F. Dempsey and A. Leaf: Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J. gen. Physiol. 45, 529–543 (1962).PubMedGoogle Scholar
  81. Frey, J., L. Kerp u. W. Reichardt: Zum Vasopressin-Oxytocin-Antagonismus beim Menschen. Klin. Wschr. 37, 325–329 (1959).PubMedGoogle Scholar
  82. Fuchs, A.-R.: Effect of adrenaline and vasopressin on the uterine response to oxytocin in conscious rabbits. Acta endocr. (Kbh.) 45, 272–280 (1964).Google Scholar
  83. Furtado, M. R.: The antagonistic action of bradykinin upon the effect of pitressin on the permeability to water of the toad bladder. Abstr. 3rd Int. Pharmacol. Congr., São Paulo, No. 451, 1966.Google Scholar
  84. Furtado, M.R.F., and M.M. Machado: Effects of bradykinin on the movement of water and sodium in some isolated living membranes. Acta physiol. lat.-amer. 16, 63–65 (1966).Google Scholar
  85. Gaddum, J.H., W.S. Peart and M. Vogt: The estimation of adrenaline and allied substances in blood. J. Physiol. (Lond.) 108, 467–481 (1949).Google Scholar
  86. Gilliland, P.F., and T.E. Prout: Immunologic studies of octapeptides. II. Production and detection of antibodies to oxytocin. Metabolism 14, 918–923 (1965).PubMedGoogle Scholar
  87. Ginetsinskn, A.G., and V.F. Vasil’eva: Effect of hyaluronidase and its inhibitors on renal function. Fiziol. Zh. (Mosk.) 49, 519–524 (1963) [in Russian].Google Scholar
  88. Ginetzinsky, A. G.: Role of hyaluronidase in the re-absorption of water in renal tubules: the mechanism of action of the antidiuretic hormone. Nature (Lond.) 182, 1218–1219 (1958).Google Scholar
  89. Goldberg, D.O., M.A. Schoessler, and I.L. Schwartz: Intrinsic and extrinsic inhibition of the reactivity of the toad bladder to vasopressin. Physiologist 6, 188 (1963).Google Scholar
  90. Goldblatt, E.L., M.L. Kauker, R.S. Hare, and K. Hare: Effect of ethyleneimine on renal action of vasopressin. Proc. Soc. exp. Biol. (N. Y.) 123, 845–847 (1966).Google Scholar
  91. Goodfriend, T., G. Fasman, D. Kemp, and L. Levine: Immunochemical studies on angioten-sin. Immunochemistry 3, 223–231 (1966).PubMedGoogle Scholar
  92. Gordon, S., and V. Du Vigneaud: Preparation of S,S’-dibenzyloxytocin and its reconversion to oxytocin. Proc. Soc. exp. Biol. (N.Y.) 84, 723–725 (1953).Google Scholar
  93. Gulland, J.M., and S.S. Randall: The oxytocic hormone of the posterior lobe of the pituitary gland. V. Recognition as an oxidation-reduction system. Biochem. J. 29, 378–390 (1935).PubMedGoogle Scholar
  94. Gulyassy, P.F.: Intracellular H+ concentration of the isolated urinary bladder of the toad. Nature (Lond.) 206, 511–512 (1965).Google Scholar
  95. —, and I.S. Edelman: Hydrogen-ion dependence of the antidiuretic action of vasopressin, oxytocin and deaminooxytocin. Biochim. biophys. Acta (Amst.) 102, 185–197 (1965).Google Scholar
  96. Guttmann, S., and R. A. Boissonnas: Synthèse de dix analogues de l’oxytocine et de la lysine-vasopressine, contenant de la sérine, de l’histidine ou du tryptophane en position 2 our 3. Helv. chim. Acta 43, 200–216 (1960).Google Scholar
  97. —, P.-A. Jaquenoud, R. A. Boissonnas, H. Konzett, and B. Berde: Ein Nonapeptid mit Oxytocin hemmenden Eigenschaften. Naturwissenschaften 44, 632–633 (1957).Google Scholar
  98. Haigh, A.L., A. H. Kitchin, and M. Pickford: The effect of oxytocin on hand blood flow in man following the administration of an oestrogen and isoprenaline. J. Physiol. (Lond.) 169, 161–166 (1963).Google Scholar
  99. —, S. Lloyd, and M. Pickford: A relationship between adrenaline and the mode of action of oxytocin and oestrogen on vascular smooth muscle. J. Physiol. (Lond.) 178, 563–576 (1965).Google Scholar
  100. Handler, J.S., and J. Obloff: Cysteine effect on toad bladder response to vasopressin, cyclic AMP, and theophylline. Amer. J. Physiol. 206, 505–509 (1964).PubMedGoogle Scholar
  101. —, M. Petersen, and J. Orloff: Effect of metabolic inhibitors on the response of the toad bladder to vasopressin. Amer. J. Physiol. 211, 1175–1180 (1966).PubMedGoogle Scholar
  102. Hays, R.M., and A. Leaf: The problem of clinical vasopressin resistance: in vitro studies. Ann. intern. Med. 54, 700–709 (1961).PubMedGoogle Scholar
  103. —: Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J. gen. Physiol. 45, 905–919 (1962a).PubMedGoogle Scholar
  104. —: The state of water in the isolated toad bladder in the presence and absence of vasopressin. J. gen. Physiol. 45, 933–948 (1962b).PubMedGoogle Scholar
  105. Heller, J., V. Škrhova, and J. Vostal: The effect of various diuretic agents on renal electrolyte and urea concentration gradients in rats. Experientia (Basel) 21, 454–455 (1965).Google Scholar
  106. Hempel, R., and F. Neumann: Hemmung der Uteruswirkung von Oxytocin durch wasserlösliche Steroide. Acta endocr. (Kbh.) 48, 656–663 (1965).Google Scholar
  107. Herrera, F.C., and P.F. Curran: The effect of Ca and antidiuretic hormone on Na transport across frog skin. I. Examination of interrelationships between Ca and hormone. J. gen. Physiol. 46, 999–1010 (1963).PubMedGoogle Scholar
  108. Hodr, J., Z.K. Štembera, V. Sabata, S. Kazda, V. Brotánek, and J. Rudinger: Effect of O-methyl-tyrosyl2-oxytocin on carbohydrate and lipid metabolism in women during labour. In: Oxytocin and its Analogues, pp. 109–112. Ed. by R. Kllmek and W. Kröl. Krakow: Polish Endocrinological Society 1964.Google Scholar
  109. Holeček, V., and K. Horký: Natriuretic effect of oxytocin in premenstrual tension. Cas. Lék. čes. 105, 924–926 (1966) [in Czech].Google Scholar
  110. Holländer, L.P., J. Franz, and B. Berde: An attempt to produce antibodies to oxytocin and vasopressin. Experientia (Basel) 22, 325–328 (1966).Google Scholar
  111. Holton, P.: A modification of the method of Dale and Laidlaw for standardization of posterior pituitary extract. Brit. J. Pharmacol. 3, 328–334 (1948).PubMedGoogle Scholar
  112. Huguenin, R.L.: Synthèse de la désamino1-Orn8-vasopressine, de la désamino1-Phe2-Orn8-vasopressine, de la désamino1-Ile3-Orn8-vasopressine (= désamino1-Orn8-oxytocine) et de ladésamino1-Phe2-Ile3-Orn8-vasopressine (= désamino1-Phe2-Orn8-oxytocine). Helv. chim. Acta 49, 711–725(1966).Google Scholar
  113. —, and R.A. Boissonnas: Synthese de la (N-méthyl-Tyr)2-oxytocine. Helv. chim. Acta 44, 213–231 (1961).Google Scholar
  114. —, and S. Guttmann: Synthese de l’Ala1-Ala6-Arg8-vasopressine et de l’Ala1-Ala6-Lys8-vaso-pressine, ainsi que de la (désamino-Ala)1-Ala6-Arg8-vasopressine et de la (désamino-Ala1)—Ala6-Lys8-vasopressine. Helv. chim. Acta 48, 1885–1898 (1965).PubMedGoogle Scholar
  115. Ishida, Y.: Studies of drug receptors on the plain muscle. III. Effect of hydrogen ion concentration upon ACh-, Ba-, and oxytocin-receptors of isolated rat uterus. Yakugaku Zasshi 81, 1717–1721 (1961a) [in Japanese]. (In English: Ann. Rept. Fac. Pharm. Sci. Tokushi-ma Univ. 11, 45-51 (1962)).Google Scholar
  116. —: Studies of drug receptors on the plain muscle. IV. On the antagonistic action of phenolic compounds to oxytocin on isolated rat uterus. Yakugaku Zasshi 81, 1722–1726 (1961b) [in Japanese]. (In English: Ann. Rept. Fac. Pharm. Sci. Tokushima Univ. 11, 52-58 (1962)).Google Scholar
  117. —, and K. Hara: Studies on inhibitory actions of synthetic peptides on the effects of oxytocin and vasopressin. Chem. pharm. Bull. 12, 872–877 (1964).PubMedGoogle Scholar
  118. —, H. Moritoki, and K. Hara: Studies of drug receptors on the plain muscle. II. Influence of heavy metal ions on the oxytocin-and barium-receptor of isolated rat uterus. Yakugaku Zasshi 81, 1713–1717 (1961) [in Japanese]. (In English: Ann. Rept. Fac. Pharm. Sci. Tokushima Univ. 11, 38-44 (1962)).Google Scholar
  119. —, and M. Onishi: TWO kinds of oxytocin antagonists on the isolated rat uterus. Chem. pharm. Bull. 14, 748–752 (1966).PubMedGoogle Scholar
  120. Jaquenoud, P.-A., and R.A. Boissonnas: Synthèse de la Phe2-oxytocine. Helv. chim. Acta 42, 788–793 (1959).Google Scholar
  121. —: Synthèse de la Dé-Pro7-oxytocine, de la Dé-Leu8-oxytocine et de la Dé-Gly9-oxytocine. Helv. chim. Acta 45, 1462–1472 (1962).Google Scholar
  122. Jard, S.: Étude des effecs de la vasotocine sur l’excrétion de l’eau et des électrolytes par le rein de la grenouille Rana esculenta L: Analyse à l’aide d’analogues artificiels de l’hormone naturelle des caractères structuraux requis pour son activité biologique. J. Physiol. (Paris) 58, Suppl. 15 (1966).Google Scholar
  123. —, and F. Morel: Inhibition compétitive de l’action antidiurétique de la lysine-vasotocine par l’ocytocine chez Rana esculenta. Compt. rend. 252, 339–341 (1961).Google Scholar
  124. —: Actions of vasotocin and some of its analogues on salt and water excretion by the frog. Amer. J. Physiol. 204, 222–226 (1963).Google Scholar
  125. Jarvis, D., M. Bodanszky, and V. Du Vigneaud: The synthesis of l-(hemi-homocystine)-oxytocin and a study of some of its pharmacological properties. J. Amer. chem. Soc. 83, 4780–4784 (1961).Google Scholar
  126. —, B.M. Ferrieb, and V. Du Vigneaud: The effect of increasing the size of the ring present in deamino-oxytocin by one methylene group on its biological properties. J. biol. Chem. 240, 3553–3557 (1965).PubMedGoogle Scholar
  127. Jensen, K.B., and R.B. Sund: The inhibitory action of histamine on the isolated rat uterus. Acta pharmacol. (Kbh.) 17, 161–172 (1960a).Google Scholar
  128. —: The inhibitory action of adrenaline on the isolated rat uterus. Acta pharmacol. (Kbh.) 17, 173–181 (1960b).Google Scholar
  129. Jørgensen, C. B.: The amphibian water economy, with special regard to the effect of hypo-physeal extracts. Acta physiol. scand. 22, Suppl. 78 (1950).Google Scholar
  130. —, and L.O. Larsen: Inhibition by oxytocin of vasotocin-induced activities in toads. Proc. Soc. exp. Biol. (N.Y.) 110, 293–294 (1962).Google Scholar
  131. Jošt, K., and J. Rudinger: Amino acids and peptides. Lxix. Synthesis of two biologically active analogues of deamino-oxytocin not containing a disulphide bond. Collection Czech. chem. Commun. 32, 1229–1241 (1967).Google Scholar
  132. —, and F. Šorm: Amino-acids and peptides. XXXV. Analogues of oxytocin modified in positions 1 and 2 of the peptide chain: protected intermediates. Collection Czech, chem. Commun. 26, 2496–2510 (1961).Google Scholar
  133. F. Šorm —: Amino acids and peptides. XXXVIII. Structural analogues of oxytocin modified in position 2 of the peptide chain: preparation and some chemical and biological properties. Collection Czech, chem. Commun. 28, 1706–1714 (1963a).Google Scholar
  134. F. Šorm —: Amino acids and peptides. XXXIX. Analogues of oxytocin exerting protracted biological effects. Collection Czech, chem. Commun. 28, 2021–2030 (1963b).Google Scholar
  135. Karlin, A.: The in vitro release by the toad bladder of an inhibitor of oxytocin. Biochem. biophys. Res. Commun. 11, 44–49 (1963).PubMedGoogle Scholar
  136. —, and N. I. A. Overweg: An inhibitor of oxytocin from the urinary bladder of the toad, Bufo marinus. Nature (Lond.) 207, 1401–1402 (1965).Google Scholar
  137. Kasaiírek, E., K. Jošt, J. Rudinger, and F. Šorm: Amino acids and peptides. LIV. Synthesis of further extended-chain analogues of oxytocin. Collection Czech. Chem. Commun. 30, 2600–2608 (1965).Google Scholar
  138. Kashiwagi, T.: Mechanism of the antidiuretic effect of vasopressin. Nature (Lond.) 184, 991 (1959).Google Scholar
  139. Katz, R. L.: Antiarrhythmic and cardiovascular effects of synthetic oxytocin. Anesthesiology 25, 653–661 (1964).PubMedGoogle Scholar
  140. Khairallah, P. A., R.R. Smeby, I.H. Page, and F.M. Bumpus: Effect of urea and amino acids on angiotensin interaction with smooth muscle. Biochim. biophys. Acta (Amst.) 104, 85–91 (1965).Google Scholar
  141. Kitchin, A.H., S. Lloyd, and M. Pickford: Some actions of oxytocin on the cardiovascular system in man. Clin. Sci. 18, 399–408 (1958).Google Scholar
  142. Konzett, H.: Zur Uteruswirkung eines oxytocinhomologen Polypeptids. Helv. physiol. pharmacol. Acta 15, 419–425 (1957).PubMedGoogle Scholar
  143. Kramár, J., E.H. Grinnell, and W.M. Duff: Observations on the diuretic activity of anti-diuretic hormone. Amer. J. med. Sci. 252, 53–61 (1966a).PubMedGoogle Scholar
  144. W.M. Duff —: Studies on the renal activity of oxytocin. Amer. J. med. Sci. 252, 331–339 (1966b).PubMedGoogle Scholar
  145. Krejčí, I., B. Kupkovã, and I. Vãvra: The effect of some 2-O-alkyltyrosine analogues of oxytocin and lysine vasopressin on the blood pressure of the rat, rabbit, and cat. Brit. J. Pharmacol. 30, 497–505 (1967a).PubMedGoogle Scholar
  146. —, I. Poláček, B. Kupková, and J. Rudinger: Dose-response analysis of the action of some oxytocin analogues on the isolated uterus: the effect of ions. In: Oxytocin, Vasopressin and their Structural Analogues, pp. 117–122. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  147. — and J. Rudinger: The effect of an oxytocin analogue on the uterus and its dependence on the functional state of the myometrium. In: Endogenous Substances affecting the Myometrium, pp. 171–182. Ed. by V.R. Pickles and R.J. Fitzpatrick. Mem. Soc. Endocrinol. No. 14. London: Cambridge University Press 1966.Google Scholar
  148. —: The action of 2-O-methyltyrosine-oxytocin on the rat and rabbit uterus: effect of some experimental conditions on the change from agonism to antagonism. Brit. J. Pharmacol. 30, 506–517 (1967b).PubMedGoogle Scholar
  149. Kullander, S.: Studies on the hormonal control of the milkejection activity in lactating rabbits. Acta endocr. (Kbh.) 44, 313–324 (1963).Google Scholar
  150. Law, H.B., and V. Du Vigneaud: Synthesis of 2-p-methoxyphenylalanine oxytocin (O-me-thyl-oxytocin) and some observations on its pharmacological behaviour. J. Amer. chem. Soc. 82, 4579–4581 (1960).Google Scholar
  151. Leaf, A.: Some actions of neurohypophyseal hormones on a living membrane. J. gen. Physiol. 43, 175–189 (1960).PubMedGoogle Scholar
  152. —, and R. M. Hays: Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J. gen. Physiol. 45, 921–932 (1962).PubMedGoogle Scholar
  153. —, A. Keller, and E.F. Dempsey: Stimulation of sodium transport in the toad bladder by acidification of mucosal medium. Amer. J. Physiol. 207, 547–552 (1964).PubMedGoogle Scholar
  154. Levy, B.: The intestinal inhibitory response to oxytocin, vasopressin and bradykinin. J. Pharmacol, exp. Ther. 140, 356–366 (1963).Google Scholar
  155. Lichtenstein, N.S., and A. Leaf: Effect of amphotericin B on the permeability of the toad bladder. J. clin. Invest. 44, 1328–1342 (1965).PubMedGoogle Scholar
  156. Linzell, J.L.: Some observations on the contractile tissue of the mammary gland. J. Physiol. (Lond.) 130, 257–267 (1955).Google Scholar
  157. Lish, P.M., K.W. Dungan, and E.L. Peters: A survey of the effects of isoxsuprine on non-vascular smooth muscle. J. Pharmacol, exp. Ther. 129, 191–199 (1960a).Google Scholar
  158. —, I.W. Hillyard, and K.W. Dungan: The uterine relaxant properties of isoxsuprine. J. Pharmacol, exp. Ther. 129, 438–444 (1960b).Google Scholar
  159. Lloyd, S.: The vascular responses of the rat during the reproductive cycle. J. Physiol. (Lond.) 148, 625–632 (1959a).Google Scholar
  160. —: Changes in the vascular responses of the rat during pregnancy. J. Physiol. (Lond.) 149, 586–592 (1959b).Google Scholar
  161. —, and M. Pickford: The action of posterior pituitary hormones and oestrogens on the vascular system of the rat. J. Physiol. (Lond.) 155, 161–174 (1961).Google Scholar
  162. —: The effect of oestrogens and sympathetic denervation on the response to oxytocin of the blood vessels in the hind limb of the dog. J. Physiol. (Lond.) 163, 362–371 (1962).Google Scholar
  163. Lyng, J. Cholera filtrate and vasopressin. Antagonistic effect on the isolated frog skin. Acta path, microbiol. scand. 62, 349–355 (1964).Google Scholar
  164. Manning, M., and V. Du Vigneaud: 4-ß-Alanine-oxytocin: an oxytocin analog containing a twenty-one-membered disulfide ring. Biochemistry 4, 1884–1888 (1965).Google Scholar
  165. Marks, R.F.: The dependence of uterine muscular contraction on pH, with reference to prolonged labour. J. Obstet. Gynaec. Brit. Cwlth. 68, 584–591 (1961).Google Scholar
  166. Marshall, J.M., and A. Csapo: Hormonal and ionic influences on the membrane activity of uterine smooth muscle cells. Endocrinology 68, 1026–1035 (1961).PubMedGoogle Scholar
  167. —, and M.D. Miller: Effects of metabolic inhibitors on the rat uterus and on its response to oxytocin. Amer. J. Physiol. 206, 437–442 (1964).PubMedGoogle Scholar
  168. Martin, P.J., and H.O. Schild: Pharmacological antagonism of oxytocin and vasopressin by thiol compounds. J. Physiol. (Lond.) 163, 51–52P (1962a).Google Scholar
  169. —: Effect of thiols on oxytocin and vasopressin receptors. Nature (Lond.) 196, 382–383 (1962b).Google Scholar
  170. —: Pharmacological antagonism between SH compounds and S-S polypeptides. In: Oxytocin, Vasopressin, and their Structural Analogues, pp. 109–115. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford:Pergamon Press 1Google Scholar
  171. —: The antagonism of disulphide polypeptides by thiols. Brit. J. Pharmacol. 25, 418–431 (1965).PubMedGoogle Scholar
  172. Morel, F., and F. Bastide: Relationship between the structure of several analogues of oxytocin and their “natriferic” activity in vitro. In: Oxytocin, Vasopressin and their Structural Analogues, pp. 47–55. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  173. —, and S. Jard: Inhibition of frog (Rana esculenta) antidiuretic action of vasotocin by some analogues. Amer. J. Physiol. 204, 227–232 (1963).Google Scholar
  174. Mueller, J.M., J.G. Pierce, H. Davoll, and V. Du Vigneaud: The oxidation of oxytocin with performic acid. J. biol. Chem. 191, 309–313 (1951).PubMedGoogle Scholar
  175. Munsick, R. A.: Effect of magnesium ion on the response of the rat uterus to neurohypophy-sial hormones and analogues. Endocrinology 66, 451–457 (1960).Google Scholar
  176. Natochin, Yu. V., and L.G. Magazanik: Search for pharmacological agents capable of inhibiting the effect of the antidiuretic hormone. Byul. eksp. Biol. Med. No. 1, 58–62 (1964) [in Russian].Google Scholar
  177. Nemček, O., A. Kleinzeller, and J. Rudinger: Effect of some synthetic analogues of oxytocin on the active transport of sodium through the frog skin. Biochem. Pharmacol. 12, Suppl., 227 (1963).Google Scholar
  178. Niedrich, H., B. Wiegershausen, and E. Göres: Synthesis and activity of oxytocin analogues with carboxyl-tenninal hydrazinoacetic acid. In: Oxytocin, Vasopressin and their Structural Analogues, pp. 173–176. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  179. Nishiyama, Y., and S. Chuma: Pharmacological studies on the uterine movement of albino rat in vitro and in vivo. Osaka Cy med. J. 2, 1–6 (1955).Google Scholar
  180. Nusynowitz, M.L., L.C. Wegienka, B.F. Bower, P.H. Forsham, and J.H. Hale: Effect on vasopressin action of analgesic drugs in vitro. Am. J. med. Sci. 252, 424–428 (1966).PubMedGoogle Scholar
  181. èye, I., and E.W. Sutherland: The effect of epinephrine and other agents on adenyl cyclase in the cell membrane of avian erythrocytes. Biochim. biophys. Acta (Amst.) 127, 347–354 (1966).Google Scholar
  182. èye, I., and E.W. Sutherland: The effect of epinephrine and other agents on adenyl cyclase in the cell membrane of avian erythrocytes. Biochim. biophys. Acta (Amst.) 127, 347–354 (1966).Google Scholar
  183. —: The role of adenosine 3′,5′-monophosphate (cyclic AMP) in the action of neurohypophy-seal hormones. In: Oxytocin, Vasopressin and their Structural Analogues, pp. 133–139. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  184. —, and S. Bergstrom: Effect of prostaglandin (PGE1) on the permeability response of toad bladder to vasopressin, theophylline and adenosine 3′,5′-monophosphate. Nature (Lond.) 205, 397–398 (1965).Google Scholar
  185. Overweg, N.I. A.: Inhibition of toad bladder and rat uterus responses to oxytocin and other agents by toad bladder extracts. J. Pharmacol, exp. Ther. 153, 314–320 (1966).Google Scholar
  186. Peeters, G., G. Sierens, and M. Silver: Expulsion of milk in the isolated perfused udder of the cow. Arch. int. Pharmacodyn. 88, 413–424 (1952).PubMedGoogle Scholar
  187. Permutt, M.A., C.W. Parker, and R.D. Utiger: Immunochemical studies with lysine vasopressin. Endocrinology 78, 809–814 (1966).PubMedGoogle Scholar
  188. Petersen, M. J., and I.S. Edelman: Calcium inhibition of the action of vasopressin on the urinary bladder of the toad. J. clin. Invest. 43, 583–594 (1964).PubMedGoogle Scholar
  189. Pickford, M.: Factors affecting milk release in the dog and the quantity of oxytocin liberated during suckling, J. Physiol. (Lond.) 152, 515–526 (1960).Google Scholar
  190. —: Some extra-uterine actions of oxytocin. In: Oxytocin, pp. 68–79. Ed. by R. Caldeyro-Barcia, and H. Heller. Proc. Int. Symp., Montevideo 1959. Oxford: Pergamon Press 1961.Google Scholar
  191. —: Comment. In: Endogenous Substances affecting the Myometrium, p. 183. Ed. by V.R. Pickles and R.J. Fitzpatrick. Mem. Soc. Endocrinol. No. 14. London: Cambridge University Press 1966.Google Scholar
  192. Pliska, V., T. Barth, and I. Rychlek: Effect of human serum oxytocinase on the antidiuretic action of lysine vasopressin and oxytocin in the rat. Experientia (Basel), 24,196–197 (1967).Google Scholar
  193. —, and I. Ryctttík: Determination of antidiuretic activity in the rat for structural analogues of the neurohypophysial hormones. Acta endocr. (Kbh.) 54, 129–140 (1967).Google Scholar
  194. Poisner, A. M.: Interaction of oxytocin and vasopressin with ß-adrenergic receptors in the kidney. Nature (Lond.) 201, 199–200 (1964).Google Scholar
  195. Poláček, I., I. Krejčí, and J. Rudinger: The action of oxytocin and synthetic analogues on the isolated mammary-gland myoepithelium of the lactating rat; effect of some ions. J. Endocr. 38, 13–24 (1967).PubMedGoogle Scholar
  196. Rasmussen, H., I.L. Schwartz, M. A. Schoessler, and G. Höchster: Studies on the mechanism of action of vasopressin. Proc. nat. Acad. Sci. (Wash.). 46, 1278–1287 (1960).Google Scholar
  197. —, R. Young, and J. Marc-Aurele: Structural requirements for the action of neurohypo-physeal hormones upon the isolated amphibian urinary bladder. J. gen. Physiol. 46, 1171–1189 (1963).PubMedGoogle Scholar
  198. Ressler, C.: Inactivations of oxytocin suggesting peptide denaturation. Science 128, 1281–1282 (1958).PubMedGoogle Scholar
  199. —, and J.R. Rachele: Further properties of isoglutamine-oxytocin; inhibition of pressor activity of vasopressin. Proc. Soc. exp. Biol. (N.Y.) 98, 170–174 (1958).Google Scholar
  200. —, and V. Du Vigneaud: The isoglutamine isomer of oxytocin: its synthesis and comparison with oxytocin. J. Amer. chem. Soc. 79, 4511–4515 (1957).Google Scholar
  201. Roth, J., S.M. Glick, L.A. Klein, and M. J. Petersen: Specific antibody to vasopressin in man. J. clin. Endocr. 26, 671–675 (1966).PubMedGoogle Scholar
  202. Rudinger, J.: Discussion. In: Oxytocin, Vasopressin and their Structural Analogues, p. 116. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  203. —: Synthetic analogues of oxytocin with inhibitor activity or protracted action. Proc. 2nd Int. Congr. Endocrinol., London 1964, 1202–1206. Amsterdam: Excerpta med. (Amst.) 1965.Google Scholar
  204. —: Comment. In: Endogenous Substances affecting the Myometrium, pp. 183–184. Ed. by V.R. Pickles and R.J. Fitzpatrick. Mem. Soc. Endocrinol. No. 14. London: Cambridge University Press 1966.Google Scholar
  205. Rudinger, J., and K. Jost: Synthetic analogues of oxytocin and vasopressin: structural relations. In: Oxytocin, Vasopressin and their Structural Analogues, pp. 3–19. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964a.Google Scholar
  206. —: A biologically active analogue of oxytocin not containing a disulphide group. Experien-tia (Basel) 20, 570–571 (1964b).Google Scholar
  207. —, and I. Krejci: Dose-response relations for some synthetic analogues of oxytocin, and the mode of action of oxytocin on the isolated uterus. Experientia (Basel) 18, 585–588 (1962).Google Scholar
  208. Sawyer, W. H.: Increased water permeability of the bull frog (Rana catesbiana) bladder in vitro in response to synthetic oxytocin and arginine vasotocin and to neurohypophysial extracts from nonmammalian vertebrates. Endocrinology 66, 112–120 (1960).PubMedGoogle Scholar
  209. —, and H. Valtin: Inhibition of vasopressin antidiuresis by extracts of pituitaries from rats with hereditary hypothalamic diabetes insipidus and by oxytocin. Endocrinology 76, 999–1001 (1965).PubMedGoogle Scholar
  210. Schäker, W.: Disertation, Karl-Marx-Universität, Leipzig 1967.Google Scholar
  211. Schild, H.O.: Discussion. In: Oxytocin, Vasopressin and their Structural Analogues, p. 123. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  212. Schneider, C.H., and V. Du Vigneaud: Synthesis of D-leucine-oxytocin, a biologically active diastereoisomer of oxytocin, and demonstration of its separability from oxytocin upon countercurrent distribution. J. Amer. ehem. Soc. 84, 3005–3008 (1962).Google Scholar
  213. Schulz, H., and V. Du Vigneaud: Synthesis of l-L-penicillamine-oxytocin, 1-D-penicillamine—oxytocin, and l-deaminopenicillamine-oxytocin, potent inhibitors of the oxytocic response to oxytocin. J. med. Chem. 9, 647–650 (1966a).PubMedGoogle Scholar
  214. —: The effect of replacing one of the hydrogens of the ß-carbon of the ß-mercaptopropionic acid residue in deamino-oxytocin by a methyl group on its oxytocic and avian vasodepres-sor activity. J. Amer. chem. Soc. 88, 5015–5018 (1966b).Google Scholar
  215. Schwartz, I.L., H. Rasmussen, and J. Rudinger: Activity of neurohypophysial hormone analogues lacking a disulfide bridge. Proc. nat. Acad. Sci. (Wash.) 52, 1044–1045 (1964).Google Scholar
  216. —, M.A. Schoessler, and C.T.O. Fong: Relation of chemical attachment to physiological action of vasopressin. Proc. nat. Acad. Sci. (Wash.) 46, 1288–1298 (1960).Google Scholar
  217. Sealock, R.R., and V. Du Vigneaud: Studies on the reduction of Pitressin and Pitocin with cysteine. J. Pharmacol, exp. Ther. 54, 433–447 (1935).Google Scholar
  218. Siedel, W., K. Sturm, and R. Geiger: Synthese eines vasopressorisch wirkenden Peptids: [O-Methyl-tyrosin]2-Lysin8-Vasopressin (Omtlv). Chem. Ber. 96, 1436–1440 (1963).Google Scholar
  219. Šmahel, O.: The relation of hyaluronidase, histamine and antihistamine substances. Acta allerg. (Kbh.) 15, Suppl. 7, 497–499 (1960).Google Scholar
  220. Smyth, D.G.: Proteins and Peptides. Ann. Rep. Progr. Chem. for 1964, 59, 507–525 (1965a).Google Scholar
  221. —: Reactions of cyanate with amino and hydroxyl groups; application to oxytocin. Acta chim. Acad. Sci. Hung. 44, 197–204 (1965b).Google Scholar
  222. Somlyo, A.V., C.-Y. Woo, and A. P. Somlyo: Effect of magnesium on posterior pituitary hormone action on vascular smooth muscle. Amer. J. Physiol. 210, 705–714 (1966).PubMedGoogle Scholar
  223. Šorm, F.: Proteins: Structure and function. Plenary Lecture, 5th Int. Congr. Biochem., Moscow. Prague: Czechoslovak Academy of Science 1961.Google Scholar
  224. Strauch, B. S., and R. G. Langdon: The role of adenosine 3′,5′-phosphate in the action of vasopressin on water permeability of toad bladders. Biochem. biophys. Res. Commun. 16, 27–33 (1964).PubMedGoogle Scholar
  225. Studer, R.O., and W.D. Cash: Synthesis of l-acetyl-8-arginine vasopressin and a study of its effects in the rat pressor assay. J. biol. Chem. 238, 657–659 (1963).PubMedGoogle Scholar
  226. Sullivan, T.J.: Response of the mammalian uterus to prostaglandins under differing hormonal conditions. Brit. J. Pharmacol. 26, 678–685 (1966).PubMedGoogle Scholar
  227. Sutherland, E.W., T.W. Rall, and T. Menon: Adenyl cyclase. I. Distribution, preparation and properties. J. biol. Chem. 237, 1220–1227 (1962).PubMedGoogle Scholar
  228. Taborsky, J.: Über die Hemmung der antidiuretischen Wirkung von Vasopressin und Nikotin mittels Acetazolamid bei Wasserbelasteten Ratten. Med. Pharmacol. Exp. 15, 427–431 (1966).Google Scholar
  229. Takagi, K., Y. Isheda, H. Moritoki, and K. Hara: Studies of drug receptors on the plain muscle. I. Antagonistic action on the activities of acetylcholine, barium chloride, and oxytocin on the isolated rat uterus. Yakugaku Zasshi 81, 1708–1712 (1961) [in Japanese]. (In English: Ann. Rept. Fac. Pharm. Sci. Tokushima Univ. 11, 31-37 (1962)).PubMedGoogle Scholar
  230. Tata, P.S., and R. Buzalkov: Vasopressin studies in the rat. III. Inability of ethanol anesthesia to prevent ADH secretion due to pain and hemorrhage. Arch. ges. Physiol. 290, 294 to 297 (1966).Google Scholar
  231. Turner, R.A., J.G. Pierce, and V. Du Vigneaud: The desulfurization of oxytocin. J. biol. Chem. 193, 359–361 (1951).PubMedGoogle Scholar
  232. Uranga, J., and W.H. Sawyer: Renal responses of the bullfrog to oxytocin, arginine-vaso-tocin and frog neurohypophysial extracts. Amer. J. Physiol. 198, 1287–1290 (1960).PubMedGoogle Scholar
  233. Ussing, H.H., T.U.L. Biber, and N.S. Bricker: Exposure of the isolated frog skin to high potassium concentrations at the internal surface. II. Changes in epithelial cell volume, resistance, and response to antidiuretic hormone. J. gen. Physiol. 48, 425–433 (1965).PubMedGoogle Scholar
  234. Du Vigneatjd, V., G.S. Denning, S. Drabarek, and W. Y. Chan: The synthesis and pharmacological study of 4-decarboxamido-oxytocin (4-α-aminobutyric acid-oxytocin) and 5-de-carboxamido-oxytocin (5-alanine-oxytocin). J. biol. Chem. 239, 472–478 (1964).Google Scholar
  235. —, P.S. Fitt, M. Bodanszky, and M. O’connell: Synthesis and some pharmacological properties of a peptide derivative of oxytocin: glycyloxytocin. Proc. Soc. exp. Biol. (N.Y.) 104, 653–656 (1960).Google Scholar
  236. —, C. Ressler, J.M. Swan, C.W. Roberts, P.G. Katsoyannis, and S. Gordon: The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Amer. chem. Soc. 75, 4879–4880 (1953).Google Scholar
  237. Vogel, G., u. J. Hergott: Pharmakologische Untersuchungen über O-Methyl-tyrosin2—Iysin8-Vasopressin. Arzneimittel-Forsch. 13, 415–421 (1963).Google Scholar
  238. Vogt, M.: Vasopressor, antidiuretic and oxytocic activities of extracts of the dog’s hypothalamus. Brit. J. Pharmacol. 8, 193–196 (1953).PubMedGoogle Scholar
  239. Vorherr, H.: Zur Frage des Oxytocin-Vasopressin-Antagonismus bei Mensch und Tier. Klin. Wschr. 42, 198–201 (1964).PubMedGoogle Scholar
  240. —, and V. Friedberg: Über die Wirkung von synthetischem Oxytocin auf die Wasserdiurese der Ratte. Z. ges. exp. Med. 133, 602–608 (1960).PubMedGoogle Scholar
  241. Walaszek, E. J., C.G. Huggins, and CM. Smith: Drugs that modify actions of pharmacologically active polypeptides. Ann. N.Y. Acad. Sei. 104, 281–289 (1963).Google Scholar
  242. Whittembury, G., N. Sugino, and A. K. Solomon: Effect of anti-diuretic hormone and calcium on the equivalent pore radius of kidney slices from Necturus. Nature (Lond.) 187, 699–701 (1960).Google Scholar
  243. Whittlestone, W.G.: The effect of adrenaline on the milk-ejection response of the sow. J. Endocr. 10, 167–172 (1954).PubMedGoogle Scholar
  244. Woo, C-Y., and A. P. Somlyo: Interaction of magnesium with vasopressin in intestinal smooth muscle. J. Pharmacol, exp. Ther. 155, 357–366 (1967).Google Scholar
  245. Woolley, D.W.: Discussion, In: Oxytocin, Vasopressin and their Structural Analogues, p. 35. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  246. Yamashiro, D., D. Gillessen, and V. Du Vigneaud: Oxytoceine and deamino-oxytoceine. Biochemistry 5, 3711–3720 (1966).Google Scholar
  247. Zaoral, M., E. Kasafírek, J. Rtjdinger, and F. Šorm: Amino Acids and peptides. LI. Synthesis of 2-O-methyltyrosine-and 2-O-ethyltyrosine-lysine-vasopressin. Collection Czech, chem. Commun. 30, 1869–1873 (1965).Google Scholar
  248. —, V. Pliška, K. Řežábek, and F. Šorm: Synthesis of two lysine-vasopressin analogues with protracted hormonal activity. Collection Czech, chem. Commun. 28, 747–749 (1963).Google Scholar
  249. —, and F. Šorm: Preparation and biological activity of some new lysine vasopressin analogues. In: Oxytocin, Vasopressin and their Structural Analogues, pp. 167–171. Ed. by J. Rudinger. Proc. 2nd Int. Pharmacol. Meeting, Prague 1963, Vol. 10. Oxford: Pergamon Press 1964.Google Scholar
  250. —: Synthesis of Gly-Cys1-lysine-vasopressin and Gly-Cys1-Tyr(Me)2-lysine-vasopressin. Collection Czech, chem. Commun. 30, 2812–2816 (1965).Google Scholar
  251. Zedeck, M.S., L.B. Mellett, and E. J. Cafruny: The diuretic effects of cyclophosphamide and nor-nitrogen mustard: Relationship to antidiuretic hormone. J. Pharmacol, exp. Therap. 153, 550–561 (1966).Google Scholar
  252. Zhuze, A.L., K. Jost, E. Kasafírek, and J. Rtjdinger: Amino Acids and Peptides. XLV. Analogues of oxytocin with O-ethyltyrosine, p-methylphenylalanine, and p-ethylphenyl-alanine replacing tyrosine. Collection Czech, chem. Commun. 29, 2648–2662 (1964).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • J. Rudinger
  • I. Krejčí

There are no affiliations available

Personalised recommendations