Skip to main content

D-Cycloserine and O-Carbamyl-D-serine

  • Chapter
Mechanism of Action

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 1))

Abstract

Alanine is a major component of the peptidoglycan (mucopeptide) and teichoic acid moieties of bacterial cell walls (Salton, 1964). Part of the alanine in the wall is present as the D-isomer (39–50% in Streptococcus faecalis (Ikawa and Snell, 1960; Toennies and Shockman, 1959) and 67% in Staphylococcus aureus (Strominger et al., 1959). Salton (1961) has proposed that the occurrence of D-amino acids in the wall renders the bacterium resistant to proteolytic enzymes. Thus, it may be argued that the introduction of D-amino acids, e.g. D-alanine and D-glutamic acid, into the bacterial wall is a protective mechanism that the bacterium possesses against its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alioto, M. R.: In vitro and in vivo action of cycloserine on L-alanine-alpha-ketoglutaric transaminases in rat liver. Biochim. Appl. 9, 238 (1962).

    CAS  Google Scholar 

  • Anderson, J. S., M. Matsuhashi, M. A. Haskin, and J. L. Strominger: Lipid-phosphodisaccharide-pentapeptide: A presumed membrane transport intermediate in the biosynthesis of bacterial cell walls. Proc. Natl. Acad. Sci. U.S. 53, 881 (1965).

    Article  CAS  Google Scholar 

  • Aoki, T.: The mode of action of cycloserine. II. The influence on glutamic-aspartic transamination. Kekkaku 32, 544 (1957); cited from Chem. Abstr. 52, 7427 (1958).

    PubMed  CAS  Google Scholar 

  • Azarkh, R. M., A. E. Braunstein, T. S. Paskhina, and T. S. Syui: The Effect of the optical isomers of cycloserine on the activity of certain transaminases. Biokhimiya 25, 954 (1960); Biochemistry (U.S.S.R.) 25, 741 (1961).

    CAS  Google Scholar 

  • Barbieri, P., A. DI Marco, I. Fuoco, and A. Rusconi: Investigations on the mode of action of cycloserine upon protein synthesis in Escherichia coli. Biochem. Pharmacol. 3, 101 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Bonavita, V.: Purification and properties of glutamic-oxaloacetic transaminase from human brain. J. Neurochem. 4, 275 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Bondi, A., J. Kornblum, and C. Forte: Inhibition of antibacterial activity of cycloserine by alpha-alanine. Proc. Soc. Exptl. Biol. Med. 96, 270 (1957).

    CAS  Google Scholar 

  • Bottero, A., G. Perna, G. C. Colombi, and F. Leidi: Experimental and clinical studies on cycloserine resistance. Giorn. ital. tuberc. 12, 10 (1958).

    CAS  Google Scholar 

  • Braunstein, A. E.: Studies on the properties, mode of action, and selective inhibition of transaminase, In P. A. E. Desnuelle (Editor), Proceedings of the Fifth Internat. Congr. of Biochemistry, Moscow, 1962, vol. IV, p. 280. New York: Pergamon Press 1963.

    Google Scholar 

  • Braunstein, A. E., R. M. Azarkh, and T. A. Syui: Kinetics of inhibition of transaminases by cycloserine. Biokhimiya 26, 882 (1961); Biochemistry (U.S.S.R.) 27, 760 (1962).

    Google Scholar 

  • Brettschneider, H., u. W. Vetter: Synthese des DL-4-Amino-3-isoxazolidons sowie seiner D-Form, des natürlichen Cycloserins. Monatsh. Chem. 90, 799 (1959).

    Article  Google Scholar 

  • Brettschneider, H., W.Vetter u. E. Semenitz: Synthese und antibakterielle Eigenschaften des D, L-N, N-Dimethylcycloserins. Monatsh. Chem. 89, 627 (1958).

    Article  Google Scholar 

  • Breger, M. A.: The biological activity of cycloserine and some of its analogues and homologues. Antibiotiki 6, 26 (1961).

    PubMed  CAS  Google Scholar 

  • Buogo, A., A. DI Marco, M. Ghione, A. Migliacci, and A. Sanfilippo: Antagonism of D-and L-alanine of the enantiomorphic forms of cycloserine. Giorn. microbiol. 6, 131 (1958); cited from Chem. Abstr. 54, 17538 (1960).

    CAS  Google Scholar 

  • Chambers, P., J. Bing, J. Lynch, F. C. Neuhaus, and R. W. Brockman: Effects of cycloserine and related compounds on cell wall synthesis in sensitive and resistant Escherichia coli. Bacteriol. Proc. 119 (1963).

    Google Scholar 

  • Chatterjee, A.N., and J. T. Park: Biosynthesis of cell wall mucopeptide by a particulate fraction from Staphylococcus aureus. Proc. Natl. Acad. Sci. U.S. 51, 9 (1964).

    Article  CAS  Google Scholar 

  • Ciak, J., and F. E. Hahn: Mechanisms of action of antibiotics. II. Studies on the modes of action of cycloserine and its L-stereoisomer. Antibiotics & Chemotherapy 9, 47 (1959).

    CAS  Google Scholar 

  • Cohen, A. C., and I. C. Dross: High-dosage cycloserine in treatment failures. Transactions of the 19th conference on the chemotherapy of tuberculosis. Veterans Administration-Armed Forces, Washington, D. C., 173 (1960).

    Google Scholar 

  • Comb, D. G.: The enzymatic addition of D-alanyl-D-alanine to a uridine nucleotidepeptide. J. Biol. Chem. 237, 1601 (1962).

    PubMed  CAS  Google Scholar 

  • Cuckler, A.C., B.M. Frost, L. McClelland, and M. Solotorovsky: The antimicrobial evaluation of oxamycin (D-4-amino-3-isoxazolidone), a new broadspectrum antibiotic. Antibiotics & Chemotherapy 5, 191 (1955).

    CAS  Google Scholar 

  • Cummings, M. M., R. A. Patnode, and P. C. Hudgins: Effects of cycloserine on Mycobacterium tuberculosis in vitro. Antibiotics & Chemotherapy 5, 198 (1955).

    CAS  Google Scholar 

  • Cummings, M. M.: Cycloserine: Resistance data. Transactions of the 15th conference on the chemotherapy of tuberculosis. Veterans Administration-Armed Forces, Washington, D. C., 377 (1956).

    Google Scholar 

  • Curtiss, R., L. J. Charamella, C. M. Berg, and P. E. Harris: Kinetic and genetic analyses of D-cycloserine inhibition and resistance in Escherichia coli. J. Bacteriol. 90, 1238 (1965).

    PubMed  CAS  Google Scholar 

  • Dann, O. T., and C. E. Carter: Cycloserine inhibition of gamma-aminobutyric-alpha-ketoglutaric transaminase. Biochem. Pharmacology 13, 677 (1964).

    Article  CAS  Google Scholar 

  • Davis, B.D., and M.K. Maas: Analysis of the biochemical mechanism of drug resistance in certain bacterial mutants. Proc. Natl. Acad. Sci. U.S. 38, 775 (1952).

    Article  CAS  Google Scholar 

  • Demerec, M.: Origin of bacterial resistance to antibiotics. J. Bacteriol. 56, 63 (1948).

    CAS  Google Scholar 

  • Dengler, H. J.: Zur Hemmung der L-Glutaminsäure-und L-Dopadecarboxylase durch D-Cycloserin und andere Isoxazolidone. Naunyn-Schmiedeberg’s Arch. Exptl. Pathol. u.Pharmakol. 243, 366 (1962).

    Article  CAS  Google Scholar 

  • Epstein, I. G., K. G. S. Nair, and L. J. Boyd: Cycloserine in the treatment of human pulmonary tuberculosis. Transactions of the 14th conference on the chemotherapy of tuberculosis. Veterans Administration-Armed Forces, Washington, D. C., 326 (1955).

    Google Scholar 

  • Feth, T., and K. Kazim: In vitro action of cycloserine on Mycobacterium tuberculosis. Bacteriol. Proc. 85 (196

    Google Scholar 

  • Folkers, K.: 4-Pyridoxylamino-3-isoxazolidone compounds. U.S.Patent 2, 776, 296 (January 1, 1957).

    Google Scholar 

  • Frecking, M. G., and P. D. Hoeprich: Effect of cycloserines on D-amino acid oxidase. Arch. Biochem. Biophys. 115, 108 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Freese, E., and J. Oosterwyk: The induction of alanine dehydrogenase. Biochemistry 2, 1212 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Grosset, J., and G. Canetti: Incidence of resistance to secondary antimicrobials in wild strains of M. tuberculosis (PAS, ethionamide, cycloserine, viomycin, and kanamycin). Ann. Inst. Pasteur 103, 163 (1962).

    CAS  Google Scholar 

  • Grula, M. M., and E. A. Grula: Action of cycloserine on a species of Erwinia with reference to cell division. Can. J. Microbiol. 11, 453 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Grula, E. A., and M. M. Grula: Cell division in a species of Erwinia. VII. Amino sugar content of dividing and nondividing cells. Biochem. Biophys. Research Commun. 17, 341 (1964).

    Article  CAS  Google Scholar 

  • Hagemann, G., L. Penasse et J. Teillon: Sur un derive de la serine, la O-carbamyl-D-serine produit par un streptomyces. Biochim. et Biophys. Acta 17, 240 (1955).

    Article  CAS  Google Scholar 

  • Hahn, F. E., and J. Ciak: Penicillin-induced lysis of Escherichia coli. Science 125, 119 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R., and P. C. Fitz-James: Some differences in the action of penicillin, bacitracin, and vancomycin on Bacillus megaterium. J. Bacteriol. 87, 1044 (1964).

    PubMed  CAS  Google Scholar 

  • Harned, R. L., P. H. Hidy, and E. K. La Baw: Cycloserine. I. A preliminary report. Antibiotics & Chemotherapy 5, 204 (1955).

    CAS  Google Scholar 

  • Harris, D. A., M. Ruger, M. A. Reagan, F. J. Wolf, R. L. Peck, H. Wallick, and H. B. Woodruff: Discovery, development, and antimicrobial properties of D-4-amino-3-isoxazolidone (oxamycin), a new antibiotic produced by Streptomyces garyphalus n. sp. Antibiotics & Chemotherapy 5, 183 (1955).

    CAS  Google Scholar 

  • Harris, D. A., F. J. Wolf, and R. L. Peck: Crystalline alkaline earth metal salts of 4-amino-3-isoxazolidone. U.S. Patent 2, 832, 788 (April 29, 1958).

    Google Scholar 

  • Hayashi, K., C. G. Skinner, and W. Shive: Synthesis and biological properties of 4-amino-5-isopropyl-3-isoxazolidone, a substituted cycloserine. J. Org. Chem. 26, 1167 (1961).

    Article  CAS  Google Scholar 

  • Hidy, P. H., E. B. Hodge, V. V. Young, R. L. Harned, G. A. Brewer, W. F. Phillips, W. F. Runge, H. E. Staveley, A. Pohland, H. Boaz, and H. R. Sullivan: Structures and reactions of cycloserine. J. Am. Chem. Soc. 77, 2345 (1955)

    Article  CAS  Google Scholar 

  • Hodge, E. B.: Substituted cycloserines. U.S. Patent 2, 971, 004 (February 7, 1961 a).

    Google Scholar 

  • Hodge, E. B.: N-(p-Chlorobenzyl)-cycloserine. U.S. Patent 2, 967, 866 (January 10, 1961b).

    Google Scholar 

  • Hoeprich, P.D.: Alanine: Cycloserine antagonism. III. Quantitative aspects and relations to heating of culture media. J. Lab. Clin. Med. 62, 657 (1963).

    PubMed  CAS  Google Scholar 

  • Hoeprich, P. D.: Alanine: Cycloserine antagonism. VI. Demonstration of D-alanine in the serum of guinea pigs and mice. J. Biol. Chem. 240, 1654 (1965)

    PubMed  CAS  Google Scholar 

  • Holly, F. W., Cranford, and C. H. Stammer: Synthesis of 4-amino-3-isoxazolidone and its derivatives. U.S. Patent 2, 772, 281 (November 27, 1956).

    Google Scholar 

  • Howe, W. B., G. L. Melson, C. H. Meredith, J. R. Morrison, M. H. Platt, and J. L. Strominger: Stepwise development of resistance to D-cycloserine in Staphylococcus aureus. J. Pharmacol. Exptl. Therap. 143, 282 (1964).

    CAS  Google Scholar 

  • Ikawa, M., and E. E. Snell: Cell wall composition of lactic acid bacteria. J. Biol. Chem. 235, 1376 (1960).

    PubMed  CAS  Google Scholar 

  • Ishii, K., and M. G. Sevag: Inhibition by cycloserine of the synthesis of 5-amino-4-imidazolecarboxamide by Escherichia coli. Antibiotics & Chemotherapy 6, 500 (1956).

    CAS  Google Scholar 

  • Ito, E., and M. Saito: Time course of accumulation of UDP-N-acetylamino sugar derivatives in Staphylococcus aureus. Biochim. et Biophys. Acta 78, 237 (1963).

    Article  CAS  Google Scholar 

  • Ito, E., and J. L. Strominger: Enzymatic synthesis of the peptide in bacterial uridine nucleotides. I. Enzymatic addition of L-alanine, D-glutamic acid, and L-lysine. J. Biol. Chem. 237, 2689 (1962a).

    CAS  Google Scholar 

  • Ito, E., and J. L. Strominger: Enzymatic synthesis of the peptide in bacterial uridine nucleotides. II. Enzymatic synthesis and addition of D-alanyl-D-alanine. J. Biol. Chem. 237, 2696 (1962b).

    CAS  Google Scholar 

  • Ito, F., T. Aoki, M. Yamamoto, M. Yuasa, H. Mizobata, and K. Tone: The mode of action of cycloserine (CS). Med. J. Osaka Univ. 9, 23 (1958).

    CAS  Google Scholar 

  • Karpeiskii, M. Ya., R. M. Khomutov, E. S. Severin, and Yu. N. Breusov: The investigation of the interaction of cycloserine and related compounds with aspartate-glutamate transaminase. In: E. E. Snell, P. M. Fasella, A. E. Braunstein, and A. Rossi-Fanelli (editors), Chemical and Biological Aspects of Pyridoxal Catalysis. I.U.B. Symposium Series, vol. 30, p. 323. New York: Pergamon Press 1963a.

    Google Scholar 

  • Karpeiskii, M. Ya., Yu. N. Breusov, R. M. Khomutov, E. S. Severin, and O. L. Polyanovskii: The mechanism of reaction of cycloserine and related compounds with aspartate-glutamate transaminase. Biokhimiya 28, 345 (1963b); Biochemistry (U.S.S.R.) 28, 280 (1964).

    CAS  Google Scholar 

  • Karpeiskii, M. Ya., and Yu. N. Breusov: On the structure of the enzyme-inhibitor complex of aspartate-transaminase with L-cycloserine. Biokhimiya 30, 153 (1965).

    CAS  Google Scholar 

  • Khomutov, R. M., M. Ya. Karpeiskii, E. S. Severin, E. I. Budovskii, and N. K. Kochetkov: Cycloserine and related compounds. VI. Synthesis of analogs of cycloserine with a substitued amino group. J. gen. Chem. (U.S.S.R.) 29, 636 (1959).

    Google Scholar 

  • Khomutov, R. M., M. Ya. Karpeiskii, C. Chi-Pin, and N. K. Kochetkov: Cycloserine and related compounds. XL. 4-Hydroxy-3-isoxazolidinone and some of its derivatives. Zhur. Obshchei Khim. 30, 3057 (1960); J. Gen. Chem. (U.S.S.R.) 30, 3030 (1961).

    CAS  Google Scholar 

  • Khomutov, R. M., M. Ya. Karpeiskii, and E. S. Severin: The relationship between biological activity and chemical properties. Biokhimiya 26, 772 (1961); Biochemistry (U.S.S.R.) 26, 667 (1962).

    CAS  Google Scholar 

  • Khomutov, R. M., M. Ya. Karpeiskii, M. A. Breger, and E. S. Severin: On some cycloserine derivatives possessing antitubercular activity. Voprosy Med. Khim. 8, 389 (1962).

    CAS  Google Scholar 

  • Khomutov, R. M., M. Ya. Karpeiskii, and E. S. Severin: The predetermined synthesis of inhibitors for pyridoxalic enzymes. In: E. E. Snell, P. M. Fasella, A. E. Braunstein, and A. Rossi-Fanelli (editors), Chemical and Biological Aspects of Pyridoxal Catalysis. I.U.B. Symposium Series, vol. 30, p. 323. New York: Pergamon Press 1963

    Google Scholar 

  • Kihara, H., M. Ikawa, and E. E. Snell: Peptides and bacterial growth. X. Relation of uptake and hydrolysis to utilization of D-alanine peptides for growth of Streptococcus faecalis. J. Biol. Chem. 236, 172 (1961).

    PubMed  CAS  Google Scholar 

  • Kochetkov, N. K., R. M. Khomutov, and M. Ya. Karpeiskii: New synthesis of cycloserine. Dokl. Akad. Nauk S.S.S.R. 111, 831 (1956).

    CAS  Google Scholar 

  • Kochetkov, N. K., E. I. Budovskii, R. M. Khomutov, and M. Ya. Karpeiskii: Cycloserine and related compounds. V. Cyclization of alpha-benzoylamino-beta-arylacrylohydroxamic acids. J. Gen. Chem. (U.S.S.R.) 29, 630 (1959).

    Google Scholar 

  • Kolesinska, J.: Cycloserine stability at various temperatures and pH values. Med. Doswiadczalna i. Mikrobiol. 13, 189 (1961); cited from Chem. Abstr. 55, 24883 (1961).

    CAS  Google Scholar 

  • Kotschetkow, N. K.: Die Chemie des Antibiotikums Cykloserin. Österr. Chemiker-Ztg. 62, 276 (1961).

    Google Scholar 

  • Kuehl, F. A., F. J. Wolf, N. R. Trenner, R. L. Peck, E. Howe, B. D. Hunnewell, G. Downing, E. Newstead, R. P. Buhs, I. Putter, R. Ormond, J. E. Lyons, L. Chalet, and K. Folkers: D-4-Amino-3-isoxazolidone, a new antibiotic. J. Am. Chem. Soc. 77, 2344 (1955).

    Article  CAS  Google Scholar 

  • Kurihara, T., and K. Chiba: Orientomycin, a new antibiotic. Ann. Rept. Tohoku coll. Pharm. 3, 83 (1956); cited from Chem. Abstr. 51, 5197 (1957).

    Google Scholar 

  • Lark, C., and R. Schichtel: Comparison of spheroplast induction in Alcaligenes faecalis by three different agents. J. Bacteriol. 84, 1241 (1962).

    PubMed  CAS  Google Scholar 

  • Lester, W., A. Salomin, A. F. Reimann, E. Shulruff, and G. S. Gerg: Cycloserine therapy in tuberculosis in humans. Am. Rev. Tuberc. 74, 121 (1956).

    PubMed  Google Scholar 

  • Lillick, L., R. Strang, L. J. Boyd, M. Schwimmer, and M. G. Mulinos: Cycloserine in the treatment of nontuberculosis infections. Antibiotics Ann. 1955/56, 158.

    Google Scholar 

  • Longenecker, J. B., and E. E. Snell: Pyridoxal and metal ion catalysis of alpha-beta-elimination reactions of serine-3-phosphate and related compounds. J. Biol. Chem. 225, 409 (1957).

    PubMed  CAS  Google Scholar 

  • Lynch, J. L., and F. C. Neuhaus: On the mechanism of action of the antibiotic O-carbamyl-D-serine in Streptococcus faecalis R. J. Bacteriol. 91, 449 (1966).

    PubMed  CAS  Google Scholar 

  • Malamy, M. H., and B. L. Horecker: Release of alkaline phosphates from cells of Escherichia coli upon lysozyme spheroplast formation. Biochemistry 3, 1889 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Carrion, M., and W. T. Jenkins: D-Alanine-D-glutamic transaminase. II. Inhibitors and the mechanism of transamination of D-amino acids. J. Biol. Chem. 240, 3547 (1965).

    PubMed  CAS  Google Scholar 

  • Meadow, P. M., J. S. Anderson, and J. L. Strominger: Enzymatic polymerization of UDP-acetylmuramyl-L-ala-D-glu-L-lys-D-ala-D-ala and UDP-acetylglucosamine by a particulate enzyme from Staphylococcus aureus and its inhibition by antibiotics. Biochem. Biophys. Research Commun. 14, 382 (1964).

    Article  CAS  Google Scholar 

  • Michalský, J., J. Opíhal u. J. Čtvrtnik: Cycloserin und verwandte Verbindungen; Über die Kondensationsprodukte von D, L-4-Amino-3-isoxazolidon und 2, 5-Bis (aminooxymethyl)-3, 6-diketopiperazin. Monatsh. Chem. 93, 618 (1962a).

    Article  Google Scholar 

  • Michalský, J., J. Čtvrtnik, Z. Horáková u. V. Bydžovský: Über die tuberkulostatische Aktivität von 2, 5-Bis-(aminoxymethyl)-3, 6-diketopiperazin, eines Umwandlungsproduktes des Cyclo serins Experientia. 18, 217 (1962b).

    Article  PubMed  Google Scholar 

  • Michel, M. F., and W. Hijmans: The additive effect of glycine and other amino acids on the induction of the L-phase of group A beta-haemolytic streptococci by penicillin and D-cycloserine. J. Gen. Microbiol. 23, 35 (1960).

    CAS  Google Scholar 

  • Mora, J., and L. F. Bojalil: Antagonism of the D-alanine reversal of D-cycloserine action by L-alanine in Mycobacterium acapulcensis. Proc. Soc. Exptl. Biol. Med. 119, 49 (1965).

    CAS  Google Scholar 

  • Mora, J., and E. E. Snell: The uptake of amino acids by cells and protoplasts of Streptococcus faecalis. Biochemistry 2, 136 (1963).

    Article  CAS  Google Scholar 

  • Morrison, N. E.: The reversal of D-cycloserine inhibition of mycobacterial growth. Bacteriol. Proc. 86 (1962).

    Google Scholar 

  • Moulder, J. W., D. L. Novosel, and J. E. Officer: Inhibition of the growth of agents of the psittacosis group by D-cycloserine and its specific reversal by D-alanine. J. Bacteriol. 85, 707 (1963).

    PubMed  CAS  Google Scholar 

  • Moulder, J. W., D. L. Novosel, and I. I. E. Tribby: Changes in mouse pneumonitis agent associated with development of resistance to Chlortetracycline. J. Bacteriol. 89, 17 (1965).

    PubMed  CAS  Google Scholar 

  • Moyed, H. S.: Biochemical mechanisms of drug resistance. Ann. Rev. Microbiol. 18, 247 (1964).

    Article  Google Scholar 

  • Mulinos, M. G.: Cycloserine: An antibiotic paradox. Antibiotics Ann. 1955/56, 131.

    Google Scholar 

  • Murari, G., G. Salgarello, and R. Moratello: Antibacterial activity of optical isomers of cycloserine and of its synthetic intermediate (isoxazolidone). Action on Escherichia coli and Salmonella. Boll. soc. ital. biol. sper. 34, 1534 (1958); cited from Chem. Abstr. 55, 14583 (1961).

    PubMed  CAS  Google Scholar 

  • Nakamura, M.: Amebacidal action of cycloserine. Experientia 13, 29 (1957).

    Article  CAS  Google Scholar 

  • Neilands, J. B.: Metal and hydrogen-ion binding properties of cycloserine. Arch. Biochem. Biophys. 62, 151 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus, F. C., and W. G. Struve: Enzymatic synthesis of analogs of the cell-wall precursor. I. Kinetics and specificity of uridine diphospho-N-acetyl-muramyl-L-alanyl-D-glutamyl-L-lysine: D-Alanyl-D-alanine ligase (adenosine diphosphate) from Streptococcus faecalis R. Biochemistry 4, 120 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus, F. C.: The enzymatic synthesis of D-alanyl-D-alanine. I. Purification and properties of D-alanyl-D-alanine synthetase. J. Biol. Chem. 237, 778 (1962a).

    PubMed  CAS  Google Scholar 

  • Neuhaus, F. C.: The enzymatic synthesis of D-alanyl-D-alanine. II. Kinetic studies of D-alanyl-D-alanine synthetase. J. Biol. Chem. 237, 3128 (1962b).

    PubMed  CAS  Google Scholar 

  • Neuhaus, F. C., and J. L. Lynch: The enzymatic synthesis of D-alanyl-D-alanine. III. On the inhibition of D-alanyl-D-alanine synthetase by the antibiotic D-cycloserine. Biochemistry 3, 471 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Nitti, V., and M. Tsukamura: Resistance of tuberculosis mycobacteria to cycloserine in vitro. Arch. tisiol. mal. app. respirat. (Naples) 12, 71 (1957); cited from Chem. Abstr. 51, 13069 (1957).

    CAS  Google Scholar 

  • Okami, Y., K. Maeda, H. Kondo, T. Tanaka, and H. Umezawa: A streptomyces producing O-carbamyl-D-serine. J. Antibiotics (Japan), Ser. A 15, 147 (1962).

    CAS  Google Scholar 

  • Park, J. T.: Selective inhibition of bacterial cell-wall synthesis: Its possible applications in chemotherapy. Symp. Soc. Gen. Microbiol. 8, 49 (1958a).

    Google Scholar 

  • Park, J. T.: Inhibition of cell-wall synthesis in Staphylococcus aureus by chemicals which cause accumulation of wall precursors. Biochem. J. 70, 2 P (1958b).

    Google Scholar 

  • Park, J. T.: Inhibition of synthesis of bacterial mucopeptide or protein by certain antibiotics and its possible significance for microbiology and medicine. Antimicrobial Agents Ann. 338 (1960).

    Google Scholar 

  • Park, J. T., and R. Hancock: A fractionation procedure for studies of the synthesis of cell-wall mucopeptide and of other polymers in cells of Staphylococcus aureus. J. Gen. Microbiol. 22, 249 (1960).

    PubMed  CAS  Google Scholar 

  • Paskhina, T. S.: Effect of isomers of cycloserine on the activity of D-alanine-D-glutamic transaminase of Bacillus subtilis. Voprosy Med. Khim. 10, 526 (1964); cited from Chem. Abstr. 57, 2978 (1965).

    CAS  Google Scholar 

  • Patnode, R. A., P. C. Hudgins, and M. M. Cummings: Effect of cycloserine on experimental tuberculosis in guinea pigs. Am. Rev. Tuberc. Pulmonary Diseases 72, 117 (1955).

    CAS  Google Scholar 

  • Pepinsky, R.: X-Rays and the absolute configuration of optically active molecules. Record Chem. Progr. 17, 145 (1956).

    CAS  Google Scholar 

  • Perry, D., and H. D. Slade: Intraspecific and interspecific tranformation in Streptococci. J. Bacteriol. 88, 595 (1964).

    PubMed  CAS  Google Scholar 

  • Pietra, G. D., F. DeLorenzo, and G. Illiano: Biochim. Appl. 10, 123 (1963); cited from F. Cedrangolo, in E. E. Snell, P. M. Fasella, A. E. Braunstein, and A. Rossi-Fanelli (editors), Chemical and Biological Aspects of Pyridoxal Catalysis, p. 343. New York: Pergamon Press 1

    CAS  Google Scholar 

  • Pittillo, R. F., and J. W. Foster: Potentiation of Inhibitor action through determination of reversing metabolites. J. Bacteriol. 67, 53 (1953)

    Google Scholar 

  • Plapp, R., U. O. Kandler: Zur Wirkung zellwandhemmender Antibiotica bei gramnegativen Bakterien. II. Die Wirkung von D-Cycloserin auf die Konzentration von Zellwandvorstufen in Proteus mirabilis und dessen L-Phase. Arch. Mikrobiol. 50, 282 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Pohland, A.: 3-Isoxazolidones, derivatives and process. U.S. Patent 2, 762, 815 (September 11, 1956).

    Google Scholar 

  • Polyanovskii, O. L., and Y. M. Torchinskii: Effect of cycloserine and of related substances on the activity of pig-heart aspartate-glutamate transaminase and alanine-glutamic transaminase. Doklady Akad. Nauk S.S.S.R. 141, 488 (1961).

    CAS  Google Scholar 

  • Plattner, Pl. A., A. Boller, H. Frick, A. Fürst, B. Hegedüs, H. Kirchensteiner, St. Majnoni, R. Schläpfer u. H. Spiegelberg: Synthesen des 4-Amino-3-isoxazolidinons (Cycloserin) und einiger Analoga. Helv. Chim. Acta 40, 1531 (1957)

    Article  CAS  Google Scholar 

  • Ratouis, R., and R. Behar: Synthesis of 4-amino-3-isoxazolidinone. Bull. soc. chim. France 1957, 1255

    Google Scholar 

  • Reitz, R., H. D. Slade, and F. C. Neuhaus: On the biochemical basis of D-cycloserine resistance. Federation Proc. Abstracts 25, 344 (1966).

    Google Scholar 

  • Robson, J. M., and F.M.Sullivan: Antituberculosis drugs. Pharmacol. Rev. 15, 195 (1963).

    Google Scholar 

  • Rogers, H. J., and A. J. Garrett: The interrelationship between mucopeptide and ribitol teichoic acid formation as shown by the effect of inhibitors. Biochem. J. 96, 231 (1965).

    PubMed  CAS  Google Scholar 

  • Roze, U.: The non-enzymatic reaction between cycloserine and pyridoxal phosphate. Ph. D. Thesis, submitted to the graduate school of Washington University, St. Louis Missouri 1964.

    Google Scholar 

  • Roze, U., and J. L. Strominger: The non-enzymatic reaction between D-cycloserine and pyridoxal phosphate. Federation Proc. Abstracts 22, 423 (1963).

    Google Scholar 

  • Roze, U., and J. L. Strominger: Alanine racemase from Staphylococcus aureus: Conformation of its substrates and its inhibitor; D-cycloserine. J. Mol. Pharmacol. 2, 92 (1966).

    CAS  Google Scholar 

  • Runge, W. F.: Process of producing acetyl cycloserine. U.S. Patent 2, 815, 348 (December 3, 1957).

    Google Scholar 

  • Russell, W. F. Jr., and G. Middlebrook: Chemotherapy of tuberculosis. Springfield (I11.): Ch. C. Thomas 1961.

    Google Scholar 

  • Saito, M., N. Ishimoto, and E. Ito: Uridine diphosphate N-acetylamino sugar derivatives in penicillin-treated Staphylococcus aureus. J. Biochemistry (Tokyo) 54, 273 (1963).

    CAS  Google Scholar 

  • Salgarello, G., and E. Turri: Antibacterial activity of optical isomers of cycloserine. Action on Mycobacterium tuberculosis. Boll. soc. ital. biol. sper. 34, 1538 (1958); cited from Chem. Abstr. 55, 14583 (1961).

    PubMed  CAS  Google Scholar 

  • Salton, M. R. J.: The anatomy of the bacterial surface. Bacteriol. Rev. 25, 77 (1961).

    PubMed  CAS  Google Scholar 

  • Salton, M. R. J.: The Bacterial Cell Wall, p. 107. Amsterdam: Elsevier Publ. Co. 1964.

    Google Scholar 

  • Saukkonen, J., and P. Virkola: Acid-soluble nucleotides of Staphylococcus aureus. Ann. Med. Exptl. et Biol. Fenniae (Helsinki) 41, 220 (1963).

    CAS  Google Scholar 

  • Serembe, M.: Antituberculous action of levorotatory and dextrorotatory cycloserine and of some synthetic intermediates. Minerva med. 1957, 3548; cited from Chem. Abstr. 52, 18837 (1958).

    Google Scholar 

  • Shockman, G. D.: Reversal of cycloserine inhibition by D-alanine. Proc. Soc. Exptl. Biol. Med. 101, 693 (1959).

    CAS  Google Scholar 

  • Shockman, G. D., and J.O. Lampen: Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J. Bacteriol. 84, 508 (1962).

    PubMed  CAS  Google Scholar 

  • Shull, G. M., and J. L. Sardinas: PA-94, an antibiotic identical with D-4-amino-3-isoxazolidinone (cycloserine, oxamycin). Antibiotics & Chemotherapy 5, 398 (1955).

    CAS  Google Scholar 

  • Shull, G. M., J. B. Routien, and A. C. Finlay: Cycloserine and production there of. U.S. Patent 2, 773, 878 (December 11, 1956).

    Google Scholar 

  • Skinner, C. G., T. J. McCord, J.M. Ravel, and W. Shive: O-Carbamyl-L-serine, an inhibitory analog of L-glutamine. J. Am. Chem. Soc. 78, 2412 (1955).

    Article  Google Scholar 

  • Smith, J. L., and E. D. Weinberg: Mechanisms of antibacterial action of bacitracin. J. Gen. Microbiol. 28, 559 (1962).

    PubMed  CAS  Google Scholar 

  • Smrt, J., J. Beranek, J. Sicher, and F. Sorm: Synthesa 4-amino-3-isoxazolidinonu (cykloserinu). Chem. listy 51, 112 (1957a).

    CAS  Google Scholar 

  • Smrt, J., J. Beranek, J. Sicher, J. Skoda, V. F. Hess, and F. Sorm: Synthesis of L-4-amino-3-isoxazolidinone, the unnatural stereoisomer of cycloserine and its antibiotic activity. Experientia 13, 291 (1957b).

    Article  PubMed  CAS  Google Scholar 

  • Snow, G. A.: Structure of mycobactin. Biochem. J. 97, 166 (1965).

    PubMed  CAS  Google Scholar 

  • Stammer, C. H.: Beta-Aminoxy-D-alanine. J. Org. Chem. 27, 2957 (1962).

    Article  CAS  Google Scholar 

  • Stammer, C. H., and J. D. McKinney: Cycloserine. III. A schiff base and its reactions. J. Org. Chem. 30, 3436 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Stammer, C. H., A. N. Wilson, C. F. Spencer, F. W. Bachelor, F. W. Holly, and K. Folkers: Synthesis of D-4-amino-3-isoxazolidone. J. Am. Chem. Soc. 79, 3236 (1957).

    Article  CAS  Google Scholar 

  • Stammer, C. H., A.N. Wilson, F. W. Holly, and K. Folkers: Synthesis of D-4-amino-3-isoxazolidone. J. Am. Chem. Soc. 77, 2346 (1955).

    Article  CAS  Google Scholar 

  • Steenken, W. Jr, and E. Wolinsky: Cycloserine: Antituberculous activity in vitro and in the experimental animal. Am. Rev. Tuberc. Pulmonary Diseases 73, 539 (1956).

    CAS  Google Scholar 

  • Strominger, J. L.: Biosynthesis of bacterial cell walls. Federation Proc. 21, 134 (1962).

    CAS  Google Scholar 

  • Strominger, J. L., R. H. Threnn, and S.S. Scott: Oxamycin, a competitive antagonist of the incorporation of D-alanine into a uridine nucleotide in Staphylococcus aureus. J. Am. Chem. Soc. 81, 3803 (1959).

    Article  CAS  Google Scholar 

  • Strominger, J. L., E. Ito, and R. H. Threnn: Competitive inhibition of enzymatic reactions by oxamycin. J. Am. Chem. Soc. 82, 998 (1960).

    Article  CAS  Google Scholar 

  • Strominger, J. L., J. T. Park, and R. E. Thompson: Composition of the cell wall of Staphylococcus aureus: Its relation to the mechanism of action of penicillin. J.Biol. Chem. 234, 3263 (1959).

    PubMed  CAS  Google Scholar 

  • Struve, W. G., and F. C. Neuhaus: Evidence for an initial acceptor of UDP-NAc-muramyl-pentapeptide in the synthesis of bacterial mucopeptide. Biochem. Biophys. Research Commun. 18, 6 (1965).

    Article  CAS  Google Scholar 

  • Struve, W. G., R. K. Sinha, and F. C. Neuhaus: On the initial stage in peptidoglycan synthesis. Phospho-N-acetyl-muramyl-pentapeptide translocase (uridine monophosphate). Biochemistry 5, 82 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Sutton, W. B., and L. Stanfield: The reversal of cycloserine inhibition by mycobactin, a growth factor for mycobacteria. Antibiotics & Chemotherapy 5, 582 (1955).

    CAS  Google Scholar 

  • Tanaka, N.: Mechanism of action of O-carbamyl-D-serine, a new member of cell wall synthesis inhibitors. Biochem. Biophys. Research Commun. 12, 68 (1963).

    Article  CAS  Google Scholar 

  • Tanaka, N., and K. Sashikata: Biogenesis of D-4-amino-3-isoxazolidone and O-carbamyl-D-serine. J. Gen Appl. Microbiol. 9, 409 (1963).

    Article  CAS  Google Scholar 

  • Tanaka, N., K. Sashikata, T. Wada, S. Sugawara, and H. Umezawa: Mechanism of action of O-carbamyl-D-serine. J. Antibiotics, Ser. A 16, 217 (1963).

    CAS  Google Scholar 

  • Tanaka, N., and H. Umezawa: Synergism of D-4-amino-3-isoxazolidone and O-carbamyl-D-serine. J. Antibiotics, Ser. A 17, 8 (1964).

    CAS  Google Scholar 

  • Toennies, G., and G. D. Shockman: Growth chemistry of Streptococcus faecalis. Proceedings of the fourth internat. Congr. of Biochemistry, vol. 13, p. 365. London: Pergamon Press 1959.

    Google Scholar 

  • Trivellato, E.: Stereoisomers of cycloserine. II. Activity against Escherichia coli in synthetic media. Arch. intern, pharmacodynamie 117, 317 (1958).

    CAS  Google Scholar 

  • Trivellato, E., and C. Concilio: Stereoisomers of cycloserine. I. Bacteriostatic activity towards some microorganisms. Arch. intern, pharmacodynamie 117, 313 (1958); cited from Chem. Abstr. 53, 12392 (1959).

    CAS  Google Scholar 

  • Viallier, J., and R. M. Cayré: Bacilles tuberculeus résistants à la cyclosérine. Compt. rend. soc. biol. 152, 776 (1958).

    CAS  Google Scholar 

  • Vyshepan, E. D., K.I. Ivanova, and A. M. Chernukh: Inhibition of glutamicpyruvic transaminase. Byull. Eksptl. Biol. Med. 52, 76 (1961).

    CAS  Google Scholar 

  • Vyshepan, E. D., K.I. Ivanova, and A. M. Chernukh: The effect of D,L-cycloserine on the process of transamination. Byull. Eksptl. Biol. Med. 47, 52 (1959).

    CAS  Google Scholar 

  • Weinberg, E. D.: The mutual effects of antimicrobial compounds and metallic cations. Bacteriol. Rev. 21, 46 (1957).

    PubMed  CAS  Google Scholar 

  • Wishnow, R. M., J. L. Strominger, C. H. Birge, and R. H. Threnn: Biochemical effects of novobiocin on Staphylococcus aureus. J. Bacteriol. 89, 1117 (1965).

    PubMed  CAS  Google Scholar 

  • Wood, W. A., and I. C. Gunsalus: D-Alanine formation: A racemase in Streptococcus faecalis. J. Biol. Chem. 190, 403 (1951).

    PubMed  CAS  Google Scholar 

  • Yamada, K., S. Sawaki, and S. Hayami: Inhibitory effect of cycloserine on some enzymic activities related to vitamin B6. J. Vitaminol. (Osaka) 3, 68 (1957).

    Article  CAS  Google Scholar 

  • Youmans, G. P., and A. S. Youmans: Experimental chemotherapy of tuberculosis and other mycobacterial infections. In: R. J. Schnitzer and F. Hawking (editors), Experimental Chemotherapy, vol. II, p. 393. New York: Academic Press 1964.

    Google Scholar 

  • Zygmunt, W. A.: Reversal of D-cycloserine inhibition of bacterial growth by alanine. J. Bacteriol. 84, 154 (1962).

    PubMed  CAS  Google Scholar 

  • Zygmunt, W. A.: Antagonism of D-cycloserine inhibition of mycobacterial growth by D-alanine. J. Bacteriol. 85, 1217 (1963).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Neuhaus, F.C. (1967). D-Cycloserine and O-Carbamyl-D-serine. In: Gottlieb, D., Shaw, P.D. (eds) Mechanism of Action. Antibiotics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46051-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46051-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46053-1

  • Online ISBN: 978-3-642-46051-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics