Advertisement

Actions and Functions of the Neurohypophysial Hormones and Related Peptides in Lower Vertebrates

  • François Morel
  • Serge Jard
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 23)

Abstract

This chapter deals with the physiological role and effects of neurohypophysial hormones in lower vertebrates, and also with the mechanism of the hormonal action at the cellular level, as revealed by in vitro studies on amphibian target organs. It falls into two separate parts: the first concerns comparative endocrinology and physiology of homeostasis in lower vertebrates; the second has to do with general physiology at the cellular level and molecular endocrinology. As will appear to the reader, our understanding of the regulatory role exerted by neurohypophysial hormones is very much less advanced in lower vertebrates than in mammals. On the other hand, the epithelial cells of amphibians have been widely used as convenient and simple structures in order to analyse the mechanism of action of the hormone at the cellular level on a biochemical, biophysical and molecular basis; in this respect the functioning of these cells is used as a model for the homologous mammalian target organs (especially the kidney tubule).

Keywords

Frog Skin Lower Vertebrate Fresh Water Fish Rana Esculenta Toad Bladder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acher, R., R. Beatjpain, J. Chauvet, M.T. Chauvet, and D. Crepy: The neurohypophysial hormones of the amphibians. Comparison of the hormones of Rana esculenta and Xenopus laevis. Gen. comp. Endocr. 4, 596–602 (1964a).CrossRefGoogle Scholar
  2. —, J. Chauvet, M. T. Chauvet, et D. Crepy: Les hormones neurohypophysaires des poissons. Isolement d’une vasotocine du tacaud (Gadus LuscusL.). Biochim. biophys. Acta (Amst.) 51, 419–420 (1961).CrossRefGoogle Scholar
  3. M. T. Chauvet, et D. Crepy —: Isolement d’une nouvelle hormone neurohypophysaire, l’isotocine présente chez les poissons osseux. Biochim. biophys. Acta (Amst.) 58, 624–625 (1962).CrossRefGoogle Scholar
  4. M. T. Chauvet, et D. Crepy —: Phylogenie des peptides neurohypophysaires. Isolement delà mésotocine (lieu 8-ocytocine) de la grenouille; intermédiaire entre la Ser 4-Ileu 8-ocytocine des poissons osseux et l’ocytocine des mammifères. Biochim. biophys. Acta (Amst.) 90, 613–615 (1964b).CrossRefGoogle Scholar
  5. M. T. Chauvet, et D. Crepy —: Les hormones neurohypophysaires des vertébrés. Variations des structures au cours de l’évolution. Ann. Endocr. (Paris) 26 (suppl.), 662–669 (1965a).Google Scholar
  6. M. T. Chauvet, et D. Crepy —: Phylogenie des peptides neurohypophysaires. Isolement d’une nouvelle hormone; la glumitocine (Ser 4 Gin 8-ocytocine) présente chez un poisson cartilagineux, la raie (Raia clavata)Biochim. biophys. Acta (Amst.) 107, 393–396 (1965b).CrossRefGoogle Scholar
  7. —, et M.T. Lenci: Isolement de l’ocytocine du Poulet. Biochim. biophys. Acta (Amst.) 38, 344–345 (1960b).CrossRefGoogle Scholar
  8. M.T. Lenci —, F. Morel, et J. Maetz: Présence d’une vasotocine dans la neurohypophyse de la grenouille (Rana esculenta L.). Biochim. biophys. Acta (Amst.) 42, 379–380 (1960a).CrossRefGoogle Scholar
  9. Adolph, E.F.: The excretion of water by the kidneys of frogs. Amer. J. Physiol. 81, 315–324 (1927).Google Scholar
  10. —: The vapor tension relations of frogs. Biol. Bull. 62, 112–125 (1932).CrossRefGoogle Scholar
  11. —: Exchanges of water in the frog. Biol. Rev. 8, 224–240 (1933).CrossRefGoogle Scholar
  12. —: Control of urine formation in the frog by the renal circulation. Amer. J. Physiol. 117, 366–379 (1936).Google Scholar
  13. Alvarado, R. H., and S. R. Johnson: The effects of arginine-vasotocin and oxytocin on sodium and water balance in Ambystoma. Comp. Biochem. Physiol. 16, 531–546 (1965).PubMedCrossRefGoogle Scholar
  14. Ames, R.G., and H.B. Van Dyke: Thioglycollate inactivation of posterior pituitary antidiu-retic principle as determined in the rat. Proc. Soc. exp. Biol. (N.Y.) 76, 576–578 (1951).Google Scholar
  15. Andersen, B., and H. H. Ussing: Solvent drag on non electrolytes during osmotic flow through isolated toad skin and its response to antidiuretie hormone. Acta physiol. scand. 39, 228 to 239 (1957).PubMedCrossRefGoogle Scholar
  16. Aronson, L.R.: Reproductive and parental behavior. In: The physiology of fishes, Vol. II, pp. 271–304. Ed. by M.E. Brown. New York: Academic Press 1957.Google Scholar
  17. Arvy, L., M. Fontaine, et M. Gabe: Action des solutions salines hypertoniques sur le système hypopholamo-hypophysaire chez Phoximus laevis Agass. et chez Anguilla anguilla (L.). C.R. Soc. Biol. (Paris) 148, 1759–1761 (1954).Google Scholar
  18. M. Gabe —: Action des solutions salines hypertoniques sur la neurosecretion chez l’anguille hypo-physectomisée. C.R. Soc. Biol. (Paris) 149, 225–227 (1955).Google Scholar
  19. M. Gabe —: Modifications de la voie neurosecretrice hypothalamo-hypophysaire de Salmo solar L. au cours du cycle évolutif. C.R. Ass. Anat. 89, 224–233 (1956).Google Scholar
  20. Arvy, L., M. Fontaine, et M. Gabe: La voie neurosecretrice hypothalamo-hypophysaire des Teleosteens. J. Physiol. (Paris) 51, 1031–1085 (1959).Google Scholar
  21. —, et M. Gabe: Modifications du système hypothalamo-hypophysaire chez Callionymus lyra et Ammodytes lanceolatus au cours des variations de l’équilibre osmotique. C.R.Ass. Anat. 41, 843–849 (1954).Google Scholar
  22. Assenmacher, I.: Recherches sur le contrôle hypothalamique de la fonction gonadotrope pré-hypophysaire chez le canard. Arch. Anat. micr. Morph. exp. 47, 448–572 (1958).Google Scholar
  23. —, et A. Tixier Vidal: Repercussion de la section des veines portes hypophysaires sur la pre-hypophyse du canard pekin male entier ou castré. Arch. Anat. micr. Morph. exp. 53, 83 à 108 (1964).PubMedGoogle Scholar
  24. Audrain, L., et H. Clauser: Mécanisme de l’inactivation de Pocytocine par le tissu uterin. Biochim. biophys. Acta (Amst.) 38, 494–501 (1960).CrossRefGoogle Scholar
  25. Baillien, M., et E. Schoffeniels: Origine des potentiels bioelectriques de l’épithélium intestinal isolé de la tortue grecque. Biochim. biophys. Acta (Amst.) 53, 537–548 (1961a).CrossRefGoogle Scholar
  26. —: Origin of the potential difference in the intestinal epithelium of the turtle. Nature (Lond.) 190, 1107–1108 (1961b).CrossRefGoogle Scholar
  27. Baggerman, B.: An experimental study of the timing of breeding and migration in the 3-spined stickleback. Arch. Neerl. Zool. 7, 105–317 (1957).Google Scholar
  28. Ball, J.N.: Reproduction in female bony fishes. Symp. Zool. Soc. (Lond.) 1, 105–135 (1960).Google Scholar
  29. —: Brood production after hypophysectomy in the viviparus teleost Mollienesia latipinna. Le Sueur. Nature (Lond.) 194, 787–787 (1962).CrossRefGoogle Scholar
  30. —, and K. D. Kallman: Functional pituitary transplants in the all female gynogenetic teleost, Mollienesia formosa (Girard). Amer. Zool. 2, 389 (1962).Google Scholar
  31. —, et M. Olivereau: Role de la prolactine dans la survie en eau douce de Poecilia latipinna hypophysectonisé et arguments en faveur de sa synthèse par les cellules erythrosinophiles D de l’hypophyse des Teleostéens. C.R. Acad. Sci. (Paris) 259, 1443–1446 (1964).Google Scholar
  32. —, A. M. Slicher, and K. D. Kallman: Functional capacity of ectopic pituitary transplants in a teleost fish, Poecilia formosa, with a comparative discussion on the transplanted pituitary. Phil. Trans. Roy. Soc. London, Ser. B: 249, 66–99 (1965).CrossRefGoogle Scholar
  33. Barannikova, I.A., and A.L. Polenov: An ecological and histophysiological analysis of the preoptico-hypophyseal neurosecretory system in the sturgeon. Dokl. Akad. Nauk SSR, Otl. Biokh. 133, 719–721 (1960).Google Scholar
  34. Bartholomew, G. A., and T. J. Cade: The water economy of land birds. The Auk. 80,504–539 (1963).CrossRefGoogle Scholar
  35. Bastide, F., et S. Jard: Actions de la noradrenaline et de l’ocytocine sur le transport actif de sodium et la perméabilité à l’eau de la peau de la grenouille: role de l’adenosine 3′-5′ monophosphate cyclique. Biochim. biophys. Acta. (Amst.) 150, 113–123 (1968).CrossRefGoogle Scholar
  36. Bûlehrádek, T., and J.S. Huxley: The effects of pituitrin and narcosis on water regulation in larval and metamorphosed Ambystoma. J. exp. Biol. 5, 89–96 (1927).Google Scholar
  37. Benoit, J., et I. Assenmacher: Action des facteurs externes et plus particulièrement du facteur lumineux sur l’activité sexuelle des Oiseaux. Extrait de la Ilème Reunion d’Endocrinologie de Langue Franç. Paris: Mason et Cie, 33–80 (1953).Google Scholar
  38. —: Le contrôle hypothalamique et hypophysaire de l’activité préhypophysaire gonadotrope. J. Physiol. (Paris) 47, 427–567 (1955).Google Scholar
  39. Benson, G.K., and S. J. Folley: Oxytocin as stimulator for the release of prolactin from the anterior pituitary. Nature (Lond.) 177, 700–701 (1956).CrossRefGoogle Scholar
  40. —: The effect of oxytocin on mammary gland involution in the rat. J. Endocr. 16,189–201 (1958).CrossRefGoogle Scholar
  41. Bentley, P. J.: The effects of vasopressin on water uptake of the toad Bufo marinus while bathed in different hypotonic solutions. J. Endocr. 16, 126–134 (1957).PubMedCrossRefGoogle Scholar
  42. —: The effects of neurohypophysial extracts on water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J. Endocr. 17, 201–209 (1958).PubMedCrossRefGoogle Scholar
  43. —: Studies on the water and electrolyte metabolism of the lizard Trachysaurus rugosus (Gray). J. Physiol. (Lond.) 145, 37–47 (1959a).Google Scholar
  44. —: The effects of ionic changes on water transfer across the isolated urinary bladder of the toad Bufo marinus. J. Endocr. 18, 327–333 (1959b).CrossRefGoogle Scholar
  45. —: The effects of vasopressin on the short-circuit current across the wall of the isolated bladder of the toad Bufo marinus. J. Endocr. 21, 161–170 (1960).CrossRefGoogle Scholar
  46. —: Directional differences in the permeability to water of the isolated urinary bladder of the toad (Bufo marinus) J. Endocr. 22, 95–100 (1961).CrossRefGoogle Scholar
  47. —: Studies on the permeability of the large intestine and urinary bladder of the tortoise (Testudo Graeca) with special reference to the effects of neurohypophysial and adreno-cortical hormones. Gen. comp. Endocr. 2, 323–328 (1962a).CrossRefGoogle Scholar
  48. —: Hyaluronidase, corticosteroids and the action of neurohypophysial hormone on the urinary bladder of the frog. J. Endocr. 24, 407–414 (1962b).CrossRefGoogle Scholar
  49. Bentley, P. J.: Permeability of the skin of the cyclostome Lampetra fluviatilis to water and electrolytes. Comp. Biochem. Physiol. 6, 95–98 (1962c).PubMedCrossRefGoogle Scholar
  50. —: The effect of N-ethylmaleimide and glutathione on the isolated rat uterus and frog bladder with special reference to the action of oxytocin. J. Endocr. 30, 103–113 (1964).PubMedCrossRefGoogle Scholar
  51. —: Rectification of water flow across the bladder of the toad; effect of vasopressin. Life Sci. 4, 133–140 (1965a).PubMedCrossRefGoogle Scholar
  52. —: Hyperglycaemic effect of vasotocin in toads. Nature (Lond.) 206, 1053–1054 (1965b).CrossRefGoogle Scholar
  53. —: The physiology of the urinary bladder of amphibia. Biol. Rev. 41, 275–316 (1966a).PubMedCrossRefGoogle Scholar
  54. —: Adaptations of amphibia to arid environments. Science 152, 619–623 (1966b).PubMedCrossRefGoogle Scholar
  55. —, and B. K. Follett: The action of neurohypophysial and adrenocortical hormones on sodium balance in the cyclostome Lampetra fluviatilis. Gen. comp. Endocr. 2, 329–335 (1962).PubMedCrossRefGoogle Scholar
  56. —: Control of water and electrolyte metabolism in the cyclostome Lampetra fluviatilis. Gen. comp. Endocr. 3, 685 (1963a).CrossRefGoogle Scholar
  57. —: Kidney function in a primitive vertebrate, the cyclostome Lampetra fluviatilis. J. Physiol. (Lond.) 169, 902–918 (1963b).Google Scholar
  58. —, and H. Heller: The sites of actions of neurohypophysial hormones in urodeles. Gen. comp. Endocr. 2, 601 (1962).Google Scholar
  59. —: The action of neurohypophysial hormones on the water and sodium metabolism of uro-dele amphibians. J. Physiol. (Lond.) 171, 434–453 (1964).Google Scholar
  60. —: The water retaining action of vasotocin on the fire salamander (Salamandra maculosa): the role of the urinary bladder. J. Physiol. (Lond.) 181, 124–129 (1965).Google Scholar
  61. —, A. K. Lee, and A. R. Main: Comparison of dehydration and hydration of two genera of frogs (Heleioporus and Neobatrachus) that live in areas of varying aridity. J. exp. Biol. 35,677 to 684 (1958).Google Scholar
  62. —, and K. Schmidt-Nielsen: Permeability to water and sodium of the crocodilian Caiman selerops. J. cell. comp. Physiol. 66, 303–310 (1965).CrossRefGoogle Scholar
  63. —: Cutaneous water loss in reptiles. Science 151, 1547–1549 (1966).PubMedCrossRefGoogle Scholar
  64. Berlyne, G. M.: Urinary hyaluronidase, a method of assay and investigation of its relationship to the urine concentrating mechanism. Clin. Sci. 19, 12–25 (1960).Google Scholar
  65. Bern, H.A., R.S. Nishioka, L.R. Mewaldt, and D.S. Farner: Photoperiodic and osmotic influences on the ultrastructure of the hypothalamic neurosecretory system of the white-crowned sparrow Zonotrichia leucophrys gambelii. Z.Zeilforsch. 69, 198–227 (1966).CrossRefGoogle Scholar
  66. Biasotti, A.: Influence de l’extrait d’hypophyse sur l’imbibition des tissus. C.R. Soc. Biol. (Paris) 88, 361–362 (1923).Google Scholar
  67. Bieter, R.N.: The effects of the splanchics upon glomerular blood flow in the frog’s kidney. Amer. J. Physiol. 91, 436–460 (1930).Google Scholar
  68. Bishop, W.R., M.M. Mumbach, and B.T. Scheer: Interrenal control of active sodium transport across frog skin. Amer. J. Physiol. 200, 451–453 (1961).Google Scholar
  69. Bogert, C.M., and R.B. Cowles: Moisture loss in relation to habitat selection in some Flori-dian reptiles. Amer. Museum Novitates 40, No 1358, 1–34 (1947).Google Scholar
  70. Boissonnas, R. A.: Les bases chimiques de l’interprétation du mécanisme d’action des hormones peptidiques. Ann. Endocr. (Paris) 26, 635–642 (1965).Google Scholar
  71. —, St. Guttmann, B. Berde, and H. Konzett: Relationships between the chemical structures and the biological properties of the posterior pituitary hormones and their synthetic analogues. Experientia (Basel) 17, 377–391 (1961).CrossRefGoogle Scholar
  72. —, et R.L. Huguenin: Synthèse de la Lys8-ocytocine (lysine-vasotocine) et nouvelle synthèse de la lysine-vasopressine. Helv. chim. Acta 43, 182–190 (1960).CrossRefGoogle Scholar
  73. Bourguet, J.: Influence de la temperature sur la cinétique de l’augmentation de perméabilité à l’eau de la vessie de grenouille sous l’action de l’ocytocine. J. Physiol. (Paris) 58,476–477 (1966).Google Scholar
  74. —: Cinétique de la perméabilisation de la vessie de grenouille par l’ocytocine. Rôle du 3′-5′ adenosine monophosphate cyclique. Biochim. biophys. Acta. (Amst.) 150, 104–112 (1968).CrossRefGoogle Scholar
  75. —, et S. Jard: Un dispositif automatique d’enregistrement du flux net d’eau à travers la peau et la vessie des amphibiens. Biochim. biophys. Acta (Amst.) 88, 442–444 (1964).Google Scholar
  76. —, B. Lahlouh, et J. Maetz: Modifications expérimentales de l’équilibre hydrominéral et osmorégulation chez Carassius auratus. Gen. comp. Endocr. 4, 563–576 (1964).CrossRefGoogle Scholar
  77. —, et J. Maetz: Arguments en faveur de l’indépendance des mécanismes d’action de divers peptides neurohypophysaires sur le flux osmotique d’eau et sur le transport actif de sodium au sein d’un même récepteur, études sur la vessie et la peau de Rana esculenta L. Biochim. biophys. Acta (Amst.) 52, 552–565 (1961).CrossRefGoogle Scholar
  78. —, et F. Morel: Indépendance des variations de perméabilité à l’eau et au sodium produites par les hormones neurohypophysaires sur la vessie de grenouille. (Biochim. biophys. Acta (Amst.) 135, 693–700 (1967).CrossRefGoogle Scholar
  79. Boyd, E.M., and M. Dingwall: The effect of pituitary (posterior lobe) extract on the body water of fish and reptiles. J. Physiol. (Lond.) 95, 501–507 (1939).Google Scholar
  80. —, and S.W. Whyte: The effect of extract of the posterior hypophysis on loss of water by frogs in a dry environment. Amer. J. Physiol. 124, 759–766 (1938).Google Scholar
  81. —: The effect of posterior hypophysial extract on retention of water and salt injected into frogs. Amer. J. Physiol. 125, 415–422 (1939).Google Scholar
  82. Bricker, N. S., and T. Biber: Active “downhill” sodium transport across the isolated frog skin. J. clin. Invest. 41, 1348 (1962).Google Scholar
  83. —, and H.H. Ussing: Exposure of the isolated frog skin to high potassium concentrations at the internal surface. I. Bioelectric phenomena and sodium transport. J. clin. Invest. 42, 88–99 (1963).PubMedCrossRefGoogle Scholar
  84. —, and S. Klahr: On the electrogenic nature of active sodium transport across the isolated frog skin. J. clin. Invest. 42, 920 (1963).CrossRefGoogle Scholar
  85. —, H.V. Murdauch, E.D. Robin, and P.S. Soteres: Persistence of transcellular sodium transport by an epithelial cell membrane in the absence of oxidative phosphorylation. J. Lab. clin. Med. 60, 861–862 (1962).Google Scholar
  86. Brodsky, W. A., and T.P. Schilb: Electrical and osmotic characteristics of the isolated turtle bladder. J. clin. Invest. 39, 974–975 (1960).Google Scholar
  87. —, and A.K. Spafford: Anion transport in the isolated turtle bladder. Fed. Proc. 22, 322 (1963).Google Scholar
  88. Brown, E., D.L. Clarke, V. Roux, and G.H. Sherman: The stimulation of adenosine 3′-5′ monophosphate production by antidiuretic factors. J. biol. Chem. 238, PC 852 (1963).PubMedGoogle Scholar
  89. Brunn, F.: Beitrag zur Kenntnis der Wirkung von Hypophysenextrakten auf den Wasserhaushalt des Frosches. Z. ges. exp. Med. 25, 170–175 (1921).CrossRefGoogle Scholar
  90. Bullough, W. S.: The effect of the reduction of light in spring on the breeding season of the minnow (Phoximus laevis Linn.). Proc. Zool. Soc. (Lond.) 110, 149–157 (1940).Google Scholar
  91. Burden, C. E.: The failure of hypophysectomized Fundulus heteroclitus to survive in freshwater. Biol. Bull. 110, 8–28 (1956).CrossRefGoogle Scholar
  92. Burgess, W.W., A.M. Harvey, and E.K. Marshall: The site of the antidiuretic action of pituitary extract. J. Pharmacol, exp. Ther. 49, 237–248 (1933).Google Scholar
  93. Burrows, W.H., and T.C. Byerly: Premature expulsion of eggs by hens following injection of whole posterior pituitary preparations. Poultry Sci. 21, 416–420 (1942).CrossRefGoogle Scholar
  94. Butcher, R.W., Jr., and E.W. Sutherland: Enzymatic inactivation of adenosine 3′-5′ phosphate by preparations from heart. Pharmacologist 1, 63–71 (1959).Google Scholar
  95. Cade, T. J.: Water and salt balance in granivorous birds. In: Thirst, pp. 237–256. New York: Pergamon Press 1964.Google Scholar
  96. Callamand, O., M. Fontaine, M. Olivereau, et A. Raffy: Hypophyse et osmoregulation chez les poissons. Bull. Inst. Oceanog. 984, 1–7 (1951).Google Scholar
  97. Campbell, B. J., B. Thysen, and F.S. Chu: Peptidase catalysed hydrolysis of antidiuretic hormone in toad bladder. Life Sci. 4, 2129–2140 (1965).CrossRefGoogle Scholar
  98. Carasso, N., P. Favard, J. Bourguet, et S. Jard: Rôle du flux net d’eau dans les modifications ultrastructurales de la vessie de Grenouille stimulée par l’ocytocine. J. Microscopie 5, 519–522 (1966).Google Scholar
  99. —, et J. Valerien: Variations des ultrastructures dans les cellules épitheliales de la vessie du Crapaud après stimulation par l’hormone neurohypophysaire. J. Microscopie 1,143–158 (1962).Google Scholar
  100. Carlson, I. H., and W. N. Holmes: Changes in the hormone content of the hypothalamo-hypo-physial system of the rainbow trout (Salmo gaidneri) J. Endocr. 24, 23–32 (1962).PubMedCrossRefGoogle Scholar
  101. Cereijido, M., F.C. Herrera, W. J. Flanigan, and P.F. Curran: The influence of Na concentration on Na transport across frog skin. J. gen. Physiol. 47, 879–894 (1964).PubMedCrossRefGoogle Scholar
  102. Chan, W.Y., and V. Du Vigneaud: Comparison of the pharmacologie properties of oxytocin and its highly potent analogue, desamino oxytocin. Endocrinology 71, 977–982 (1962).PubMedCrossRefGoogle Scholar
  103. Chaudhury, R.R., and M.R. Chaudhury: Action of synthetic oxytocin on the crop gland of the pigeon. Nature (Lond.) 13, 179–180 (1962).CrossRefGoogle Scholar
  104. Chauvet, J., M. T. Chauvet, D. Beaupain, et R. Acher: Les hormones neurohypophysaires des raies: comparaison des hormones du pocheteau blanc (Raia batis) et de la raie bouclée (Raia clavata)Nature (Lond.) 208, 4234–4236 (1965).Google Scholar
  105. —, M. T. Lenci, et R. Acher: Présence de deux vasopressines dans la neurohypophyse du Poulet. Biochim. biophys. Acta (Amst.) 38, 571–573 (1960).CrossRefGoogle Scholar
  106. Chavtn, W.: Pituitary-adrenal control of melanization in xanthic goldfish (Carassius auratus L.). J. exp. Zool. 133, 1–46 (1956).CrossRefGoogle Scholar
  107. —: Pituitary hormones in melanogenesis. In: Pigment cell biology. Ed. by M. Gordon. New York: Academic Press 1959.Google Scholar
  108. Chen, G., F.K. Oldham, and E.M.K. Geiling: Effect of posterior pituitary extract on water uptake in frogs after hypophysectomy and infundibular lesions. Proc. Soc. exp. Biol. (N.Y.) 52, 108–111 (1943).Google Scholar
  109. Chester Jones, I., J.G. Phillips, and W.N. Holmes: Comparative physiology of the adrenal cortex. In: Comparative endocrinology, pp. 582–612. Ed. by A. Gorbman. New York: J. Wiley 1959.Google Scholar
  110. Chew, R.M.: Water metabolism of desert inhabiting vertebrates. Biol. Rev. 36, 1–31 (1961).PubMedCrossRefGoogle Scholar
  111. —, and A.E. Dammann: Evaporation water loss of small vertebrates, as measured with an infrared analyser. Science 133, 384–385 (1961).PubMedCrossRefGoogle Scholar
  112. Del Chiaraviglio, E.: Elimination et retention hydrique chez Bufo Arenarum Hensel hypo-physectomisé. C.R. Soc. Biol. (Paris) 155, 150 (1961a).Google Scholar
  113. —: Action de l’hypophysectomie sur l’absorption cutanée d’eau et la volémie du crapaud. C.R. Soc. Biol. (Paris) 155, 405–406 (1961b).Google Scholar
  114. Choi, J.K.: The fine structure of the urinary bladder of the toad, Bufo marinus. J. Cell. Biol. 16, 53–72 (1963).PubMedCrossRefGoogle Scholar
  115. Civan, M.M., O. Kedem, and A. Leaf: Effect of vasopressin on toad bladder under conditions of zero net sodium transport. Amer. J. Physiol. 211, 569–575 (1966).PubMedGoogle Scholar
  116. Cohen, N. W.: Comparative rates of dehydration and hydration in some California salamanders. Ecology 33, 462–479 (1952).CrossRefGoogle Scholar
  117. Copeland, D.E.: Adaptive behaviour of the chloride cell in the gill of Fundulus heteroclitus. J. Morph. 87, 369–379 (1950).CrossRefGoogle Scholar
  118. Crabbe, J.: Stimulation of active sodium transport across the isolated toad bladder after injection of aldosterone to the animal. Endocrinology 69, 673–682 (1961a).PubMedCrossRefGoogle Scholar
  119. —: Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro. J. clin. Invest. 40, 2103–2110 (1961b).PubMedCrossRefGoogle Scholar
  120. —, and P. De Weer: Action of aldosterone on the bladder and skin of the toad. Nature (Lond.) 202, 298–299 (1964).CrossRefGoogle Scholar
  121. — Action of aldosterone and vasopressin on the active transport of sodium by the isolated toad bladder. J. Physiol. (Lond.) 180, 560–567 (1965).Google Scholar
  122. Dainty, J., and C. R. House: An examination of the evidence for membrane pores in frog skin. J. Physiol. (Lond.) 185, 172–184 (1966).Google Scholar
  123. Dantzler, W.H., and B. Schmidt-Nielsen: Excretion in fresh water turtle (Pseudemys scripta) and desert tortoise (Gopherus agassizii) Amer. J. Physiol. 210, 198–210 (1966).Google Scholar
  124. Darwin, C.: The voyage of the beagle. New York: Bantam 1958 (1st edit. 1839).Google Scholar
  125. Dicker, S.E., and M.G. Eggleton: Renal excretion of hyaluronidase and calcium in man during the antidiuretic action of vasopressins and some analogues. J. Physiol. (Lond.) 157, 351–362 (1961).Google Scholar
  126. —, and J. Haslam: Water diuresis in the domestic fowl. J. Physiol. (Lond.) 183,225–235 (1966).Google Scholar
  127. Dow, D., and S. Zuckerman: The effect of vasopressin, sex hormones and adrenal cortical hormone on body water in axolotls. J. Endocr. 1, 387–398 (1939).CrossRefGoogle Scholar
  128. Van Dyke, H.B.: The nature of the vasopressins and their secretion. Proc. XXIth Int. Congr. Physiol., pp. 61-70, Buenos Aires 1959.Google Scholar
  129. —, W.H. Sawyer, and N.I. A. Overweg: Pharmacological activities of the 8-citrulline analogues of oxytocin and vasopressin. Endocrinology 73, 637–639 (1963).CrossRefGoogle Scholar
  130. —, and T.S. Yeoh: Effects of Arginine vasotocin and other pharmacologically active substances on the cardiovascular system of the frog (Rana macrodon) Endocrinology 77, 716–724 (1965).PubMedCrossRefGoogle Scholar
  131. Edelman, I.S., R. Bogoroch, and G.A. Porter: On the mechanism of action of aldosterone on sodium transport. The role of protein synthesis. Proc. nat. Acad. Sci. (Wash.) 50,1169 to 1177 (1963).CrossRefGoogle Scholar
  132. —, and M. J. Petersen: A kinetic analysis of the antidiuretic action of vasopressin. J. clin. Invest. 41, 1356 (1962).Google Scholar
  133. —, and P. F. Gulyassy: Kinetic analysis of the antidiuretic action of vasopressin and adenosine-3′-5′ monophosphate. J. clin. Invest. 43, 2185–2194 (1964).PubMedCrossRefGoogle Scholar
  134. Egami, N.: Effect of removal of eyes on oviposition of the fish Oryzias latipes. Zool. Mag. (Tokyo) 68, 379–385 (1959a).Google Scholar
  135. —: Preliminary note on the induction of the spawning reflex and oviposition in Oryzias latipes by the administration of neurohypophysial substances. Annot.Zool. Jap. 32, 13–17 (1959b).Google Scholar
  136. —, and S. Ishii: Hypophyseal factors controlling ovarian activities in several fresh water fishes. Abstr. Symp. Papers 10th Pacific Sci. Congr. Honolulu, Hawaï, pp. 156-157 (1961).Google Scholar
  137. —: Hypophyseal control of reproductive functions in teleost fishes. Gen. comp. Endocr. Suppl. 1, 248–253 (1962).CrossRefGoogle Scholar
  138. —, and H. Nambu: Factors initiating mating behavior and oviposition in the fish. Oryzias latipes. J. Fac. Sci. Univ. Tokyo 9, 263–278 (1961).Google Scholar
  139. Enami, M.: Studies on neurosecretion. Praeoptico-subcommissural neurosecretory system in the eeal (Anguilla japonica). Endocr. jap. 1, 133–145 (1954).PubMedCrossRefGoogle Scholar
  140. E’ngbaek, L., and T. Hoshiko: Electrical potential gradients through the frog skin. Acta physiol. scand. 39, 348–355 (1957).PubMedCrossRefGoogle Scholar
  141. D’erbico, G.: Über die physiko-chemischen Verhältnisse und die Harnsekretion bei Hühnern. Beitr. Chem. Physiol. Path. 9, 453–469 (1907).Google Scholar
  142. Essig, A., and A. Leaf: The role of potassium in active transport of sodium by the toad bladder. J. gen. Physiol. 46, 505–515 (1963).PubMedCrossRefGoogle Scholar
  143. Etkin, W., and R. Lehrer: Excess growth in tadpoles after transplantation of the adenohypo-physis. Endocrinology 67, 457–466 (1960).PubMedCrossRefGoogle Scholar
  144. Ewer, R. F.: The effect of pitressin and pitocin on water balance in Bufo regularis. Reuss. J. exp. Biol. 28, 374–384 (1951).Google Scholar
  145. —: The effects of posterior pituitary extracts of water balance in Bufo carens and Xenopus laevis, together with some general considerations of anuran water economy. J. exp. Biol. 29, 429–439 (1952a).Google Scholar
  146. —: The effect of pituitrin on fluid distribution in Bufo regularis. Reuss. J. exp. Biol. 29, 173 to 177 (1952b).Google Scholar
  147. Farquhar, M.G., and G.E. Palade: Functional organization of amphibian skin. Proc. nat. Acad. Sci. (Wash.) 51, 569–577 (1964).CrossRefGoogle Scholar
  148. —: Adenosine triphosphatase localization in amphibian epidermis. J. Cell. Biol. 30, 359–379 (1966).PubMedCrossRefGoogle Scholar
  149. Favard, P., N. Carasso, J. Bourgtjet, et S. Jard: Origine des modifications ultrastructurales observées sur la vessie de grenouille au cours de sa permeabilisation à l’eau par les peptides neurohypophysaires. J. Physiol. (Paris) 58, 519 (1966).Google Scholar
  150. Fleming, W.R., and J.G. Stanley: Effects of rapid changes in salinity on the renal function of a euryhaline teleost. Amer. J. Physiol. 209, 1025–1030 (1965).PubMedGoogle Scholar
  151. Follett, B.K., and H. Heller: The neurohypophysial hormones of bony fishes and cyclo-stomes. J. Physiol. (Lond.) 172, 74–91 (1964a).Google Scholar
  152. —: The neurohypophysial hormones of lungfishes and amphibians. J. Physiol. (Lond.) 172, 92–106 (1964b).Google Scholar
  153. Fong, C.T.O., I.L. Schwartz, E. A. Popenoe, L. Silver, and M. A. Schoessler: On the molecular binding of lysine-vasopressin at its renal receptor site. J. Amer. chem. Soc. 81, 2592 to 2593 (1959).CrossRefGoogle Scholar
  154. —, L. Silver, D.R. Christman, and I.L. Schwartz: On the mechanism of action of the anti-diuretic hormone vasopressin. Proc. nat. Acad. Sci. (Wash.) 46, 1273–1277 (1960).CrossRefGoogle Scholar
  155. Fontaine, M.: The hormonal control of water and salt electrolyte metabolism in fishes. Mem. Soc. Endocr. 5, 69–82 (1956).Google Scholar
  156. —, O. Callamand, et M. Olivereau: Hypophyse et euryhalinité chez l’Anguille. C.R. Acad. Sci. (Paris) 228, 513–514 (1949).Google Scholar
  157. —, et H. Koch: Les variations d’euryhalinité et d’osmoregulation chez les Poissons. Leur rapport possible avec les migrations. J. Physiol. (Paris) 42, 287–318 (1950).Google Scholar
  158. —, et A. Raffy: Le facteur hypophysaire de retention d’eau chez les Teleosteens. C.R. Soc. Biol. (Paris) 144, 6–7 (1950).Google Scholar
  159. Forster, R. P.: The nature of the glucose reabsorptive process in the frog renal tubule. Evidence for intermittency of glomerular function in the intact animal. J. cell. comp. Physiol. 20, 55–68 (1942).CrossRefGoogle Scholar
  160. —: The effect of ephinephrine upon frog renal hemodynamics in the intact animal. Amer. J. Physiol. 140, 221–225 (1943).Google Scholar
  161. —: A comparative study of renal function in marine teleosts. J. cell. comp. Physiol. 42,487–509 (1953).CrossRefGoogle Scholar
  162. Frazier, H.S.: The electrical potential profile of the isolated toad bladder. J. gen. Physiol. 45, 515–528 (1962).PubMedCrossRefGoogle Scholar
  163. —, E.F. Dempsey, and A. Leaf: The initial step in active sodium transport by the toad bladder. J. clin. Invest. 40, 1039 (1961).Google Scholar
  164. A. Leaf —: Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J. gen. Physiol. 45, 529–543 (1962).PubMedCrossRefGoogle Scholar
  165. —, and E.I. Hammer: Efflux of sodium from isolated toad bladder. Amer. J. Physiol. 205, 718–722 (1963).PubMedGoogle Scholar
  166. —, and A. Leaf: The electrical characteristics of active sodium transport in the toad bladder. J. gen. Physiol. 46, 491–503 (1963).PubMedCrossRefGoogle Scholar
  167. —: Cellular mechanisms in the control of body fluids. Medicine 43, 281–289 (1964).PubMedGoogle Scholar
  168. Fridberg, G., and R. Olsson: The preoptical hypophysial system, nucleus tuberis lateralis and the subcommissural organ of gasterosteus aculeatus after changes in osmotic stimuli. Z. Zeilforsch. 49, 531–540 (1959).CrossRefGoogle Scholar
  169. Fulford, B.D., and S.M. McCann: Suppression of adrenal compensatory hypertrophy by hypothalamic lesions. Proc. Soc. exp. Biol. (N.Y.) 90, 78–80 (1955).Google Scholar
  170. Fuhrman, F. A., and H.H. Ussing: A characteristic response of the isolated frog skin potential to neurohypophysial principles and its relations to the transport of sodium and water. J. cell. comp. Physiol. 38, 109–130 (1951).CrossRefGoogle Scholar
  171. Gaddum, J. H.: Some properties of the separated active principles of the pituitary (posterior lobe). J. Physiol. (Lond.) 65, 434–440 (1928).Google Scholar
  172. Garcia Romeu, F., and J. Maetz: The mechanism of sodium and chloride uptake by the gills of a fresh water fish Carassius auratus. I. Evidence for an independant uptake of sodium and chloride ions. J. gen. Physiol. 47, 1195–1208 (1964).CrossRefGoogle Scholar
  173. Gerschenfeld, H.M., J.H. Tramezzani, and E. De Robertis: Ultrastructure and function in neurohypophysis of the toad. Endocrinology 66, 741–762 (1960).PubMedCrossRefGoogle Scholar
  174. Gibbs, O.S.: The function of the fowl’s ureter. Amer. J. Physiol. 87, 545–601 (1929).Google Scholar
  175. Ginetzinsky, A. G.: Role of hyaluronidase in the reabsorption of water in renal tubules. The mechanism of action of the antidiuretic hormone. Nature (Lond.) 182, 1218–1219 (1958).CrossRefGoogle Scholar
  176. —, and G.M. Berlyne: Relationships between urinary hyaluronidase and diuresis. Nature (Lond.) 189, 235–237 (1961).CrossRefGoogle Scholar
  177. Goodfriend, T., and J. Kirkpatrick: Effects of neurohypophysial hormones on oxidative metabolism of the toad bladder in vitro. Endocrinology 72, 742–748 (1963).PubMedCrossRefGoogle Scholar
  178. Gordon, M. S.: Osmotic regulation in the green toad (Bufo viridis)J. exp. Biol. 39, 261–270 (1962).Google Scholar
  179. —, K. Schmidt-Nielsen, and H.M. Kelly: Osmotic regulation in the crab-eating frog (Rana cancrivora) J. exp. Biol. 38, 659–678 (1961).Google Scholar
  180. Grantham, J. J., and M.B. Btjrg: Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Amer. J. Physiol. 211, 255–259 (1966).PubMedGoogle Scholar
  181. Green, J. D.: The comparative anatomy of the hypophysis with special reference to its blood supply and innervation. Amer. J. Anat. 88, 225–311 (1951).PubMedCrossRefGoogle Scholar
  182. Guillemin, R.: Über die hypothalamische Kontrolle der ACTH-Sekretion betrachtet an den Ergebnissen von in-vitro. VersuchenEndocrinology 34, 193–201 (1957).Google Scholar
  183. —, W.R. Hearn, W.R. Check, and D.E. Housholder: Control of corticotrophin release. Further studies with in vitro methods. Endocrinology 60, 488–506 (1957).PubMedCrossRefGoogle Scholar
  184. Gulyassy, P. F., and I.S. Edelman: Hydrogen-ion dependence of the antidiuretic action of vasopressin, oxytocin and deamino oxytocin. Biochim. biophys. Acta (Amst.) 102,185–197 (1965).CrossRefGoogle Scholar
  185. Handler, J.S., R.W. Butcher, E.W. Sutherland, and J. Orloff: The effect of vasopressin and of theophyllin on the concentration of adenosine 3′-5′-phosphate in the urinary bladder of the toad. J. biol. Chem. 240, 4524–4526 (1965).PubMedGoogle Scholar
  186. —, and J. Orloff: Activation of phosphorylase in toad bladder and mammalian kidney by antidiuretic hormone. Amer. J. Physiol. 205, 298–302 (1963).PubMedGoogle Scholar
  187. —: Cysteine effect on toad bladder response to vasopressin, cyclic A.M.P. and theophylline. Amer. J. Physiol. 206, 505–509 (1964).PubMedGoogle Scholar
  188. Harrington, R. W.: Preseasonal breeding by the bridled shiner Notropis bifrenatus, induced under light-temperature control. Copeia No. 304 (1950).Google Scholar
  189. Haynes, R. C., Jr.: The activation of adrenal phosphorylase by the adrenocorticotropic hormone. J. biol. Chem. 233, 1220–1222 (1958).PubMedGoogle Scholar
  190. —, and L. Berthet: Studies on the mechanism of action of the adrenocorticotropic hormone. J. biol. Chem. 225, 115–124 (1957).PubMedGoogle Scholar
  191. Hays, R. M., and A. Leaf: Studies on the movement of water through the isolated toad bladder and its modifications by vasopressin. J. gen. Physiol. 45, 905–920 (1962a).PubMedCrossRefGoogle Scholar
  192. —: The state of water in the isolated toad bladder in the presence and absence of vasopressin. J. gen. Physiol. 45, 933–948 (1962b).PubMedCrossRefGoogle Scholar
  193. Heller, H.: Differentiation of an (amphibian) water balance principle from the antidiuretic principle of the posterior pituitary gland. J. Physiol. (Lond.) 100, 125–141 (1941).Google Scholar
  194. —: The comparative physiology of the neurohypophysis. Experientia (Basel) 6, 368–376 (1950).CrossRefGoogle Scholar
  195. —: The hormonal control of water and salt electrolyte metabolism with special reference to higher vertebrates. Mem. Soc. Endocrinol. 5, 25–43 (1956).Google Scholar
  196. —: Neurohypophyseal hormones. In: Comparative endocrinology, Vol.1, pp. 26–72. Ed. by Euler and Heller. New York: Academic Press 1963a.Google Scholar
  197. —: Hypophysenhinterlappenhormone. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak., Bd. 245, Heft 11, S. 142–153 (1963b).Google Scholar
  198. —: Chairman’s introduction. In: Advances in oxytocin. Oxford: Pergamon Press 1965a.Google Scholar
  199. —: Osmoregulation in amphibia. Arch. Anat. micr. Morph. exp. 54, 471–490 (1965b).PubMedGoogle Scholar
  200. —, and P. J. Bentley: Phylogenetic distribution of the effects of neurohypophysial hormones on water and sodium metabolism. Gen. comp. Endocr. 5, 96–108 (1965).CrossRefGoogle Scholar
  201. Heller, H., and T.B. Pickering: Neurohypophysial hormones of non-mammalian vertebrates. J. Physiol. (Lond.) 155, 98–114 (1961).Google Scholar
  202. Hester, H.R., H.E. Essex, and F.C. Mann: Secretion of urine in the chicken (Gallus dome-sticus)Amer. J. Physiol. 128, 592–602 (1940).Google Scholar
  203. Hevesy, G. V., E. Hofer, and A. Krogh: The permeability of the skin of frogs to water as determined par D2O and H2O. Skand. Arch. Physiol. 72, 199–214 (1935).CrossRefGoogle Scholar
  204. Hild, W.: Experimentelle morphologische Untersuchungen über das Verhalten der „neuro-sekretorischen Bahn“ nach Hypophysenstieldurchtrennung, Eingriffen in den Wasserhaushalt und Belastung der Osmoregulation. Virchows Arch. path. Anat. 319, 526–546 (1951).Google Scholar
  205. Hilton, J.G., L.F. Scian, C.D. Westermann, and O.R. Kruesi: Effect of synthetic lysine-vasopressin on adrenocortical secretion. Science 129, 971 (1959).PubMedCrossRefGoogle Scholar
  206. Hogben, L.T., and W. Schlapp: The vasomotor activity of pituitary extracts throughout the vertebrate series. Quart. J. exp. Physiol. 14, 229–258 (1924).Google Scholar
  207. Hohn, E. O.: Failure of oxytocin to produce a prolactin-like response in the pigeon’s crop sac. J. Endocr. 26, 177–178 (1963).PubMedCrossRefGoogle Scholar
  208. Holmes, W. N.: Studies on the hormonal control of sodium metabolism in the rainbow trout (Salmo gairdnerii) Acta endocr. (Kbh.) 31, 587–602 (1959).Google Scholar
  209. —, and B.M. Adams: Effects of adrenocortical and neurohypophysial hormones on the renal excretory pattern in the water-loaded duck (Anas platyrhynchus) Endocrinology 73, 5–10 (1963).PubMedCrossRefGoogle Scholar
  210. —, and R.L. McBean: Studies on the glomerular filtration rate of rainbow trout. J. exp. Biol. 40, 335–341 (1963).PubMedGoogle Scholar
  211. Hoover, E.E., and H.E. Hubbard: Modification of the sexual cycle in trout by control of light. Copeia 1937, 206.Google Scholar
  212. Hoshiko, T.: Electrogenesis in frog skin. Biophysics of physiological and pharmacological actions. Amer. Ass. Advanc. Sci. (Wash.), pp. 31-47 (1961).Google Scholar
  213. House, C.R.: Osmotic regulation in the brackfish water teleost (Blennius pholis) J. exp. Biol. 40, 87–104 (1963).Google Scholar
  214. Houssay, B.A., L. Giuti, and G.P. Gonalons: Rev. Soc. argent. Biol. 1, 237 (1925). Cited from B.A. Houssay and D. Potick: El antagonismo Hipofisis insuline in los sapos. Rev. Soc. argent. Biol. 5, 66-76 (1929a).Google Scholar
  215. —, et D. Potick: Antagonisme entre l’hypophyse et l’insuline chez le Crapaud. C.R. Soc. Biol. (Paris) 101, 940–942 (1929b).Google Scholar
  216. —: El antagonismo hypofisis insuline in los sapos. Rev. Soc. argent. Biol. 5,66–76 (1929 a).Google Scholar
  217. Howes, N. H.: The response of the water regulating mechanism of developmental stages of the commun toad Bufo bufo (L.) to treatment with extracts of the posterior lobe of the pituitary body. J. exp. Biol. 17, 128–138 (1940).Google Scholar
  218. Huber, G.C.: On the morphology of the renal tubules of vertebrates. Anat. Rec. 13, 305–339 (1917).CrossRefGoogle Scholar
  219. Ishii, S.: Artificial induction of parturition in the top minnow Gambusia sp. (Abstract in Japanese). Zool. Mag. (Tokyo) 70, 3–4 (1961).Google Scholar
  220. —, T. Hirano, and H. Koboyashi: Neurohypophyseal hormones in the Avian median Eminence and pars nervosa. Gen. comp. Endocr. 2, 433–440 (1962).PubMedCrossRefGoogle Scholar
  221. Jacobsohn, D., and C.B. Jørgensen: Survival and function of auto and homografts of adeno-hypophysial tissue in the toad. Acta physiol. scand. 36, 1–12 (1956).PubMedCrossRefGoogle Scholar
  222. Jancsö, N.: Storage of proteins and vinylpolymers in histiocytes and in the renal epithelium. Acta med. Acad. Sci. hung. 7, 173–210 (1955a).PubMedGoogle Scholar
  223. —: Speicherung und Stoffanreicherung im Retikuloendothel und in der Niere. Budapest: Academiai Kiado 1955b.Google Scholar
  224. Jard, S.: Inhibition par l’ocytocine des actions tubulaires de la vasotocine chez la grenouille. Arguments en faveur de sa nature compétitive. Excerpta Med. Int. Congr. Ser. 78,602–604 (1963).Google Scholar
  225. —: Etude des effects de la vasotocine sur l’excrétion de l’eau et des electrolytes par le rein de la grenouille (Rana esculenta L.). Analyse à l’aide d’analogues artificiels de l’hormone naturelle des caractères structuraux requis pour son activité biologique. J. Physiol. (Paris) 58, Suppl. 16, 123 p. (1966).Google Scholar
  226. —, F. Bastide, et F. Morel: Etude quantitative de la relation dose effet pour l’ocytocine sur deux de ses récepteurs. (Abstract no. 312, Second Int. Biophys. Congress, Vienna, 5-9 Sept. 1966a.Google Scholar
  227. —, J. Bourguet, N. Carasso, et P. Favard: Action de divers fixateurs sur la perméabilité et l’ultrastructure de la vessie de grenouille. J. Microscopie 5, 31–50 (1966b).Google Scholar
  228. Jard, S., J. Maetz, et F. Morel: Action de quelques analogues de l’ocytocine sur différents récepteurs intervenant dans l’osmorégulation de Rana esculenta. C.R. Acad. Sci. (Paris) 251, 788–790 (1960).Google Scholar
  229. —, et F. Morel: Inhibition competitive de l’action antidiurétique de la lysine-vasotocine par l’ocytocine chez Rana esculenta. C. R. Acad. Sci. (Paris) 252,339–341 (1961)Google Scholar
  230. —: Actions of vasotocin and some of its analogues on salt and water excretion by the frog. Amer. J. Physiol. 204, 222–226 (1963).Google Scholar
  231. Jørgensen, C. B.: The amphibian water economy with special regard to the effect of neuro-hypophysial extracts. Acta physiol. scand. 22, Suppl. 78 (1950).Google Scholar
  232. —, and L. O. Larsen: Effect of neurohypophyseal principles on adenophyseal activity in toads. Proc. Soc. exp. Biol. (N.Y.) 103, 685–688 (1960a).Google Scholar
  233. —: Hormonal control of moulting in amphibians. Nature (Lond.) 185, 244–245 (1960b).CrossRefGoogle Scholar
  234. —: Inhibition by oxytocin of vasotocin induced activities in toads. Proc. Soc. exp. Biol. (N.Y.) 110, 293–294 (1962).Google Scholar
  235. —: Neuro-adenohypophysial relationships. Symp. Zool. Soc. (Lond.) 9, 59–82 (1963).Google Scholar
  236. —, P. Rosenkilde, and K.G. Wingstrand: Effect of extirpation of median eminence on function of pars distalis of the hypophysis in the toad Bufo bufo (L.). Comp. Biochem. Physiol. 1, 38–43 (1960).CrossRefGoogle Scholar
  237. —, H. Levi, and H.H. Ussing: On the influence of neurohypophysial principles on sodium metabolism in the axolotl Ambystoma mexicanum. Acta. physiol. scand. 12, 350–371 (1946).CrossRefGoogle Scholar
  238. —, and L. Nielsen: Effect of synthetic lysine-vasopressin on adenohypophysial activity in toads. Proc. Soc. exp. Biol. (N.Y.) 98, 393–395 (1958).Google Scholar
  239. —, and P. Rosenkilde: Chloride balance in hypophysectomized frogs. Endocrinology 50, 219–224 (1957).CrossRefGoogle Scholar
  240. —, K. G. Wingstrand, and P. Rosenkilde: Neurohypophysis and water metabolism in the toad Bufo bufo (L.). Endocrinology 59, 601–610 (1956).PubMedCrossRefGoogle Scholar
  241. Karlin, A.: The in vitro release by the toad bladder of an inhibitor of oxytocin. Biochem. bio-phys. Res. Commun. 11, 44–49 (1963).CrossRefGoogle Scholar
  242. Katsoyannis, P.G., and V. Du Vigneaud: Arginin-vasotocin a synthetic analogue of the posterior pituitary hormones containing the ring of oxytocin and the side chain of vaso-pressin. J. biol. Chem. 233, 1352–1354 (1958).PubMedGoogle Scholar
  243. Keller, A. R.: An electron microscopic study of the bladder of the tropical toad (Bufo mari-nus)Thesis. Dep. Biochem. Sci., Harvard Coll., Cambridge, Mass. (1960).Google Scholar
  244. Keys, A., and J.B. Bateman: Branchial responses to adrenalin and to pitressin in the eel. Biol. Bull. 63, 327–336 (1932).CrossRefGoogle Scholar
  245. Kobayashi, H., A. Gorbman, and S. Ishh: Hypothalamic neurosecretory apparatus of a young Goby (Lepidogobius lepidus) Anat. Rec. 134, 595 (1959).Google Scholar
  246. Koefoed-Johnsen, V., H. Levi, and H.H. Ussing: The mode of passage of chloride ions through the isolated frog skin. Acta physiol. scand. 25, 150–163 (1952b).CrossRefGoogle Scholar
  247. —, and H.H. Ussing: The contributions of diffusion and flow to the passage of D2O through living membranes. Effect of neurohypophyseal hormone on isolated anuran skin. Acta physiol. scand. 28, 60–76 (1953).PubMedCrossRefGoogle Scholar
  248. —: The nature of the frog skin potential. Acta physiol. scand. 42, 298–308 (1958).PubMedCrossRefGoogle Scholar
  249. —, and K. Zehran: The origin of the short circuit current in the adrenaline stimulated frog skin. Acta physiol. scand. 27, 38–48 (1952a).PubMedCrossRefGoogle Scholar
  250. Korr, I.M.: The osmotic function of the chicken kidney. J. cell. comp. Physiol. 13, 175–194 (1939).CrossRefGoogle Scholar
  251. Kragt, C. L., and J. Meites: Stimulation of pigeon pituitary prolactin release by pigeon hypothalamic extract in vitro. Endocrinology 76, 1169–1176 (1965).PubMedCrossRefGoogle Scholar
  252. Krogh, A.: Osmotic regulation in freshwater fishes by active absorption of chloride ions. Z. vergl. Physiol. 24, 656–666 (1937a).CrossRefGoogle Scholar
  253. —: Osmotic regulation in the frog (Rana esculenta) by active absorption of chloride ions. Skand. Arch. Physiol. 76, 60–69 (1937b).CrossRefGoogle Scholar
  254. —: Osmotic regulation in aquatic animals. Cambridge Univ. Press (1939).Google Scholar
  255. Lahlou, B.: Mise en évidence d’un recrutement glomerulaire dans le rein des teleosteens d’après la mesure du Tm glucose. C.R. Acad. Sei. (Paris) 262, 1356–1358 (1966).Google Scholar
  256. Leaf, A.: Some actions of neurohypophysial hormones on a living membrane. J. gen. Physiol. 43, 175–189 (1960).PubMedCrossRefGoogle Scholar
  257. —: Some observations on transport across the toad bladder in vitro. In: Symposium on membrane transport and metabolism, p. 247. Ed. by A. Kleinzeller and A. Kotyk. Prague: Czech. Acad. Sciences 1961.Google Scholar
  258. —: Action of neurohypophyseal hormones on the toad bladder. Gen. comp. Endocr. 2,148–160 (1962).PubMedCrossRefGoogle Scholar
  259. Leaf, A.: Transepithelial transport and its hormonal control in toad bladder. Ergebn. Physiol. 56, 216–264 (1965).PubMedCrossRefGoogle Scholar
  260. —, J. Anderson, and L.B. Page: Active sodium transport by the isolated toad bladder. J. gen. Physiol. 41, 657–668 (1958).PubMedCrossRefGoogle Scholar
  261. —, and E. Dempsey: Some effects of mammalian neurohypophyseal hormones on metabolism and active transport of sodium by the isolated toad bladder. J. biol. Chem. 235, 2160–2163 (1960).PubMedGoogle Scholar
  262. —, and R.M. Hays: Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J. gen. Physiol. 45, 921–932 (1962).PubMedCrossRefGoogle Scholar
  263. —, L. B. Page, and J. Anderson: Respiration and active sodium transport of isolated toad bladder. J. biol. Chem. 234, 1625–1629 (1959).PubMedGoogle Scholar
  264. —, and A. Renshaw: Ion transport and respiration of isolated frog skin. Biochem. J. 65, 82–90 (1957).PubMedGoogle Scholar
  265. Le Brie, S. J., and I.D.W. Sutherland: Renal function in water snakes. Amer. J. Physiol. 203, 995–1000 (1962).Google Scholar
  266. Lederis, K.: Effects of salinity on hormone content and on ultrastructure of trout neurohypo-physis. J. Endocr. 26, 21–22 (1963).Google Scholar
  267. Legait, H.: Contribution à l’étude morphologique et expérimentale du système hypothalamo-neurohypophysaire de la Poule Rhode-Island. Thèse d’agrégation de l’enseignement supérieur Louvain. Nancy: S.I.T. 1959.Google Scholar
  268. Lehrman, D. S.: The reproductive behaviour of ring doves. Sci. Amer. 211, No. 5, 48–54 (1964).PubMedCrossRefGoogle Scholar
  269. Leloup-Hatey, J.: Influence de l’agitation motrice sur la teneur du plasma en 17-hydroxy-corticosteroïdes du plasma d’un Teleosteen: la carpe (Cyprinus carpio L.). C.R. Acad. Sci. (Paris) 246, 1088–1091 (1958).Google Scholar
  270. Levinsky, N.G., and W.H. Sawyer: Influence of the adenohypophysis on frog water balance response. Endocrinology 51, 110–116 (1952).PubMedCrossRefGoogle Scholar
  271. —: Significance of the neurohypophysis in regulation of fluid balance in the frog. Proc. Soc. exp. Biol. (N.Y.) 82, 272–274 (1953).Google Scholar
  272. Lichtenstein, N.S., and A. Leaf: Effect of Amphotericin B on the permeability of the toad bladder. J. clin. Invest. 44, 1328–1342 (1965).PubMedCrossRefGoogle Scholar
  273. Lico, M. C.: The role of the hypophysis in the regulation of arterial pressure in the toad. Acta physiol. lat.-amer. 12, 375–380 (1963).Google Scholar
  274. Littleford, R. A., W. F. Keller, and N. E. Phillips: Studies on the vital limits of water loss in the plethodont salamanders. Ecology 28, 440–447 (1947).CrossRefGoogle Scholar
  275. McCann, S.M.: The ACTH-releasing activity of the posterior lobe of the pituitary. Endocrinology 60, 664–676 (1957).PubMedCrossRefGoogle Scholar
  276. —, and J.R. Brobeck: Evidence for a role of the supraopticohypophyseal system in regulation of adrenocorticotrophin secretion. Proc. Soc. exp. Biol. (N.Y.) 87, 318–324 (1954).Google Scholar
  277. —, and A. Fruit: Effect of synthetic vasopressin on release of adrenocorticotrophin in rats with hypothalamic lesions. Proc. Soc. exp. Biol. (N.Y.) 96, 566–567 (1957).Google Scholar
  278. McFarland, L.Z.: Effects of an electric lesion in the avian hypothalamo-hypophysial tract. Anat. Rec. 133, 411 (1959).Google Scholar
  279. McRobbie, E.A.C., and H.H. Ussing: Osmotic behaviour of the epithelial cells of frog skin. Acta physiol. scand. 53, 348–366 (1961).CrossRefGoogle Scholar
  280. Maetz, J.: Les échanges de sodium chez le poisson Carassius auratus L.; Action d’un inhibiteur de l’anhydrase carbonique. J. Physiol. (Paris) 48, 1085–1099 (1956).Google Scholar
  281. —: Le controle endocrinien du transport actif de sodium à travers la peau de grenouille. In: La méthode des indicateurs nucléaires dans l’étude des transports actifs d’ions (1er colloque de Biologie de Saclay), p. 185–196. Paris: Pergamon Press 1959.Google Scholar
  282. —: Corrélation entre les actions des hormones neurohypophysaires sur le transport actif de sodium et le flux osmotique d’eau à travers la peau de divers amphibiens. Acta endocr. (Kbh.) 35, Suppl. 51, 133 (1960).Google Scholar
  283. —: Physiological aspects of neurohypophysial function in fishes with some reference to the amphibia. Symp. Zool. Soc. (Lond.) 9, 107–140 (1963).Google Scholar
  284. —: Recherches sur la permeabilité aux electrolytes de la branchie des poissons et sa régulation endocrinienne. Bulletin d’Informations scientifiques et techniques du Commissariat à l’Energie atomique, No. 86 (1964).Google Scholar
  285. —, J. Bourguet, B. Lahlouh, et J. Hourdry: Peptides neurohypophysaires et osmoregula-tion chez Carassius auratus. Gen. comp. Endocr. 4, 508–522 (1964).CrossRefGoogle Scholar
  286. —, and F. Garcia Romeu: The mechanism of sodium and chloride uptake by the gills of a fresh water fish Carassius auratus. II. Evidence of NH4 +/NA+ and HCO3−/CL− exchanges. J. gen. Physiol. 47, 1209–1228 (1964).PubMedCrossRefGoogle Scholar
  287. —, S. Jard, et F. Morel: Action de l’aldosterone sur le transport actif de sodium de la peau de grenouille. C.R. Acad. Sci. (Paris) 247, 516–518 (1958).Google Scholar
  288. Maetz, J., and M. Julien: Action of neurohypophyseal hormones on the sodium fluxes of a fresh water teleost. Nature (Lond.) 189, 152–153 (1961).CrossRefGoogle Scholar
  289. —, F. Morel, and B. Lahlouh: Natriferin. A new hormonal principle in the neurohypophysis of certain vertebrates. Nature (Lond.) 184, 1236–1237 (1959a).CrossRefGoogle Scholar
  290. —, et B. Race: Mise en évidence dans la neurohypophyse de Rana esculenta L., d’un facteur hormonal nouveau stimulant le transport actif de sodium. Biochim. biophys. Acta (Amst.) 36, 317–326 (1959b).CrossRefGoogle Scholar
  291. Maffly, R.H., R.M. Hays, E. Lamdin, and A. Leaf: The effect of neurohypophyseal hormones on the permeability of the toad bladder to urea. J. clin. Invest. 39, 630–641 (1960).PubMedCrossRefGoogle Scholar
  292. Mansour, T.E.: Studies on heart phosphofructokinase: purification inhibition and activation. J. biol. Chem. 238, 2285–2292 (1963).Google Scholar
  293. —, E.W. Sutherland, T.W. Rall, and E. Bueding: The effect of 5-hydroxytrypotamine (serotonin) on the formation of adenosine 3′-5′-phosphate by tissue particles from the liver fluke, Fasciola hepatica. J. biol. Chem. 235, 466–470 (1960).PubMedGoogle Scholar
  294. Marshall, E.K., Jr., and H.W. Smith: The glomerular development of vertebrate kidney in relation to habitat. Biol. Bull. 59, 135–153 (1930).CrossRefGoogle Scholar
  295. Martini, L., and A. De Poli: Neurohumoral control of the release of adrenocorticotrophic hormone. J. Endocr. 13, 229–234 (1956).PubMedCrossRefGoogle Scholar
  296. Masur, S.K.: Autotransplantation of the pituitary in the red eft. Amer. Zool. 2, 528 (1962).Google Scholar
  297. Mazzi, V., e A. Peyrot: Effetti differenziali di lesioni ipotalamiche croniche sulla tyroide e sul testicolo di Triturus cristatus canifex. Laur. trattati con tiouria. Arch. Ital. Anat. Embriol. 65, 295–300 (1960).Google Scholar
  298. Meier, A.H., and W.R. Fleming: The effects of pitocin and pitressin on water and sodium movements in the euryhaline killifish Fundulus kansae. Comp. Biochem. Physiol. 6, 215 to 231 (1962).PubMedCrossRefGoogle Scholar
  299. Meites, J., and C.S. Nicoll: Adenohypophysis: prolactin. Ann. Rev. Physiol. 27, 57–88 (1965).Google Scholar
  300. Mellinger, J.: Esquisse structurale de l’appareil hypophysaire d’un selacien, Scyliorhinus caniculus (L.) pour servir de base à une étude expérimentale des correlations neuroendocriniennes. C.R. Acad. Sci. (Paris) 251, 2422–2424 (1960).Google Scholar
  301. —: Observation in vivo de la circulation hypophysaire chez la Raie (Raja undulata) et la Torpille (Torpedo marmorata) C.R. Acad. Sci. (Paris) 261, 5671–5674 (1965).Google Scholar
  302. —, E. Follenius, et A. Porte: Presence de terminaisons neurosecretoires sur les capillaires primaires du systeme Porte hypophysaire de la Roussette (Scyliorhinus caniculus). Etude au microscope électronique. C.R. Acad. Sci. (Paris) 254, 1158–1159 (1962).Google Scholar
  303. Meurling, P.: Presence of a pituitary portal system in Elasmobranchs. Nature (Lond.) 187, 336–337 (1960).CrossRefGoogle Scholar
  304. Meyer, D.K.: Physiological adjustments in chloride balance of the goldfish. Science 108, 305–308 (1948).PubMedCrossRefGoogle Scholar
  305. —: Sodium flux through the gills of goldfish. Amer. J. Physiol. 165, 580–587 (1951).PubMedGoogle Scholar
  306. Mizuno, H., and J. Meites: Failure of oxytocin to stimulate the pigeon (Crop gland). Nature (Lond.) 198, 1209–1210 (1963).CrossRefGoogle Scholar
  307. Monod, J., J. Wyman, and J.P. Changeux: On the nature of allosteric transitions. A plausible model. J. molec. Biol. 12, 88–118 (1965).PubMedCrossRefGoogle Scholar
  308. Morel, F.: Action of neurohypophyseal hormones on the active transport of sodium. In: Water and electrolyte metabolism. Part II. Ed. by DeGraeff and Leijnse. Amsterdam: Elsevier Publ. Co. 1964.Google Scholar
  309. —, and F. Bastide: Relationship between the structure of several analogues of oxytocin and their “natriferic” activity in vitro. In: Oxytocin, vasopressin and their structural analogues, pp. 47–55. Ed. by J. Rudinger. New York: Pergamon Press 1964.Google Scholar
  310. — Action de l’ocytocine sur la composante active du transport de sodium par la peau de grenouille. Biochim. biophys. Acta (Amst.) 94, 609–611 (1965).CrossRefGoogle Scholar
  311. —: Relationships between the natriferic action of oxytocin and active transport of sodium through the frog’s skin. Protoplasma 63, 58–61 (1967).PubMedCrossRefGoogle Scholar
  312. —, and S. Jard: Inhibition of frog (Rana esculenta) antidiuretic action of vasotocin by some analogues. Amer. J. Physiol. 204, 227–232 (1963a).Google Scholar
  313. —: Experiments concerning the first steps of the mechanism of action of neurohypophysial hormones on the kidney. Mem. Soc. Endocrinol. 13, 67–74 (1963b).Google Scholar
  314. —, et F. Bastide: Correlations entre la structure des peptides neurohypophysaires et leur activité biologique sur la peau et le rein de grenouille. Ann. Endocr. (Paris) 26, 643–654 (1965).Google Scholar
  315. —, et J. Maetz: Emploi de méthodes biophysiques pour l’étude du mécanisme d’action de certaines hormones. Colloque de biophysique. Journées médicales de Bordeaux. Sté. Edit. de l’enseignement supérieur (1958).Google Scholar
  316. Morel, F., et J. Maetz: Quelques ascpects du contrôle hormonal du transport de sodium à travers la peau de grenouille. J. Physiol. (Paris) 51, 536–537 (1959).Google Scholar
  317. —, R. Acher, J. Chauvet, and M. T. Lenci: A “natriferic” principle other than arginine-vasotocin in the frog neurohypophysis. Nature (Lond.) 190, 4778–4780 (1961a).CrossRefGoogle Scholar
  318. —, et C. Lucarain: Action de deux peptides neurohypophysaires sur le transport actif de sodium et le flux net d’eau à travers la peau de divers batraciens anoures. Biochim. bio-phys. Acta (Amst.) 28, 619–626 (1958).CrossRefGoogle Scholar
  319. —, M. Odier, et C. Lucarain: Un dispositif de mesures multiples et simultanées du transport actif de sodium à travers plusieurs régions d’une même peau de grenouille. J. Physiol. (Paris) 53, 757–762 (1961b).Google Scholar
  320. Morris, R.: The osmoregulatory ability of the lampern (Lampetra fluviatilis L.) in sea water during the course of its spawning migration. J. exp. Biol. 33, 235–248 (1956).Google Scholar
  321. —: The mechanism of marine osmoregulation in the lampern (Lampetra fluviatilis L.) and the cause of its breakdown during the spawning migration. J. exp. Biol. 35, 649–658 (1958).Google Scholar
  322. —: General problems of osmoregulation with special reference to cyclostomes. Symp. Zool. Soc. (Lond.) 1, 1–13 (1960).Google Scholar
  323. Motais, R.: Les échanges de sodium chez un teleosteen euryhalin Platichthys flesus flesus L.: cinétique de ces échanges lors des passages d’eau de mer en eau douce et d’eau douce en eau de mer. C.R. Acad. Sci. (Paris) 253, 724–726 (1961a).Google Scholar
  324. —: Cinetique des échanges de sodium chez un teleosteen euryhalin (Platichthys flesus L.) au cours de passages successifs eau de mer-eau douce-eau de mer en fonction du temps de séjour en deau douce. C.R. Acad. Sci. (Paris) 253, 2609–2611 (1961b).Google Scholar
  325. —: Les mécanismes d’échanges ioniques branchiaux chez les Teleosteens. Ann. Inst. Oceanog. (Paris) 45, 1–83 (1967).Google Scholar
  326. —, P. Garcia Romeu, et J. Maetz: Mécanisme de l’euryhalinité. Etude comparée du flet (euryhalin) et du serran (stenohalin) au cours du transfert en eau douce. C.R. Acad. Sci. (Paris) 261, 801–804 (1965).Google Scholar
  327. — Exchange diffusion effect and euryhalinity in Teleosts. J. gen. Physiol. 50, 391–422 (1966).PubMedCrossRefGoogle Scholar
  328. —, et J. Maetz: Action des hormones neurohypophysaires sur les échanges de sodium (Mesurés à l’aide du radio-sodium Na24) chez un teleosteen euryhalin: Platichthys flesus L. Gen. comp. Endocr. 4, 210–224 (1964).CrossRefGoogle Scholar
  329. —: Arginine-vasotocine et évolution de la perméabilité branchiale au sodium au cours du passage d’eau douce en eau de mer chez le Flet J. Physiol. (Paris) 59, 271 (1967).Google Scholar
  330. Munsick, R.A.: Hen oxytocic activities of oxytocin and l.-deamino-oxytocin. Endocrinology 76, 161–162 (1965).PubMedCrossRefGoogle Scholar
  331. —, W.H. Sawyer, and H.B. Van Dyke: Hormonal characteristics of avian neurohypophysis. Fed. Proc. 18, 110 (1959).Google Scholar
  332. H.B. Van Dyke —: Avian neurohypophysial hormones, pharmacological properties and tentative identification. Endocrinology 66, 860–871 (1960).CrossRefGoogle Scholar
  333. Mullins, L.J.: Osmotic regulation in fish as studied with radioisotopes. Acta physiol. scand. 21, 303–314 (1950).PubMedCrossRefGoogle Scholar
  334. Myers, R.M., W.R. Bishop, and B.T. Scheer: Anterior pituitary control of active sodium transport across frog skin. Amer. J. Physiol. 200, 444–450 (1961).PubMedGoogle Scholar
  335. —, W. R. Fleming, and B. T. Scheer: Pituitary adrenal control of sodium flux across frog skin. Endocrinology 58, 674–676 (1956).PubMedCrossRefGoogle Scholar
  336. Natochin, J. W.: Mechanism of pituitrin action increasing permeability of the urinary bladder in Rana temporaria. Sechenov physiol. J. U.S.S.R. 49, 525–531 (1963).Google Scholar
  337. —, K. Janaeck, and R. Rybova: The swelling of frog bladder cells produced by oxytocin. J. Endocr. 33, 171–177 (1965).PubMedCrossRefGoogle Scholar
  338. Needham, J.: Nitrogenous waste products. In: Chemical embryology 2, Sect. 9, 1055–1145 (1931).Google Scholar
  339. Nicoll, C.S.: Neural regulation of adenohypophysial prolactin secretion in Tetrapods: indications from in vitro studies. J. Exp. Zool. 158, 203–210 (1965).PubMedCrossRefGoogle Scholar
  340. Novelli, A.: Lobulo posterior de hipofisis e imbibicion de los batracios. II Mecanismo de su accion. Rev. Soc. argent. Biol. 12, 163–164 (1936).Google Scholar
  341. Oehme: Z. ges. exp. Med. 9, 251 (1919).CrossRefGoogle Scholar
  342. W. W. Burgess, A.M. Harvey, and E.K. Marshall: The site of the antidiuretic action of pituitary extract. J. Pharmacol, exp. Ther. 49, 237–248 (1933).Google Scholar
  343. Oksche, A., D.F. Laws, F.I. Kamemoto, and D.S. Farner: The hypothalamo-hypophysial neurosecretory system of the white crowned sparrow (Zonotrichia leucophrys Cambelii) Z. Zeilforsch. 51, 1–42 (1959).CrossRefGoogle Scholar
  344. Oldham, F. K.: The action of the preparations from the posterior lobe of the pituitary gland upon the imbibition of water by frogs. Amer. J. Physiol. 115, 275–280 (1936).Google Scholar
  345. Oliver, G., and E.A. Schäfer: On the physiological action of extracts of pituitary body and certain other glandular organs. J. Physiol. (Lond.) 18, 277–279 (1895).Google Scholar
  346. Opel, H.: Premature oviposition following operative interference with the brain of the chicken. Endocrinology 74, 193–200 (1964).PubMedCrossRefGoogle Scholar
  347. —: Release of oviposition-inducing factor from the median eminence pituitary stalk region in neural lobectomized hens. Anat. Rec. 154, 396 (1966).Google Scholar
  348. Orloff, J., and J.S. Handler: Vasopressin-like effects of adenosine 3′-5′-phosphate (cyclic 3′-5′ AMP) and theophylline in the toad bladder. Biochem. biophys. Res. Commun. 5, 63–66 (1961).CrossRefGoogle Scholar
  349. —: The similarity of effects of vasopressin, adenosine 3’-5’ phosphate (cyclic AMP) and theophylline on the toad bladder. J. clin. Invest. 41, 702–709 (1962).PubMedCrossRefGoogle Scholar
  350. —: The cellular mode of action of antidiuretic hormone. Amer. J. Med. 36, 686–697 (1964a).PubMedCrossRefGoogle Scholar
  351. — —: The role of adenosine 3’-5’ monophosphate (cyclic AMP) in the action of neurohypo-physial hormones. In: Oxytocin, vasopressin and their structural analogues, pp. 133-139. Ed. by J. Rudinger. Prague. (1964b).Google Scholar
  352. Overton, E.: Neununddreißig Thesen über die Wasserökonomie der Amphibien und die osmo-tischen Eigenschaften der Amphibienhaut. Verh. phys.-med. Ges. Würzb. 36, 277–296 (1904).Google Scholar
  353. Pakpoy, R.F.K., and P. J. Bentley: Fine structure of the epithelial cells of the toad urinary bladder. Exp. Cell Res. 20, 235–237 (1960).CrossRefGoogle Scholar
  354. Pasqualini, R.Q.: Papel de la hipofisis en la regulation de la diuresis. Buenos Aires: El Aleneo (1938a).Google Scholar
  355. —: Estudios sobre el metabolismo hidrico en el Bufo arenarum. Hensel. V. Accion de los ex-tractos hipofisarios. Rev. Soc. argent. Biol. 14, 260–274 (1938b).Google Scholar
  356. Patlak, C.S., D.A. Goldstein, and J.F. Hoffman: The flow of solute and solvent across a two membrane system. J. theor. Biol. 5, 426–442 (1963).PubMedCrossRefGoogle Scholar
  357. Paton, D.N., and A. Watson: The actions of pituitrin, adrenalin and barium on the circulation of the bird. J. Physiol. (Lond.) 44, 413–424 (1912).Google Scholar
  358. Peachey, L.D., and H. Rasmussen: Structure of the toad’s urinary bladder as related to its physiology. J. biophys. biochem. Cytol. 10, 529–553 (1961).PubMedCrossRefGoogle Scholar
  359. Petersen, M., and I.S. Edelman: Calcium inhibition of the action of vasopressin on the urinary bladder of the toad. J. clin. Invest. 43, 583–594 (1964).PubMedCrossRefGoogle Scholar
  360. Pickford, G. E.: Induction of a spawning reflex in hypophysectomized killifish. Nature (Lond.) 170, 807–808 (1952).CrossRefGoogle Scholar
  361. —: The hypophysectomized male killifish. Bull. Bingham. Oceanogr. Coll. 14, 5–14 (1953).Google Scholar
  362. —, and J.W. Atz: The physiology of the pituitary gland of fishes. New York: Zoological Society 1957.Google Scholar
  363. —, and J. G. Phillips: Prolactin, a factor in promoting survival of hypophysectomized killifish in fresh water. Science 130, 454–455 (1959).PubMedCrossRefGoogle Scholar
  364. —, E.E. Robertson, and W.H. Sawyer: Hypophysectomy replacement therapy, and the tolerance of the euryhaline killifish Fundulus heteroclitus, to hypotonic media. Gen. comp. Endocr. 5, 160–180 (1965).CrossRefGoogle Scholar
  365. Pohle, E.: Arch. ges. Physiol. 182, 215 (1920)Google Scholar
  366. cited from C.B. Jørgensen, K.G. Wing-Strand, and P. Rosenkilde: Neurohypophysis and water metabolism in the toad (Bufobufo L.). Endocrinology 59, 601–610 (1956).PubMedCrossRefGoogle Scholar
  367. Polenov, A.L., and J.A. Barannikova: The preoptico neurohypophysial neurosecretory system in sturgeon. Dokl. Akad. Nauk SSR, Otd. Biokh. 123, 1117–1120 (1958).Google Scholar
  368. Porter, G.A., and I. Edelman: The action of aldosterone and related corticosteroids on sodium transport across the toad bladder. J. clin. Invest. 43, 611–620 (1964).PubMedCrossRefGoogle Scholar
  369. Poulson, T.L.: Countercurrent multipliers in avian kidneys. Science 148, 389–391 (1965).PubMedCrossRefGoogle Scholar
  370. —, and G. A. Bartholomew: Salt balance in the savannah sparrow. Physiol. Zool. 35, 109 to 113 (1962).Google Scholar
  371. Rall, T.W., and E.W. Sutherland: Formation of a cyclic adenine ribonucleotide by tissue particles. J. biol. Chem. 232, 1065–1076 (1958).PubMedGoogle Scholar
  372. Ralph, C. L.: Polydipsia in the hen following lesions in the supraoptic hypothalamus. Amer. J. Physiol. 198, 528–530 (1960).PubMedGoogle Scholar
  373. Rasmussen, H., and L. Craig: The isolation of arginine-vasotocin from fish pituitary glands. Endocrinology 68, 1051–1055 (1961).PubMedCrossRefGoogle Scholar
  374. —, I.L. Schwartz, R. Young, and J. Marc-Aurele: Structural requirements for the action of neurohypophyseal hormones upon the isolated amphibian urinary bladder. J. gen. Physiol. 46, 1171–1189 (1963).PubMedCrossRefGoogle Scholar
  375. —, M. A. Schoessler, and G. Hochster: Studies on the mechanism of action of vasopressin. Proc. nat. Acad. Sci. (Wash.) 46, 1278–1287 (1960).CrossRefGoogle Scholar
  376. Rasquin, P., and L.M. Stoll: Effects of pitressin and water injections on secretions of brain and hypophysis in a telest. J. comp. Neurol. 107, 273–294 (1955).CrossRefGoogle Scholar
  377. Rey, P.: La region tubero-hypophysaire et les echanges d’eau chez la grenouille. C.R. Soc. Biol. (Paris) 118, 1132–1134 (1935).Google Scholar
  378. —: Recherches experimentales sur l’économie de l’eau chez les batraciens. Ann. Physiol. 13, 1081–1144 (1937).Google Scholar
  379. Richards, A. N., J. B. Barnwell, and R. C. Bradley: The effect of small amounts of adrenalin upon the glomerular blood vessels of the frog’s kidney perfused at a constant rate. Amer. J. Physiol. 79, 410–432 (1927).Google Scholar
  380. —, and C.F. Schmidt: A description of the glomerular circulation in the frog’s kidney and observations concerning the action of adrenalin and other substances upon it. Amer. J. Physiol. 71, 178–208 (1924).Google Scholar
  381. Riddle, O.: A simple method of obtaining premature eggs from birds. Science 54, 664–666 (1921).PubMedCrossRefGoogle Scholar
  382. —: Prolactin in vertebrate function and organization. J. nat. Cancer Inst. 31,1039–1110 (1963).PubMedGoogle Scholar
  383. —, and R.W. Bates: Sex and internal secretions. Ed. by E. Allen. Baltimore: Williams & Wilkins Co. 1939.Google Scholar
  384. Ridley, A.: Secretion in the brain of Rana Catesbeiana and its modification by osmotic stress and hypophysectomy. Gen. comp. Endocr. 4, 486–492 (1964a).CrossRefGoogle Scholar
  385. —: Effects of osmotic stress and hypophysectomy on ion distribution in bullfrogs. Gen. comp. Endocr. 4, 481–486 (1964b).CrossRefGoogle Scholar
  386. Rizack, M. A.: Activation of epinephrine sensitive lipolytric activity from adipose tissue by adenosine 3′-5′-phosphate. J. biol. Chem. 239, 392–395 (1964).PubMedGoogle Scholar
  387. Roberts, J.S., and B. Schmidt-Nielsen: Renal ultrastructure and excretion of salt and water by three terrestrial lizards. Amer. J. Physiol. 211, 476–486 (1966).PubMedGoogle Scholar
  388. Roderich, W., and V. Du Vigneaud: 1-Deamino-l, 6-L-selenocystine-oxytocin, a highly potent isolog of l-Deamino-oxytocin. J. Amer. Chem. Soc. 88, 1331 (1966).CrossRefGoogle Scholar
  389. Rogers, F. T.: Studies on the brain stem. VIII. Diuresis and anhydremia following destruction of the thalamus. Amer. J. Physiol. 68, 499–516 (1924).Google Scholar
  390. Rudinger, J., and K. Jost: A biologically active analogue of oxytocin not containing a disul-fide group. Experientia (Basel) 20, 570–571 (1964).CrossRefGoogle Scholar
  391. Ruibal, R.: The adaptative value of bladder water in the toad Bufo cognatus. Physiol. Zool. 35, 218–223 (1962).Google Scholar
  392. Saffran, M., A.V. Schally, M. Segal, and B. Zimmerman: Characterization of the cortico-trophin releasing factor of the neurohypophysis. 2. Int. Symp. Neurosekretion, pp. 55–59. Berlin-Göttingen-Heidelberg: Springer 1958.CrossRefGoogle Scholar
  393. Sawyer, W. H.: Effect of posterior pituitary extracts on urine formation and glomerular circulation in the frog. Amer. J. Physiol. 164, 457–466 (1951a).PubMedGoogle Scholar
  394. —: Effect of posterior pituitary extract on permeability of frog skin to water. Amer. J. Physiol. 164, 44–48 (1951b).PubMedGoogle Scholar
  395. —: The hormonal control of water and salt metabolism with special reference to the amphibia. Mem. Soc. Endocr. 5, 44–49 (1956).Google Scholar
  396. —: Increased renal absorption of osmotically free water by the toad (Bufo marinus) in response to neurohypophysial hormones. Amer. J. Physiol. 189, 564–568 (1957a).PubMedGoogle Scholar
  397. —: The antidiuretic action of neurohypophysial hormones in amphibia. Colston papers, Vol. VIII. Proceedings of the Eighth Symposium of the Colston Research Society, Vol. VIII, pp. 171–179. London: Butterworths 1957b.Google Scholar
  398. —: Increased water permeability of the bullfrog (Rana catesbiana) bladder in vitro in response to synthetic oxytocin and Arginine vasotocin and to neurohypophysial extracts from non-mammalian vertebrates. Endocrinology 66, 112–120 (1960a).PubMedCrossRefGoogle Scholar
  399. —: Evidence for the identity of Natriferin, the frog water balance principle and Arginine vasotocin. Nature (Lond.) 187, 1030–1031 (1960b).CrossRefGoogle Scholar
  400. —: Comparative physiology and pharmacology of the neurohypophysis. Recent Progr. Hormone Res. 17, 437–465 (1961a).PubMedGoogle Scholar
  401. —: Neurohypophysial hormones. Pharmacol. Rev. 13, 225–277 (1961b).PubMedGoogle Scholar
  402. —: Vertebrate neurohypophysial principles. Endocrinology 75, 981–990 (1964a).PubMedCrossRefGoogle Scholar
  403. —: Phyletic distribution of neurohypophysial peptides. From “Protides of the biological fluids”, pp. 135–142. Ed. by H. Peeters. Amsterdam: Elsevier 1964b.Google Scholar
  404. —: Evolution of neurohypophysial principles. Arch. Anat. micr. Morph. exp. 54, 295–312 (1965).PubMedGoogle Scholar
  405. —: Diuretic and natriuretic responses of lungfish (Protopterus aethiopicus) to Arginine-vasotocin. Amer. J. Physiol. 210, 191–197 (1966).PubMedGoogle Scholar
  406. —, R.A. Munsick, and H.B. Van Dyke: Pharmacological evidence for the presence of Argi-nine-vasotocin and oxytocin in neurohypophysial extracts from cold blooded vertebrates. Nature (Lond.) 1464-1465 (1959).Google Scholar
  407. —: Antidiuretic hormones. Circulation. 21, 1027–1037 (1960).PubMedCrossRefGoogle Scholar
  408. Sawyer, W.H., R. A. Munsick, and H.B. Van Dyke: Evidence for the presence of Arginine-vasotocin (8-arginine-oxytocin) and oxytocin in neurohypophysial extracts from amphibians and reptiles. Gen. comp. Endocr. 1, 30–36 (1961a).PubMedCrossRefGoogle Scholar
  409. H.B. Van Dyke —: Pharmacological Characteristics of the active principles in neurohypophysial extracts from several species of fishes. Endocrinology 68, 215–225 (1961b).PubMedCrossRefGoogle Scholar
  410. —, and G. E. Pickford: Neurohypophyseal principles of Fundvlus heteroclutus: Characteristics and seasonal changes. Gen. comp. Endocr. 3, 439–445 (1963).CrossRefGoogle Scholar
  411. —, and M. K. Sawyer: Adaptative responses to neurohypophyseal fractions in vertebrates. Physiol. Zool. 25, 84–98 (1952).Google Scholar
  412. —, and R. M. Schisgall: Increased permeability of the frog bladder to water in response to dehydration and neurohypophysial extracts. Amer. J. Physiol. 187, 312–314 (1956).PubMedGoogle Scholar
  413. Schally, A.V., and M. Saffran: Effect of histamine, hog vasopressin and corticotrophin releasing factor (CRF) on ACTH release in vitro. Proc. Soc. exp. Biol. (N.Y.) 92, 636–667 (1956).Google Scholar
  414. —, and B. Zimmermann: A corticotrophin releasing factor. Partial purification and amino-acid composition. Biochem. J. 70, 97–103 (1958).PubMedGoogle Scholar
  415. Schiebler, T.H., u. V.H. Brehm: Über jahreszyklische und altersbedingte Veränderungen in den neurosekretorischen Systemen von Teleostiern. Naturwissenschaften 45,450–451 (1958).CrossRefGoogle Scholar
  416. Schmidt-Nielsen, B., and P. Lee: Kidney function in the crab-eating frog (Rana cancrivora). J. exp. Biol. 39, 167–177 (1962).PubMedGoogle Scholar
  417. Schmidt-Nielsen, K.: The salt secreting gland of marine birds. Circulation 21,955–967 (1960).PubMedCrossRefGoogle Scholar
  418. —, and R. P. Forster: The effect of dehydration and low temperature on renal function in the bullfrog. J. cell. comp. Physiol. 44, 233–246 (1954).CrossRefGoogle Scholar
  419. —, C.B. Jørgensen, and H. Osaki: Extrarenal salt excretion in birds. Amer. J. Physiol. 193, 101–107 (1958).PubMedGoogle Scholar
  420. Schoessler, M.A.: Metabolic effects of neurohypophysial hormones and adrenosine 3′-5′ monophosphate. In: Oxytocin, vasopressin and their structural analogues, pp. 177-183. Ed. by J. Rudinger. Prague 1964.Google Scholar
  421. Schreiber, B.V., et O. Schreiber: Réaction de Brunn chez les Axolotls. C.R. Soc. Biol. (Paris) 145, 619–620 (1950).Google Scholar
  422. Schreibman, M. P., and K.D. Kallman: Effects of hypophysectomy on Xiphophorus. Amer. Zool. 3, 556 (1963).Google Scholar
  423. Schwartz, I.L., and L.M. Livingston: Cellular and molecular aspects of the antidiuretic action of vasopressins and related peptides. Vitam. u. Horm. 22, 261–359 (1964).CrossRefGoogle Scholar
  424. —, and H. Rasmussen: Unpublished data. In: Cellular and molecular aspects of the antidiuretic action of vasopressins and related peptides. Ed. by I.L. Schwartz and L.M. Livingston. Vitam. u. Horm. 22, 261–359 (1964).CrossRefGoogle Scholar
  425. —, and J. Rudinger: Activity of neurohypophysial hormone analogues lacking a disulfide bridge. Proc. nat. Acad. Sci. (Wash.) 52, 1044–1045 (1964).CrossRefGoogle Scholar
  426. Scothorne, R. J.: On the response of the duck and the pigeon to intravenous hypertonic saline solutions. Quart. J. exp. Physiol. 44, 200–207 (1959).PubMedGoogle Scholar
  427. Sexton, A.W.: Factors influencing the uptake of sodium against a concentration gradient in the goldfish gill. Thesis. Univ. Missouri (1955).Google Scholar
  428. Shannon, J. A.: The excretion of uric acid by the chicken. J. cell. comp. Physiol. 11, 135–148 (1938).CrossRefGoogle Scholar
  429. —: The control of the renal excretion of water. II. The effect of variations in the state of hydra-tion on water excretion in dogs with diabetes insipidus. J. exp. Med. 76, 371–386 (1942).PubMedCrossRefGoogle Scholar
  430. Sharp, G.W.G., and A. Leaf: Biological action of aldosterone in vitro. Nature (Lond.) 202, 1185–1188 (1964).CrossRefGoogle Scholar
  431. —: Mechanism of action of aldosterone. Physiol. Rev. 46, 593–633 (1966).PubMedGoogle Scholar
  432. Sharratt, B.M., I. Chester Jones, and D. Bellamy: Adaptation of the silver eel (Anguilla anguilla) to sea water and to artificial media together with observations on the role of the gut. Comp. Biochem. Physiol. 11, 19–30 (1964).PubMedCrossRefGoogle Scholar
  433. Shirley, H. V., and A. V. Nalbandov: Effects of transecting hypophyseal stalks in laying hens. Endocrinology 58, 694–700 (1956a).PubMedCrossRefGoogle Scholar
  434. —: Effects of neurohypophysectomy in domestic chickens. Endocrinology 58, 477–483 (1956b).PubMedCrossRefGoogle Scholar
  435. Shoemaker, V. H.: The effects of dehydration on electrolyte concentrations in a toad, Bufo marinus. Comp. Biochem. Physiol. 13, 261–271 (1964).PubMedCrossRefGoogle Scholar
  436. —: The stimulus for the water balance response to dehydration in toads. Comp. Biochem. Physiol. 15, 81–87 (1965).PubMedCrossRefGoogle Scholar
  437. Skadhauge, E.: Effects of unilateral infusion of arginine vasotocin into the portal circulation of the avian kidney. Acta endocr. (Kbh.) 47, 321–330 (1964).Google Scholar
  438. Smelik, P. G., and D. De Wied: Corticotrophin releasing action of adrenaline, serotonin and pitressin. Experientia (Basel) 14, 17–18 (1958).CrossRefGoogle Scholar
  439. Smith, H.W.: The absorption and excretion of water and salts by marine teleosts. Amer. J. Physiol. 93, 480–505 (1930).Google Scholar
  440. —: Water regulation and its evolution in fishes. Quart. Rev. Biol. 7, 1–26 (1932).CrossRefGoogle Scholar
  441. Sobel, H., R. S. Levy, J. Marmorston, S. Schapiro, and S. Rosenfeld: Increased excretion of urinary corticoids by guinea pigs following administration of pitressin. Proc. Soc. exp. Biol. (N.Y.) 89, 10–13 (1955).Google Scholar
  442. Sokol, H.W.: Cytological changes in the teleost pituitary gland associated with the reproductive cycle. J. Morph. 109, 219–236 (1961).PubMedCrossRefGoogle Scholar
  443. Sperber, I.: Excretion. In: Biology and comparative physiology of birds, pp. 469–492. Ed. by A. J. Marshall. New York and London: Academic Press 1960.Google Scholar
  444. Steen, W.B.: On the permeability of the frog’s bladder to water. Anat. Rec. 43,215–220 (1929).CrossRefGoogle Scholar
  445. Steggerda, F.R.: The relation of Pitressin to water interchange in frogs. Amer. J. Physiol. 98, 255–261 (1931).Google Scholar
  446. —: Comparative study of water metabolism in amphibians injected with pituitrin. Proc. Soc. exp. Biol. (N.Y.) 36, 103–106 (1937).Google Scholar
  447. —, and M.E. Jones: Studies on water metabolism in normal and hypophysectomized frogs. Amer. J. Physiol. 112, 397–400 (1935).Google Scholar
  448. Stewart, W. C.: Effect of mammalian (posterior lobe) pituitary extract on water balance of frogs when placed in different osmotic environments. Amer. J. Physiol. 157,412–417 (1949).PubMedGoogle Scholar
  449. Strahan, R., and H. Waring: The effect of pituitary posterior lobe extracts on the blood pressure of the fowl. Aust. J. exp. Biol. med. Sci. 32, 192–205 (1954).Google Scholar
  450. Sturkie, P. D., and Yu-Chong Lin: Release of vasotocin and oviposition in the hen. J. Endocr. 35, 325–326 (1966).PubMedCrossRefGoogle Scholar
  451. Stutinsky, F.: Modalités de la neurosecretion dans le noyau préoptique de l’anguille. Bull. Soc. Zool. France 77, 276–284 (1952).Google Scholar
  452. —: La neurosécrétion chez l’Anguille normale et hypophysectomisée. Z. Zeilforsch. 173, 1096 à 2008 (1953).Google Scholar
  453. —, J. Schneider, et P. Denoyelle: Dosage de l’ACTH sur le rat normal et influence de la présence des principes posthypophysaires. Ann. Endocr. (Paris) 13, 641–650 (1952).Google Scholar
  454. Suska-Brzezinska, E., and Z. Ewy: Oxytocinase in hen serum. Bull. Acad. polon. Sci. Biol. 13, 17–21 (1965).Google Scholar
  455. Sutherland, E.W., and T.W. Rall: Fractionation and characterisation of a cyclic adenine ribonucleotide formed by tissue particles. J. biol. Chem. 232, 1077–1091 (1957).Google Scholar
  456. —: The relation of adenosine 3′-5′ phosphate and phosphorylase to the actions of catechol-amines and other hormones. Pharmacol. Rev. 12, 265–299 (1960).Google Scholar
  457. Swift, D. R., and G. E. Pickford: Seasonal variations in the hormone content of the pituitary gland of the perch (Perca fluviatilis L.). Gen. comp. Endocr. 5, 354–365 (1965).CrossRefGoogle Scholar
  458. Tanaka, K., and S. Nakajo: Oxytocin in the neurohypophysis of the laying hen. Nature (Lond.) 187, 245 (1960).CrossRefGoogle Scholar
  459. —: Participation of neurohypophysial hormone in oviposition in the hen. Endocrinology 70, 453–458 (1962).PubMedCrossRefGoogle Scholar
  460. Templeton, J. A.: Respiration and water loss at the higher temperatures in the desert iguana Dipsosaurus dorsalis. Physiol. Zool. 33, 136–145 (1960).Google Scholar
  461. Thorson, T., and A. Svihla: Correlation of the habitats of amphibians with their ability to survive the loss of water. Ecology 24, 374–381 (1943).CrossRefGoogle Scholar
  462. Thorson, T.B.: The relationship of water economy to terrestrialism in amphibians. Ecology 36, 100–116 (1955).CrossRefGoogle Scholar
  463. Tramezzani, J.H., y J. V. Uranga: Variaciones de la substancia Gomori positiva y activitad antidiuretica en la neurohypofisis de sapos hidratos y deshidratos. Rev. Soc. argent. Biol. 30, 148–151 (1954).PubMedGoogle Scholar
  464. Tuurala, O.: Über den Einfluß der osmotischen Belastung auf die Neurosekretion der Klein fische Gasterosteus aculeatus L. und Phoxinus laevis. Agass. aus dem Brackwasser des Finnischen Meerbusens. Ann. Acad. Sci. Fenn. Biol. 36, 1–9 (1957).Google Scholar
  465. Ussing, H. H.: Some aspects of the application of tracers in permeability studies. Advanc. Enzymol. 13, 21–65 (1952).Google Scholar
  466. —: The relation between active ion transport and bioelectric phenomena. Rio de Janeiro: In-stituto de Biofisica 1955.Google Scholar
  467. —: The alkali metal ions in biology. I. The alkali metal ions in isolated systems and tissues, pp. 49–129. Berlin-Göttingen-Heidelberg: Springer 1960.CrossRefGoogle Scholar
  468. —: Transport of electrolytes and water across epithelia. Harvey Lect. series 59 (1965).Google Scholar
  469. —, T.U. Biber, and N.S. Bricker: Exposure of the isolated frog skin to high potassium concentrations at the internal surface. II. Changes in epithelial cell volume, resistance, and response to antidiuretic hormone. J. gen. Physiol. 48, 425–434 (1965).CrossRefPubMedGoogle Scholar
  470. Ussing, H.H., and V. Koefoed-Johnsen: Nature of the frog skin potential. Abstr. Comm. 20th Int Physiol. Congr., p. 511. Brussels 1956.Google Scholar
  471. —, and E.E. Windhager: Active sodium transport at the cellular level. In: Water and electrolyte metabolism, part II. Ed. by J. De Graeff and B. Leijnse. Amsterdam: Elsevier Publ. Co. 1964a.Google Scholar
  472. —: Nature of shunt path and active sodium transport path through frog skin epithelium. Acta physiol. scand. 61, 484–504 (1964b).PubMedGoogle Scholar
  473. —, and K. Zerahn: Active transport of sodium as the source of electric current in the short circuited isolated frog skin. Acta physiol. scand. 23, 110–127 (1951).PubMedCrossRefGoogle Scholar
  474. Uranga, J.: Absorcion de Agua por la piel del sapo. Rev. Soc. argent. Biol. 34, 233–238 (1958).Google Scholar
  475. —: Action de l’ocytocine et de la température sur le filtrat glomérulaire du crapaud. C.R. Soc. Biol. (Paris) 155, 173–174 (1961).Google Scholar
  476. —, y G. Qintana: Absorcion de aqua en la vejiga del sapo. Rev. Soc. argent. Biol. 34, 75–81 (1958).Google Scholar
  477. — and W.H. Sawyer: Renal responses of the bullfrog to oxytocin, Arginine vasotocin and frog neurohypophysial extract. Amer. J. Physiol. 198, 1887–1890 (1960).Google Scholar
  478. Verney, E.B.: The antidiuretic hormone and the factors which determine its release. Proc. roy. Soc. (Lond.) 135, 25–106 (1947).CrossRefGoogle Scholar
  479. Vivien, J.H., et J. Schott: Activité gonadotrope des autogreffes antéhypophysaires chez Rana temporaria. L. C.R. Acad. Sci. (Paris) 244, 1263–1265 (1957).Google Scholar
  480. Vogel, G.: Weitere Daten zur Physiologie der Harnbereitung beim Truthuhn (Meleagris pavo), Konzentrierungsvermögen und Mechanismus. Pflügers Arch. ges. Physiol. 279, R. 29 (1964).Google Scholar
  481. —, u. I. Stoeckert: Vergleichende stop-flow-Untersuchungen an Nieren mit geringem und ausgeprägtem Konzentrierungsvermögen und wenig und gut ausgebildetem System Henle-scher Schleifen-Versuche am Truthuhn (Meleagris pavoL.) und an der weißen Ratte (Battus rattus)Pflügers Arch. ges. Physiol. 283, 160–170 (1965).CrossRefGoogle Scholar
  482. Walker, A.M., Cl. Hudson, T.J. Findley, and A.N. Richards: The total molecular concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia. The site of chloride reabsorption. Amer. J. Physiol. 118, 121–129 (1937).Google Scholar
  483. Waring, H., L. Morris, and G. Stephens: The effect of pituitary posterior lobe extracts on the blood pressure of the pigeon. Aust. J. exp. Biol. med. Sci. 34, 235–238 (1956).PubMedCrossRefGoogle Scholar
  484. White, H.L.: Observations on the nature of glomerular activity. Amer. J. Physiol. 90, 689 to 704 (1929).Google Scholar
  485. Whittembury, G.: Action of antidiuretic hormone on the equivalent pore radius at both surfaces of the epithelium of the isolated frog skin. J. gen. Physiol. 46, 117–130 (1962).PubMedCrossRefGoogle Scholar
  486. —, and F. C. Herrera: Electrical potential profile on the toad skin epithelium. J. gen. Physiol. 47, 795–808 (1964).CrossRefPubMedGoogle Scholar
  487. —, N. Sugino, and A. K. Solomon: Effect of antidiuretic hormone and calcium on the equivalent pore radius of kidney slices from Necturus. Nature (Lond.) 20, 700–701 (1960).Google Scholar
  488. Wikgren, J. B.: Osmotic regulation on some aquatic animals with special reference to the influence of temperature. Acta Zool. fennica 71, 1–102 (1953).Google Scholar
  489. Wilhelmi, A.E., G.E. Pickford, and W.H. Sawyer: Initiation of the spawning reflex response in Fundulus by the administration of fish and mammalian neurohypophysial preparations and synthetic oxytocin. Endocrinology 57, 243–252 (1955).PubMedCrossRefGoogle Scholar
  490. Wingstrand, K. G.: The structure and development of the avian pituitary from a comparative and functional viewpoint. Lund: G.W.K. Gleerup 1951.Google Scholar
  491. —: The structure of the pituitary in the African lungfish, Protopterus annecteus (Owen). Vidensk. Medd. dansk naturhist. Foren 118, 193–210 (1956).Google Scholar
  492. —: Attempts at a comparison between the neurohypophysial region in fishes and tetrapods with particular regard to amphibians. In: Comparative endocrinology, p. 393. Ed. by A. Gorbman. New York: J. Wiley 1959.Google Scholar
  493. Wirz, H.: Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv. physiol. pharmacol. Acta 14, 353–362 (1956).PubMedGoogle Scholar
  494. —: The location of antidiuretic action in the mammalian kidney. In: The neurohypophysis, pp. 157–159. Ed. by H. Heller. London: Butterworths 1957.Google Scholar
  495. —, B. Hargitay u. W. Kuhn: Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helv. physiol. pharmacol. Acta 9, 196–207 (1951).PubMedGoogle Scholar
  496. Wooley, P.: The effect of posterior lobe pituitary extracts on blood pressure in several vertebrate classes. J. exp. Biol. 36, 453–458 (1959).Google Scholar
  497. —, and H. Waring: Responses of the perfused fowl leg to posterior lobe pituitary extracts. Aust. J. exp. Biol. med. Sci. 36, 447–456 (1959).Google Scholar
  498. Yasuda, M.: The functional relationship between the diencephalon and the reproductive organs in the fowl. Jap. J. Zootech. Sci. 28, 69–75 (1957).Google Scholar
  499. Zerahn, K.: Oxygen consumption and active sodium transport in the isolated and short circuited frog skin. Acta physiol. scand. 36, 300–318 (1956).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • François Morel
  • Serge Jard

There are no affiliations available

Personalised recommendations