Skip to main content

Bacitracin

  • Chapter
Mechanism of Action

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 1))

Abstract

Bacitracin is produced by strains of Bacillus licheniformis. The commercial product contains a main component, bacitracin A (Fig. 1), and at least nine additional closely related polypeptides (Regna, 1959)- In neutral or slightly alkaline solution, bacitracin A is slowly transformed into bacitracin F (Fig. 2) (Regna, 1959) which has very little antibacterial activity (Hickey, 1964).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, E. P., and G. G. F. Newton: Structure and function of some sulfur containing peptides. In: CIBA foundation symposium on amino acids and peptides with antimetabolic activity, p. 205. London: J. & A. Churchill Ltd. 1958.

    Google Scholar 

  • Adler, R. H., and J. E. Snoke: Requirement of divalent metal ions for bacitracin activity. J. Bacteriol. 83, 1315 (1962).

    PubMed  CAS  Google Scholar 

  • Albert, A.: Metal-binding agents in chemotherapy: the activation of metals by chelation. In: The strategy of chemotherapy, p. 112. Cambridge: Cambridge University Press 1958.

    Google Scholar 

  • Anderson, J. S., M. Matsuhashi, M. A. Haskin, and J. L. Strominger: Lipid-phosphoacetylmuramylpentapeptide and lipid-phosphodisaccharide-pentapeptide: presumed membrane transport intermediates in cell wall synthesis. Proc. Natl. Acad. Sci. U.S. 53, 881 (1965).

    Article  CAS  Google Scholar 

  • Anker, H. S., B.A. Johnson, J. Goldberg, and F. L. Meleney: Bacitracin: methods of production, concentration, and partial purification, with a summary of the chemical properties of crude bacitracin. J. Bacteriol. 55, 249 (1948).

    CAS  Google Scholar 

  • Bare, L. N., R. F. Wiseman, and O. J. Abbott: Levels of antibiotics in the intestinal tract of chicks fed bacitracin and penicillin. Poultry Sci. 44, 489 (1965).

    Article  CAS  Google Scholar 

  • Brock, T. D.: Effect of antibiotics and inhibitors on M protein synthesis. J. Bacteriol. 85, 527 (1963).

    PubMed  CAS  Google Scholar 

  • Chornock, F. W.: Zinc bacitracin feed supplement. U.S.Patent 2, 809, 892 (1957).

    Google Scholar 

  • Creaser, E. H.: The induced (adaptive) biosynthesis of β-galactosidase in Staphylococcus aureus. J. Gen. Microbiol. 12, 288 (1955).

    PubMed  CAS  Google Scholar 

  • Foye, W. A.: Role of metal-binding in the biological activities of drugs. J. Pharmaceut. Sci. 50, 93 (1961).

    Article  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 15. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem. J. 53, 493 (1953).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria. 21. The effect of nucleic acids on the development of certain enzymatic activities in disrupted staphylococcal cells. Biochem. J. 59, 675 (1955).

    PubMed  CAS  Google Scholar 

  • Garbutt, J. T., A. L. Morehouse, and A. M. Hanson: Metal binding properties of bacitracin. J. Agr. Food Chem. 9, 285 (1961).

    Article  CAS  Google Scholar 

  • Gezon, H. M., D. M. Fasan, and G. R. Collins: Antibiotic studies on beta hemolytic streptococci. VII. Acquired in vitro resistance to bacitracin. Proc. Soc. Exptl. Biol. Med. 74, 505 (1950).

    CAS  Google Scholar 

  • Gross, H. M.: Zinc bacitracin in pharmaceutical preparations. Drug & Cosmetic Ind. 75, 612 (1954).

    Google Scholar 

  • Hancock, R., and P. C. Fitz-James: Some differences in the action of penicillin, bacitracin, and vancomycin on Bacillus megaterium. J. Bacteriol. 87, 1044 (1964).

    PubMed  CAS  Google Scholar 

  • Helms, V., and E.D. Weinberg: Mechanism of antibacterial action of N1,N5-di (3, 4-dichlorobenzyl)-biguanide. In: Antimicrobial Agents and Chemotherapy 1962, p. 241. Ann Arbor (Mich.): Amer. Soc. Microbiol. 1963

    Google Scholar 

  • Hickey, R. J.: Bacitracin, its manufacture and uses. Progr. Ind. Microbiol. 5, 95 (1964).

    Google Scholar 

  • Hinton, N. A., and J. H. Orr: The effect of antibiotics on the toxin production of Staphylococcus aureus. Antibiotics & Chemotherapy 10, 758 (1960).

    CAS  Google Scholar 

  • Hodge, E. B., and G. J. Lafferty: Zinc bacitracin-containing troche. U.S. Patent 2, 803, 584 (1957).

    Google Scholar 

  • Jawetz, E.: Polymyxin, Colistin, and bacitracin. Pediat. Clin. North Am. 8, 1057 (1961).

    CAS  Google Scholar 

  • Krawitt, E. L., and J. R. Ward: L phase variants related to antibiotic inhibition of cell wall biosynthesis. Proc. Soc. Exptl. Biol. Med. 114, 629 (1963).

    CAS  Google Scholar 

  • Lowbury, E. J. L.: Clinical problems of drug-resistant pathogens. Brit. Med. Bull. 16, 73 (1960).

    PubMed  CAS  Google Scholar 

  • Mandelstam, J., and H. J. Rogers: The incorporation of amino acids into the cellwall mucopeptide of staphylococci and the effect of antibiotics on the process. Biochem. J. 72, 654 (1959).

    PubMed  CAS  Google Scholar 

  • Maxted, W. R.: The use of bacitracin for identifying group A haemolytic streptococci. J. Clin. Pathol. 6, 224 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Molander, C. W., B. M. Kagan, H. J. Weinberger, E. M. Heimlich, and R. J. Busser: Induction by antibiotics and comparative sensitivity of L-phase variants of Staphylococcus aureus. J. Bacteriol. 88, 591 (1964).

    PubMed  CAS  Google Scholar 

  • Park, J. T.: Inhibition of synthesis of bacterial mucopeptide or protein by certain antibiotics and its possible significance for microbiology and medicine. In: Antimicrobial Agents Ann. 1960, p. 338. New York: Plenum Press 1961.

    Google Scholar 

  • Petran, E. I.: Comparison of the fluorescent antibody and the bacitracin disk methods for identification of group A streptococci. Amer. J. Clin. Pathol. 41, 224 (1961).

    Google Scholar 

  • Regna, P. P.: The chemistry of antibiotics. In: Antibiotics; their chemistry and nonmedical uses, p. 58. New York: D. van Nostrand Co., Inc. 1959

    Google Scholar 

  • Rotta, J., W. W. Karakawa, and R. M. Krause: Isolation of L forms from group A streptococci exposed to bacitracin. J. Bacteriol. 89, 1581 (1965).

    PubMed  CAS  Google Scholar 

  • Schroeder, H.A., and J. J. Balassa: Abnormal trace metals in man: cadmium. J. Chronic Diseases 14, 236 (1961).

    Article  CAS  Google Scholar 

  • Sharp, V. E., A. Arriagada, G. G. F. Newton, and E.P. Abraham: Ayfivin: extraction, purification, and chemical properties. Brit. J. Exptl. Pathol. 30, 444 (1949).

    CAS  Google Scholar 

  • Shockman, G. D., and J.O. Lampen: Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J. Bacteriol. 84, 508 (1962).

    PubMed  CAS  Google Scholar 

  • Smith, J. L., and E. D. Weinberg: Mechanisms of antibacterial action of bacitracin. J. Gen. Microbiol. 28, 559 (1962).

    PubMed  CAS  Google Scholar 

  • Snoke, J. E., and N. Cornell: Protoplast lysis and inhibition of growth of Bacillus licheniformis by bacitracin. J. Bacteriol. 89, 415 (1965).

    PubMed  CAS  Google Scholar 

  • Stone, J. L.: Induced resistance to bacitracin in cultures of Staphylococcus aureus. J. Infectious Diseases 85, 91 (1949).

    Article  CAS  Google Scholar 

  • Szybalski, W., and V. Bryson: Genetic studies on microbial cross resistance to toxic agents. 1. Cross resistance of Escherichia coli to fifteen antibiotics. I. Bacteriol. 64, 489 (1952).

    CAS  Google Scholar 

  • Tipton, I. H., and M. J. Cook: Trace elements in human tissue. Part II. Adult subjects from the United States. Health Physics 9, 103 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Tipton, I. H., H. A. Schroeder, H. M. Perry JR., and M. J. Cook: Trace elements in human tissue. Part III. Subjects from Africa, the Near and Far East, and Europe. Health Physics 11, 403 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Vohra, P., and F. H. Kratzer: Influence of various chelating agents on the availability of zinc. J. Nutrition 82, 249 (1964).

    CAS  Google Scholar 

  • Ward, J. R., S. Madoff, and L. Dienes: In vitro sensitivity of some bacteria, their L forms and pleuropneumonia-like organisms to antibiotics. Proc. Soc. Exptl. Biol. Med. 97, 132 (1958).

    CAS  Google Scholar 

  • Weinberg, E. D.: The mutual effects of antimicrobial compounds and metallic cations. Bacteriol. Rev. 21, 46 (1957).

    PubMed  CAS  Google Scholar 

  • Weinberg, E. D.: Enhancement of bacitracin by the metallic ions of group IIB. In: Antibiotics Annual 1958/59, 924. New York (N.Y.): Medical Encyclopedia, Inc. 1959.

    Google Scholar 

  • Weinberg, E. D.: Known and suspected roles of metal coordination in actions of antimicrobial drugs. Federation Proc. 20 (Suppl. 10), 132 (1961).

    Google Scholar 

  • Weinberg, E. D.: Antibacterial action of polyamines in presence of trace metals: enhancement by cadmium. In: Antimicrobial Agents and Chemotherapy 1963, 573. Ann Arbor (Mich.): Amer. Soc. Microbiol. 1964.

    Google Scholar 

  • Weinberg, E. D.: Microbiological method for estimation of stability constants of bacitracin complexes of zinc, cadmium, and manganese. In: Antimicrobial Agents and Chemotherapy 1964, 120. Ann Arbor (Mich.): Amer. Soc. Microbiol. 1965

    Google Scholar 

  • Williams, R. E. O.: L forms of Staphylococcus aureus. J. Gen. Microbiol. 33, 325 (1963).

    PubMed  CAS  Google Scholar 

  • Wise, E. M., and J. T. Park: Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc. Natl. Acad. Sci. U.S. 54, 75 (1965).

    Article  CAS  Google Scholar 

  • Ziffer, J., and T. J. Cairney: Bacitracin composition as feed additive. U.S. Patent 3, 025, 216 (1962).

    Google Scholar 

  • Zinn, E., and F. W. Chornock: Production of bacitracin. U.S.Patent 2, 834, 711 (1958).

    Google Scholar 

  • Zorn, R. A.: Stabilization of bacitracin. U.S. Patent 2, 903, 357 (1959).

    Google Scholar 

  • Zorn, R. A.: Bacitracin product. U.S. Patent 3, 021, 217 (1962).

    Google Scholar 

  • Zorn, R. A., R. C. Malzahn, and A. M. Hanson: Bacitracin. U.S. Patent 2, 985, 534 (1961).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Weinberg, E.D. (1967). Bacitracin. In: Gottlieb, D., Shaw, P.D. (eds) Mechanism of Action. Antibiotics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46051-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46051-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46053-1

  • Online ISBN: 978-3-642-46051-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics