Skip to main content

Die Ultrazentrifuge

  • Chapter
Analytik der Lebensmittel

Part of the book series: Handbuch der Lebensmittelchemie ((1664,volume 2 / 1))

  • 240 Accesses

Zusammenfassung

T. Svedberg entwickelte die Ultrazentrifuge, um mit ihrer Hilfe den bei mikroskopischen Partikeln beobachtbaren Effekt der Sedimentation im Schwerefeld der Erde so zu verstärken, daß auch submikroskopische Teilchen von kolloidaler Größe sedimentierten (T. Svedberg und H. Rinde 1924). Zwei Jahre später publizierten T. Svedberg und R. Fahraeus (1926) eine Arbeit über die Bestimmung des Molekulargewichtes von Proteinen durch Sedimentation in der Ultrazentrifuge und durch Messung des Diffusionskoeffizienten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  • Anderson, N. G.: Techniques for the mass isolation of cellular components. In Oster, G., and A. W. Pollister: Physical techniques in biological research; Vol. III, Cells and tissues. New York: Acedemic Press 1956.

    Google Scholar 

  • Beckman-Instruments: Eine Einführung in die Dichtegradienten-Zentrifugation. Beckman Instruments GmbH, München 1962.

    Google Scholar 

  • Claesson, S., and I. Morning-Claesson: Ultracentrifugation. In Alexander, P., and R. J. Block: A Laboratory Manuel of Analytical Methods of Protein Chemistry, Vol. 3 P. 121–171. Oxford, London, New York, Paris: Pergamon Press 1961.

    Google Scholar 

  • Elias, H.-G.: Ultrazentrifugen — Methoden. Beckmann Instruments GmbH, München 1961 a.

    Google Scholar 

  • Fujita, H.: The mathematical theory of sedimentation analysis. New York: Academic Press 1962.

    Google Scholar 

  • Hengstenberg, J.: Sedimentation und Diffusion von Makromolekülen. In Stuart, H. A.: Die Physik der Hochpolymeren. Bd. II, S. 411–494. Berlin, Göttingen, Heidelberg: Springer 1953.

    Google Scholar 

  • Jahnke, K., u. W. Scholtan: Die Bluteiweißkörper in der Ultrazentrifuge. Stuttgart: Thieme 1960.

    Google Scholar 

  • Meyerhoff, G.: Bestimmung des Molekulargewichtes durch Diffusions-und Sedimentationsmessungen. In Houben-Weyl: Methoden der organischen Chemie, Bd. III, 1 S. 350. Stuttgart: Thieme 1955.

    Google Scholar 

  • Nichols, J. B., and E. D. Bailey Determinations with the Ultracentrifuge. In Weissberner, A.: Technique in Organic Chemistry, Vol. I, 1: Physical Methods of Organic Chemistry. New York, London: Interscience Publ. 1959.

    Google Scholar 

  • Schachmann, H. K.: Ultracentrifugation in Biochemistry. New York, London: Academic Press 1959.

    Google Scholar 

  • Svedberg, T., u. K. O. Pedersen: Die Ultrazentrifuge. Dresden und Leipzig: Theodor Steinkopff 1940.

    Google Scholar 

Zeitschriftenliteratur

  • Archibald, W. J.: A demonstration of some new methods for determining molecular weights from data of the ultracentrifuge. J. phys. Colloid Chem. 51, 1204=1214 (1947).

    Google Scholar 

  • Baker, M. C., P. A. Lyons, and S. J. Singer: Velocity ultracentrifugation and diffusion of silicotungstic acid. J. amer. them. Soc. 77, 2011–2012 (1955).

    Article  CAS  Google Scholar 

  • Baldwin, R. L.: Sedimentation coefficients of small molecules. Methods for measurement based on the refractive index gradient curve. The sedimentation coefficient of polyglucoseA. Biochem. J. 55, 644–648 (1953); zit. nach Chem. Abstr. 48, 1462h (1954).

    Google Scholar 

  • Baldwin, R. L.: Boundary spreading in sedimentation velocity experiments. I. Measurement of the diffusion coefficient of bovine albumin by FUJITA’s equation. Biochem. J. 65, 503–512 (1957); zit. nach Chem. Abstr. 51, 7452c, (1957).

    Google Scholar 

  • Beams, J. W., and H. M. DixoN III: An ultracentrifuge double cell. Rev. Sci. Instruments 24, 228–229 (1953).

    Article  CAS  Google Scholar 

  • A. J. Weed, and E. G. Pickels: Die Ultrazentrifuge. Science 78, 338–340 (1933); zit. nach Chem. Zbl. 105 II, 86 (1934).

    Google Scholar 

  • Black, S. A., J. W. Beams, and L. B. Snoddy: Elektrisch angetriebene Vakuumzentrifuge. Phys. Rev. 53, Ser. II 924 (1938); zit. nach Chem. Zbl. 109 II, 2304 (1938).

    Google Scholar 

  • Brakke, M. K.: Density gradient centrifugation: A new separation technique. J. amer. chem. Soc. 73, 1847–1848 (1951).

    Article  CAS  Google Scholar 

  • Brakke, M. K.: Zonal separations by density-gradient centrifugation. Arch. Biochem. Biophys. 45, 275–290 (1953); zit. nach Chem. Abstr. 47, 11310a (1953).

    Google Scholar 

  • Doty, P., and E. P. Geiduschek: Optical Properties of Proteins. In: Neurath, H., and K. Bailey: The Proteins; Chemistry, Biological Activity, and Methods. Vol. 1 A, S. 393–460. New York: Academic Press Inc., Publishers 1953.

    Google Scholar 

  • Dtjve, C. DE, J. Berthet, and H. Beaufay: Gradient centrifugation of cell particulates. Theory and applications. Progr. in Biophys. and Biophys. Chem. 9, 325–369 (1959).

    Google Scholar 

  • Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik 17, 549–560 (1905).

    Article  CAS  Google Scholar 

  • Elias, H.-G.: Bestimmung des Molekulargewichts in der Ultrazentrifuge nach dem Archibald-Verfahren. Angew. Chem. 73, 209–215 (1961b).

    Article  CAS  Google Scholar 

  • Gehatia, M., R. K. Zahn u. A. Kleinschmidt: Über die Molekulargewichtsverteilung von Desoxyribonukleinsäure in der Ultrazentrifuge. Kolloid-Z. 169, 162–170 (1960).

    Article  CAS  Google Scholar 

  • Gilbert, G. A.: Diskussionsbemerkungen. Discoussions Faraday. Soc. 13, 159–161 (1953).

    Google Scholar 

  • Gilbert, G. A.: Diskussionsbemerkungen. Discussions Faraday Soc. 20, 68–71 (1955).

    Google Scholar 

  • Gilbert, G. A.and R. C. LL. Jenkins: Boundary problems in the sedimentation and electrophoresis ofcomplex systems in rapid reversible equilibrium. Nature (Lond.) 177, 853–854 (1956).

    Article  CAS  Google Scholar 

  • Goldberg, R. J.: Sedimentation in the ultracentrifuge. J. Phys. Chem. 57, 194–202 (1953).

    Article  CAS  Google Scholar 

  • Gosting, L. J.: Measurement and interpretation of diffusion coefficients of proteins. Advanc.Protein Chem. 11, 429–554 (1956).

    Article  CAS  Google Scholar 

  • Hanlon, S., K. Lamers, G. Lauterbach, R. Johnson, and H. K. Schachmann: Ultracen-trifuge studies with absorption optics. I. An automatic photoelectric scanning absorption system. Arch. Biochem. Biophys. 99, 157–174 (1962).

    Article  CAS  Google Scholar 

  • Hersh, R. T., and H. K. Schachmann: Ultracentrifuge studies with a synthetic boundary cell. II. Differential sedimentation. J. amer. chem. Soc. 77, 5228–5234 (1955).

    Article  Google Scholar 

  • Hersh, R. T., and H. K. Schachmann: Ultracentrifuge studies with a synthetic boundary cell. III. Sedimentation of a slow component in the presence of a faster species. J. Phys. Chem. 62, 170–178 (1958).

    Article  CAS  Google Scholar 

  • Hogeboom, G. H., and E. L. Kuff: Sedimentation behavior of proteins and other materials in a horizontal preparative rotor. J. biol. Chem. 210, 733–751 (1954).

    CAS  Google Scholar 

  • Hornung, W. K., u. G. Träxler: Vergleichende Diffusionsmessungen in verschiedenen Schwerefeldern. Proc. 5th Inter. Instruments and Measurement Conference Stockholm September 1960; S. 447–454. New York, London: Academic Press 1960.

    Google Scholar 

  • Johnston, J. P., and A. G. Ogston: A boundary anomaly found in the ultracentrifugal sedimentation of mixtures. Trans. Faraday Soc. 42, 789–799 (1946).

    Article  CAS  Google Scholar 

  • Kahler, H., and B. J. Lloyd JR.: Sedimentation of ploystyrene latex in a swinging tube rotor. J. phys. Colloid. Chem. 55, 1344–1350 (1951); zit. nach Chem. Abstr. 46, 1803g (1952).

    Google Scholar 

  • Kegeles, G.: A boundary forming technique for the ultracentrifuge. J. amer. chem. Soc. 74, 5532–5534 (1952).

    Article  CAS  Google Scholar 

  • Klainer, S. M., and G. Kegeles: Simultanous determination of molecular weights and sedimentation constants. J. Phys. Chem. 59, 952–955 (1955).

    Article  CAS  Google Scholar 

  • Kurnick, N. B.: Mechanism of desoxyribonuclease depolymerisation. Effect of physical and enzymatic depolymerisation on the affinity of methyl green and of desoxyribonuclease for desoxyribonucleic acid. J. amer. chem. Soc. 76, 417–424 (1954).

    Article  CAS  Google Scholar 

  • Longsworth, L. G., and D. A. Mcinnes: Electrophoretic study of mixtures of ovalbumin and yeast nucleic acid. J. Gen. Physiol. 25, 507–516 (1942); zit. nach Chem. Abstr. 36, 45305 (1942).

    Google Scholar 

  • Marling, A.: Die Konzentrationsabhängigkeit des Sedimentationskoeffizienten von Transferrinen. Z. Naturforsch. 18 b, 1–3 (1963).

    Google Scholar 

  • Meselson, M., and F. W. Stahl: Replication of deoxyribonucleic acid in Escherichia coli. Proc. nat. Acad. Sci. USA 44, 671–682 (1958); zit. nach Chem. Abstr. 52, 20 376i (1958).

    Google Scholar 

  • Meselson, M., and F. W. Stahl and J. Vinograd: Equilibrium sedimentation of macromolecules in density gradients. Proc. nat. Acad. Sci. USA 43, 581–588 (1957).

    Article  CAS  Google Scholar 

  • Meyerhoff, G.: Über eine Unterschichtungszelle zur Bestimmung niedriger Molekular-gewichte in der Geschwindigkeitsultrazentrifuge. Makromol. Chem. 15, 68–73 (1955).

    Article  CAS  Google Scholar 

  • Onkley, J. L.: Evidence from physical chemistry regarding the size and shape of protein molecules from ultracentrifugation, diffusion, viscosity, dielectric dispersion and double refraction of flow. Ann. N. Y. Acad. Sci. 41, 121–150 (1941); zit. nach Chem. Abstr. 35, 59181 (1941).

    Google Scholar 

  • Perrin, F.: Mouvement Brownien d’un ellipsoide. II. Rotation libre et depolarisation des fluorescens. Translation et diffusion de molecules ellipsoidales. J. Phys. Radium VII, 7, 1–11 (1936).

    Article  Google Scholar 

  • Petermann, M. L., J. Robbins, and M. G. Hamilton: Sedimentation of the thyroxine binding protein of serum in the partition cell. J. biol. Chem. 208, 369–375 (1954).

    CAS  Google Scholar 

  • Piiilpot, J. ST. L.: Direct photography of ultracentrifuge sedimentation curves. Nature (Lond.) 141, 283–284 (1938).

    Article  Google Scholar 

  • Piiilpot, J. ST. L.and G. H. COOK: A self — plotting interferometric optical system for the ultracentrifuge. Research 1, 234–236 (1948).

    Google Scholar 

  • Pickels, E. G.: Sedimentation in the angle centrifuge. J. Gen. Physiol. 26, 341–360 (1943).

    Article  CAS  Google Scholar 

  • Pickels, E. G.W. F. HARRINGTON, and H. K. SCHACHMANN• An ultracentrifuge cell for producing boundaries synthetically by a layering technique. Proc. nat. Acad. Sci. USA 38, 943–948 (1952).

    Article  CAS  Google Scholar 

  • Richards, E. G., and H. K. Schachmann: A differential ultracentrifuge technique for measuring small changes in sedimentation coefficients. J. amer. them. Soc. 79, 5324–5325 (1957).

    Article  CAS  Google Scholar 

  • Schachmann, H. K., and W. F. Harrington: Ultracentrifuge studies with a synthetic boundary cell. I. General applications. J. Polymer Sci. 12, 379–390 (1954).

    Article  Google Scholar 

  • L. Gropper, S. Hanlon, and F. Putney: Ultracentrifuge studies with absorptions optics. II. Incorporation of a monochromator and its application to the study of proteins and interacting systems. Arch. Biochem. Biophys. 99, 175–190 (1962).

    Article  Google Scholar 

  • Scheraga, H. A., and L. Mandelkern: Consideration of the hydrodynamic properties of proteins. J. amer. them. Soc. 75, 179–184 (1953).

    Article  CAS  Google Scholar 

  • Scholten, P. C.: Electrophoresis and sedimentation of isomerizing systems. Arch. Biochem. Biophys. 93, 568–575 (1961).

    Article  CAS  Google Scholar 

  • Schwert, G. W.: The molecular size and shape of the pancreatic proteases. I. Sedimentation studies on chymotrypsinogen and on a-and y-chymotrypsin. J. biol. Chem. 179, 655–664 (1949).

    CAS  Google Scholar 

  • Sutherland, W.: A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Phil. Mag. 9, 781–785 (1905).

    CAS  Google Scholar 

  • Svedberg, T., and H. Rinde: The ultracentrifuge, a new instrument for the determination of size and distribution of size of particle in amicroscopic colloids. J. amer. them. Soc. 46, 2677–2693 (1924).

    Article  Google Scholar 

  • Svedberg, T., and H. Rinde and R. FAHRAEUS • A new method for the determination of the molecular weight of the proteins. J. amer. them. Soc. 48, 430–438 (1926).

    Article  Google Scholar 

  • Svensson, H.: Direkte photographische Aufnahme von Elektrophorese-Diagrammen. Kolloid-Z. 87, 181–186 (1939).

    Article  CAS  Google Scholar 

  • Svensson, H.: Theorie der Beobachtungsmethode der gekreurten Spalte. Kolloid-Z. 90, 141–156 (1940).

    Google Scholar 

  • Svensson, H.and T. E. THOMPSON: Translational diffusion methods in protein chemistry. In: Alexander, P., and R. J. Block: A Laboratory Manuel of Analytical Methods of Protein Chemistry Vol. 3 P. 57–118. Oxford, London, New York, Paris: Pergamon Press 1961.

    Google Scholar 

  • Tiselius, A., K. O. Pedersen, and T. Svedberg: Analytische Messungen bei der Sedimentation in der Ultrazentrifuge. Nature (Lond.) 140, 848–849 (1937); zit. nach Chem. Zbl. 109 II, 533 (1938).

    Google Scholar 

  • Wolter, H.: Verbesserung der abbildenden Schlierenverfahren durch Minimumstrahlkennzeichnung. Ann. Phys. 7, 182–192 (1950).

    Article  Google Scholar 

  • Yphantis, D. A., and D. F. Waugh: Ultracentrifugal characterization by direct measurement of activity. I. Theoretical. II. Experimental. J. Phys. Chem. 60, 623–635 (1956).

    CAS  Google Scholar 

  • Yphantis, D. A., and D. F. Waugh: Rapid determination of molecular weights of peptides and proteins. Ann. N. Y. Acad. Sci. 88, 586–601 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahling, A. (1965). Die Ultrazentrifuge. In: Belitz, HD., et al. Analytik der Lebensmittel. Handbuch der Lebensmittelchemie, vol 2 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46013-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46013-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46014-2

  • Online ISBN: 978-3-642-46013-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics