Skip to main content

Polyene Antibiotics

  • Chapter
Book cover Mechanism of Action

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 1))

Abstract

The early clinical and economic success of antibacterial antibiotics prompted many laboratories to undertake a search for products of natural origin that would be equally effective in the treatment of fungal infections. These endeavors have led to the isolation and characterization of numerous antibiotics, which share certain chemical and biological properties, and are now designated as the polyene antibiotics. Although polyene antibiotics have been known since the discovery of nystatin by Hazen and Brown (in 1950), it is only within recent years that sufficient data has accumulated to allow a discussion of their mechanism of action in other than broadly descriptive terms. The polyenes have attracted the attention of numerous investigators because these antibiotics were toxic to fungi, yet had no effect on bacteria. Thus, the polyenes promised to reveal some interesting biochemical differences between bacteria and fungi. Delay in understanding the mechanism of polyene antibiotic action can therefore not be attributed to a lack of interest but, instead, to the gradual realization that very few antibiotics inhibit simple metabolic pathways. Most antibiotics interfere with the formation or function of macromolecules and subcellular structures (Davis and Feingold, 1962). Such is the case with the polyenes, and, in this review, we shall present in approximate chronological order the evidence which indicates that:

  1. 1.

    The polyene antibiotics cause permeability alterations in sensitive organisms which lead to the loss of essential cytoplasmic constituents culminating in cell death.

  2. 2.

    The cell membrane is the site of action of the polyene antibiotics and that, as a result of polyene binding, it is no longer able to function as a selective restraining barrier.

  3. 3.

    The selective toxicity of the polyene antibiotics is due to interaction with a unique component present only in the membranes of sensitive organisms and that this component is a sterol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asselineau, J., and E. Lederer: Bacterial lipids. In: Lipide metabolism (K. Bloch, ed.). New York: John Wiley & Sons 1960.

    Google Scholar 

  • Bangham, A. D., and R. W. Horne: Action of saponin on biological cell membranes. Nature 196, 952–953 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A. D., J. T. Dingle, and J. A. Lucy: Studies on the mode of action of excess vitamin A. 9. Penetration of lipid monolayers by compounds in the vitamin A series. Biochem. J. 90, 133–140 (1964).

    PubMed  CAS  Google Scholar 

  • Bangham, A.D., and R. W. Horne: Negative staining of phospholipids and their structural modification by surface active agents as observed in the electron microscope. J. Mol. Biol. 8, 660–668 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Birch, A. J., C. W. Holzapfel, R. W. Richards, C. Djerassi, P. C. Seidel, M. Suzuki, J. Westley, and J. D. Dutcher: Nystatin. Part VI. Chemistry and partial structure of the antibiotic. Tetrahedron Letters 23, 1491–1497 (1964).

    Article  Google Scholar 

  • Blank, H.: Antifungal antibiotics in clinical medicine. Arch. Dermatol. 75, 184–189 (1957).

    Article  CAS  Google Scholar 

  • Bradley, S. G.: Interactions between phosphate and nystatin in Candida stellatoidea. Proc. Soc. Exptl. Biol. Med. 98, 786–789 (1958).

    CAS  Google Scholar 

  • Bradley, S. G., and L. A. Jones: Mechanisms of action of antibiotics. Ann. N.Y. Acad. Sci. 89, 122–133 (1960).

    Article  CAS  Google Scholar 

  • Brandriss, M. W., S. M. Wolff, R. Moores, and F. Stohlman: Anemia induced by amphotericin B. J. Am. Med. Assoc. 189, 89–92 (1964).

    Article  Google Scholar 

  • Butler, W. F., D. W. Alling, and E. Cotlove: Potassium loss from human erythrocytes exposed to amphotericin B. Proc. Soc.Exptl. Biol. Med. 118, 297–300 (1964).

    Google Scholar 

  • Carter, P. W., I. M. Heilbron, and B. Lythgoe: The lipochromes and sterols of the algal classes. Proc. Roy. Soc. (London) B 128, 82–109 (1939).

    Article  CAS  Google Scholar 

  • Ceder, O., and R. Ryhage: The structure of filipin. Acta Chem. Scand. 18, 558–560 (1964).

    Article  CAS  Google Scholar 

  • Cirillo, V. P., M. Harsch, and J. O. Lampen: Action of the polyene antibiotics filipin, nystatin and N-acetylcandidin on the yeast cell membrane. J. Gen. Microbiol. 35, 249–259 (1964).

    PubMed  CAS  Google Scholar 

  • Cope, A. C., R. K. Bly, E. P. Burrows, O. J. Ceder, E. Ciganek, B. T. Gillis R. F. Porter, and H. E. Johnson: Fungichromin: Complete structure and absolute configuration at C26 and C27. J. Am. Chem. Soc. 84, 2170–2178 (1962).

    Article  CAS  Google Scholar 

  • Davis, B. D., and D. S. Feingold: Antimicrobial agents: mechanisms of action and use in metabolic studies. In: The bacteria, vol. IV, (I. C. Gunsalus and R. Stanier, eds.). New York: Academic Press 1962.

    Google Scholar 

  • Demel, R. A., L. L. M. VAN Deenen, and S. C. Kinsky: Penetration of lipid monolayers by polyene antibiotics. Correlation with selective toxicity and mode of action. J. Biol. Chem. 240, 2749–2753 (1965).

    PubMed  CAS  Google Scholar 

  • Dhar, M. L., V. Thaller, and M. C. Whiting: Researches on polyenes. Part VIII. The structures of lagosin and filipin. J. Chem. Soc. 1964, 842.

    Google Scholar 

  • Dingle, J. T., and J. A. Lucy: Studies on the mode of action of excess vitamin A. 5. The effect of vitamin A on the stability of the erythrocyte membrane. Biochem. J. 84, 611–621 (1962).

    PubMed  CAS  Google Scholar 

  • Dourmashkin, R. R., R. R. Dougherty, and R. J. C. Harris: Electron microscopic observations on Rous sarcoma virus and cell membranes. Nature 194, 1116–1119 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Drouhet, E., L. Hirth, and G. Lebeurier: Some aspects of the mode of action of polyene antifungal antibiotics. Ann. N.Y. Acad. Sci. 89, 134–155 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Feingold, D. S.: The action of amphotericin B on Mycoplasma laidlawii. Biochem. Biophys. Research Comm. 19, 261–267 (1965).

    Article  CAS  Google Scholar 

  • Fiertel, A., and H. Klein: On sterols in bacteria. J. Bacteriol. 78, 738–739 (1959).

    PubMed  CAS  Google Scholar 

  • Gale, G. R.: The effects of amphotericin B on yeast metabolism. J. Pharmacol. Exptl. Therap. 129, 257–261 (1960).

    CAS  Google Scholar 

  • Gale, G. R.: Cytology of Candida albicans as influenced by drugs acting on the cytoplasmic membrane. J. Bacteriol. 80, 151–157 (1963).

    Google Scholar 

  • Ghione, M., A. Sanfilippo, R. Mazzoleni e A. Migliacci: Sul meccanismo d’azione delia etruscomicina, un nuovo antibiotico polienico. Giorn. microbiol. 9, 73–82 (1961).

    CAS  Google Scholar 

  • Ghosh, A., and J. J. Ghosh: Changes in the intracellular constituents of Candida albicans on nystatin and amphotericin B treatment. Ann. Biochem. and Exptl. Med. (Calcutta) 23, 113–122 (1963 a).

    CAS  Google Scholar 

  • Ghosh, A., and J. J. Ghosh: Release of intracellular constituents of Candida albicans in presence of polyene antibiotics. Ann. Biochem. and Exptl. Med. (Calcutta) 23, 611–626 (1963 b).

    CAS  Google Scholar 

  • Ghosh, A., and J. J. Ghosh: Factors affecting the absorption of nystatin by Candida albicans. Ann. Biochem. and Exptl. Med. (Calcutta) 23, 101–112 (1963 c).

    CAS  Google Scholar 

  • Ghosh, A., and J. J. Ghosh: Absorption of amphotericin B by Candida albicans. Ann. Biochem. and Exptl. Med. 23, 603–610 (1963 d).

    CAS  Google Scholar 

  • Ghosh, A., and J. J. Ghosh: Effect of nystatin and amphotericin B on the growth of Candida albicans. Ann. Biochem. and Exptl. Med. (Calcutta) 23, 29–44 (1963 e).

    CAS  Google Scholar 

  • Ghosh, B. K.: Action of an antifungal antibiotic, nystatin, on the protozoa, Leishmania donovani. Part IV: Studies on the cytological and cytochemical changes. Ann. Biochem. and Exptl. Med. (Calcutta) 23, 193–200 (1963 a).

    CAS  Google Scholar 

  • Ghosh, B. K.: Action of an antifungal antibiotic, nystatin, on the protozoa, Leishmania donovani. Part VI: Studies on the action on isolated membrane and the isolation of antibiotic rich cell particle from L. donovani. Ann. Biochem. and Exptl. Med. (Calcutta) 23, 337–344 (1963b).

    CAS  Google Scholar 

  • Ghosh, B. K., and A. N. Chatterjee: Action of an antifungal antibiotic, nystatin, on the protozoa, Leishmania donovani. Part II: Studies on the release of intracellular constituents. Ann. Biochem. and Exptl. Med. (Calcutta) 21, 343–354 (1961).

    CAS  Google Scholar 

  • Ghosh, B. K., and A. N. Chatterjee: Leishmanicidal activity of nystatin, a polyene antifungal antibiotic: I. The probable mechanism of action of nystatin on Leishmania donovani. Antibiotics & Chemotherapy 12, 204–206 (1962a).

    CAS  Google Scholar 

  • Ghosh, B. K., and A. N. Chatterjee: Leishmanicidal activity of nystatin, a polyene antifungal antibiotic: II. Isolation of bound nystatin from cells of Leishmania donovani and its clinical application. Antibiotics & Chemotherapy 12, 221–224 (1962 b).

    CAS  Google Scholar 

  • Ghosh, B. K., and A. N. Chatterjee: Action of an antifungal antibiotic, nystatin, on the protozoa, Leishmania donovani. Part III. Studies on the lysis of the cells of L. donovani. Ann. Biochem. and Exptl. Med. (Calcutta) 23, 173–186 (1963a).

    CAS  Google Scholar 

  • Ghosh, B. K., and A. N. Chatterjee: Action of an antifungal antibiotic, nystatin, on the protozoa, Leishmania donovani. Part V: Studies on the absorption of nystatin by L. itdonovani. Ann. Biochem. and Exptl. Med. (Calcutta) 23, 309–318 (1963b).

    CAS  Google Scholar 

  • Ghosh, B. K., D. Haldar, and A. N. Chatterjee: Effect of nystatin on the metabolism of a protozoal organism, Leishmania donovani. Ann. Biochem. and Exptl. Med. (Calcutta) 20, 55–56 (1960).

    CAS  Google Scholar 

  • Glauert, A. M., J. T. Dingle, and J. A. Lucy: Action of saponin on biological cell membranes. Nature 196, 953–955 (1962).

    Article  CAS  Google Scholar 

  • Gottlieb, D., H. E. Carter, J. H. Sloneker, and A. Ammann: Protection of fungi against polyene antibiotics by sterols. Science 128, 361 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, D., H. E. Carter, J. H. Sloneker, L. C. Wu, and E. Gaudy: Mechanisms of inhibition of fungi by filipin. Phytopathology 51, 321–330 (1961).

    CAS  Google Scholar 

  • Gottlieb, D., and S. Ramachandran: Mode of action of antibiotics. I. Site of action of ascosin. Biochim. et Biophys. Acta 53, 391–396 (1961).

    Article  CAS  Google Scholar 

  • Harman, J. W., and J. G. Masterson: The mechanism of nystatin action. Irish J. Med. Sci., Ser. VI, p. 249 (1957).

    Google Scholar 

  • Harsch, M., and J. O. Lampen: Modification of K+ transport in yeast by the polyene antifungal antibiotic N-acetylcandidin. Biochem. Pharmacol. 12, 875–883 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Hebeka, E. K., and M. Solotorovsky: Development of strains of Candida albicans resistant to candidin. J. Bacteriol. 84, 237–241 (1962).

    PubMed  CAS  Google Scholar 

  • Hebeka, E. K., and M. Solotorovsky: Development of resistance to polyene antibiotics in Candida albicans. J. Bacteriol. 89, 1533–1539 (1965).

    PubMed  CAS  Google Scholar 

  • Henis, Y., and N. Grossowicz: Studies on the mode of action of antifungal heptaene antibiotics. J. Gen. Microbiol. 23, 345–355 (1960).

    PubMed  CAS  Google Scholar 

  • Hildick-Smith, G., H. Blank, and I. Sarkany: Fungus diseases and their treatment. Boston: Little, Brown & Co. 1964.

    Google Scholar 

  • Hunter, E. O., Jr., and J. McVeigh: The effects of selected antibiotics on pure cultures of algae. Am. J. Botany 48, 179–185 (1961).

    Article  CAS  Google Scholar 

  • Johnson, W., C. A. Miller, and J. H. Brumbaugh: Induced loss of pigment in planarians. Physiol. Zoöl. 35, 18–26 (1962).

    CAS  Google Scholar 

  • Kinsky, S. C.: The effect of polyene antibiotics on permeability in Neurospora crassa. Biochem. Biophys. Research Comm. 4, 353–357 (1961a).

    Article  CAS  Google Scholar 

  • Kinsky, S. C.: Alterations in the permeability of Neurospora crassa due to polyene antibiotics. J. Bacteriol. 82, 889–897 (1961b).

    PubMed  CAS  Google Scholar 

  • Kinsky, S. C.: Effect of polyene antibiotics on protoplasts of Neurospora crassa. J. Bacteriol. 83, 351–358 (1962a).

    PubMed  CAS  Google Scholar 

  • Kinsky, S. C.: a basis for the selective toxicity of polyene antifungal antibiotics. Proc. Natl. Acad. Sci. U.S. 48, 1049–1056 (1962b).

    Article  CAS  Google Scholar 

  • Kinsky, S. C.: Comparative responses of mammalian erythrocytes and microbial protoplasts to polyene antibiotics and vitamin A. Arch. Biochem. Biophys. 102, 180–188 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Kinsky, S. C.: Membrane sterols and the selective toxicity of polyene antifungal antibiotics. Antimicrobial Agents and Chemotherapy 1963, p. 384–394 (1964).

    Google Scholar 

  • Kinsky, S. C., J. Avruch, M. Permutt, H. B. Rogers, and A. A. Schonder: The lytic effect of polyene antifungal antibiotics on mammalian erythrocytes. Biochem. Biophys. Research Comm. 9, 503–507 (1962).

    Article  CAS  Google Scholar 

  • Kinsky, S. C., G. R. Gronau, and M. M. Weber: Interaction of polyene antibiotics with subcellular membrane systems. I. Mitochondria. Mol. Pharmacol. 1, 190–201 (1965).

    PubMed  CAS  Google Scholar 

  • Lampen, J. O.: Intermediary metabolism of fungi as revealed by drug reaction. In: Fungi and fungus diseases (G. Dalldorf, ed.). Springfield (111.): C. C. Thomas 1962.

    Google Scholar 

  • Lampen, J. O., and P. Arnow: Significance of nystatin uptake for its antifungal action. Proc. Soc. Exptl. Biol. Med. 101, 792–797 (1959).

    CAS  Google Scholar 

  • Lampen, J. O., and P. Arnow: Inhibition of algae by nystatin. J. Bacteriol. 82, 247–251 (1961).

    PubMed  CAS  Google Scholar 

  • Lampen, J. O., and P. M. Arnow: Differences in action of large and small polyene antifungal antibiotics. Bull. Research Council Israel 11A4, 286–291 (1963).

    Google Scholar 

  • Lampen, J. O., P.M. Arnow, Z. Borowska, and A. I. Laskin: Location and role of sterol at nystatin-binding sites. J. Bacteriol. 84, 1152–1160 (1962).

    PubMed  CAS  Google Scholar 

  • Lampen, J. O., P.M. Arnow, and R. S. Safferman: Mechanism of protection by sterols against polyene antibiotics. J. Bacteriol. 80, 200–206 (1960).

    PubMed  CAS  Google Scholar 

  • Lampen, J. O., J. W. Gill, P. M. Arnow, and A. Magana-Plaza: Inhibition of the pleuropneumonia-like organism, Mycoplasma gallisepticum, by certain polyene antifungal antibiotics. J. Bacteriol. 86, 945–949 (1963).

    PubMed  CAS  Google Scholar 

  • Lampen, J. O., E. R. Morgan, and A. Slocum: Effect of nystatin on the utilization of substrates by yeast and other fungi. J. Bacteriol. 74, 297–302 (1957).

    PubMed  CAS  Google Scholar 

  • Lampen, J. O., E. R. Morgan, A. Slocum, and P. Arnow: Absorption of nystatin by microorganisms. J. Bacteriol. 78, 282–289 (1959).

    PubMed  CAS  Google Scholar 

  • Lardy, H.A., D. Johnson, and W. C. Mcmurray: Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch. Biochem. Biophys. 78, 587–597 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Larsen, W. G., and D. J. Demis: Metabolic studies of the effect of griseofulvin and candicidin on fungi. J. Invest. Dermatol. 41, 335–342 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Lechevalier, H., E. Borowski, J. O. Lampen, and C. P. Schaffner: Water-soluble N-acetyl derivatives of heptaene macrolide antifungal antibiotics: Microbiological studies. Antibiotics & Chemotherapy 11, 640–647 (1961).

    CAS  Google Scholar 

  • Levin, E. Y., and K. Bloch: Absence of sterols in blue-green algae. Nature 202, 90–91 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Littman, M. L., M. A. Pisano, and R. M. Lanchaster: Induced resistance of Candida species to nystatin and amphotericin B. Antibiotics Ann. 1957/58, 981–987 (1958).

    Google Scholar 

  • Lucy, J. A., and J. T. Dingle: Fat-soluble vitamins and biological membranes. Nature 204, 156–160 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Lucy, J. A., and A.M. Glauert: Structure and assembly of macromolecular lipid complexes composed of globular micelles. J. Mol. Biol. 8, 727–748 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Luzzati, V., and F. Husson: The structure of the liquid-crystalline phases of lipid-water systems. J. Cell Biol. 12, 207–219 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Marini, F., P. Arnow, and J. O. Lampen: The effect of monovalent cations on the inhibition of yeast metabolism by nystatin. J. Gen. Microbiol. 24, 51–62 (1961).

    PubMed  CAS  Google Scholar 

  • Oroshnik, W., L. C. Vining, A. D. Mebane, and W. A. Taber: Polyene antibiotics. Science 121, 147–149 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Patrick, J. B., R. P. Williams, and J. S. Webb: Pimaricin. II. The structure of pimaricin. J. Am. Chem. Soc. 80, 6688–6689 (1958).

    Article  CAS  Google Scholar 

  • Perritt, A. M., A. W. Phillips, and T. Robinson: Sterol protection against pimaricin in Saccharomyces cerevisiae. Biochem. Biophys. Research Comm. 2, 432–435 (1960).

    Article  CAS  Google Scholar 

  • Posthuma, J., and W. Berends: Triplet-triplet transfer as a mechanism of a photodynamic reaction. Biochem. et Biophys. Acta 41, 538–541 (1960).

    Article  CAS  Google Scholar 

  • Posthuma, J., and W. Berends: Energy transfer in aqueous solutions. Biochem. et Biophys. Acta 51, 392–394 (1961).

    Article  CAS  Google Scholar 

  • Pressman, B. C.: Induced active transport of ions in mitochondria. Proc. Nat. Acad. Sci. U.S. 53, 1076–1083 (1965).

    Article  CAS  Google Scholar 

  • Ramachandran, S.: Studies of the mode of action of antibiotics. I. Hamycin. Hindustan Antibiotics Bull. 4, 74–79 (1961).

    Google Scholar 

  • Scholz, R., H. Schmitz, TH. Bucher U. J. O. Lampen: Über die Wirkung von Nystatin auf Bäckerhefe. Biochem. Z. 331, 71–86 (1959).

    CAS  Google Scholar 

  • Schulman, J. H., and E. K. Rideal: Molecular interaction in monolayers. I. Complexes between large molecules. Proc. Roy. Soc. (London) B 122, 29–45 (1937).

    Article  CAS  Google Scholar 

  • Seneca, H., and E. Bergendahl: Toxicity of antibiotics to snails. Antibiotics & Chemotherapy 5, 737–741 (1955).

    CAS  Google Scholar 

  • Shaw, P. D., A. M. Allam, and D. Gottlieb: Effect of filipin on the terminal electron transport system of Saccharomyces cerevisiae. Biochem. et Biophys. Acta 89, 33–41 (1964).

    CAS  Google Scholar 

  • Shockman, G., and J. O. Lampen: Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J. Bacteriol. 84, 508–512 (1962).

    PubMed  CAS  Google Scholar 

  • Slayman, C. L., and C. W. Slayman: Measurement of membrane potentials in Neurospora. Science 136, 876–877 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Stachiewicz, E., and J. H. Quastel: Amino acid transport in yeast and effects of nystatin. Canad. J. Biochem. and Physiol. 41, 397–407 (1963).

    Article  CAS  Google Scholar 

  • Stout, H. A., and J. F. Pagano: Resistance studies with nystatin. Antibiotics Ann. 1955/56, 704–710 (1956).

    Google Scholar 

  • Sutton, D. D., P. M. Arnow, and J. O. Lampen: Effect of high concentrations of nystatin upon glycolysis and cellular permeability in yeast. Proc. Soc. Exptl. Biol. Med. 108, 170–175 (1961).

    CAS  Google Scholar 

  • Vining, L. C.: The polyene antifungal antibiotics. Hindustan Antibiotics Bull. 3, 37–54 (1960).

    CAS  Google Scholar 

  • Waksman, S., and H. Lechevalier: The actinomycetes, vol. III. Antibiotics of actinomycetes. Baltimore: Williams & Wilkins Co. 1962.

    Google Scholar 

  • Walters, D. R., J. D. Dutcher, and O. Wintersteiner: The structure of mycosamine. J. Am. Chem. Soc. 79, 5076–5077 (1957).

    Article  CAS  Google Scholar 

  • Weber, M. M., and S. C. Kinsky: Effect of cholesterol on the sensitivity of Mycoplasma laidlawii to the polyene antibiotic filipin. J. Bacteriol. 89, 306–312 (1965).

    PubMed  CAS  Google Scholar 

  • Zondag, E., J. Posthuma, and W. Berends: On the mechanism of a photodynamic reaction. Biochem. et Biophys. Acta 39, 178–180 (1960).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kinsky, S.C. (1967). Polyene Antibiotics. In: Gottlieb, D., Shaw, P.D. (eds) Mechanism of Action. Antibiotics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46051-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46051-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46053-1

  • Online ISBN: 978-3-642-46051-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics