Advertisement

Aminosäuren, Peptide, Proteine und andere Stickstoffverbindungen

  • H.-D. Belitz
  • J. Schormüller
Chapter
Part of the Handbuch der Lebensmittelchemie book series (LEBENSMITTEL, volume 1)

Zusammenfassung

Es wird zunächst ein Überblick über die wichtigsten am Aufbau von Proteinen beteiligten Aminosäuren gegeben, dem dann Angaben über Entdeckung, Vorkommen und sonstige wesentliche Merkmale einzelner Aminosäuren folgen. Die physikalischen Eigenschaften der Verbindungen und die wesentlichen chemischen Reaktionen werden in den beiden folgenden Abschnitten behandelt. In einem besonderen Abschnitt sind die wichtigsten biochemischen Umsetzungen der Aminosäuren zusammengestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Adair, G. S.: Osmotic pressure. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. block, Bd. III, S. 23–56. London: Pergamon Press 1960.Google Scholar
  2. Alberty, R. A.: The electrochemical properties of the proteins and amino-acids. In: The proteins. Hrsg. von H. Neurath and K. Bailey. Bd. I A, S. 461–548. New York: Acad. Press Inc. 1953.Google Scholar
  3. Birbeck, M. S. C.: Techniques for the electron microscopy of proteins. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block, Bd. III, S. 1–22. London: Pergamon Press 1960.Google Scholar
  4. Block, R. J.: Amino acid analysis of protein hydrolysates. In: A laboratory manual of analytical methods of protein chemistry. Hrsg. von P. Alexander and R. J. Block. Bd. II, S. 3–58. London: Pergamon Press 1960.Google Scholar
  5. Block, R. J.: and K. W. Weiss. Amino acid handbook. Springfield/Ill.: C. C. Thomas 1956.Google Scholar
  6. Brohult, S., and E. Sandegren: Seed proteins. In: The proteins. Hrsg. von H. Neurath and K. Bailey Bd. II A, S. 487–512. New York: Acad. Press Inc. 1954.Google Scholar
  7. Chargaff, E., and J. N. Davidson: The nucleic acids, chemistry and biology, Bd. II, New York: Acad. Press Inc. 1955.Google Scholar
  8. Claesson, S., and I. Moring-Claesson: Ultracentrifugation. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block, Bd. III, S. 173–209. London: Pergamon Press 1960.Google Scholar
  9. Cohen, P. D., and H. J. Sallach. Nitrogen metabolism of amino acids. In: Metabolic pathways, Hrsg. von D. M. Greenberg, Bd. II, S. 1–78. New York: Acad. Press 1961.Google Scholar
  10. Coax, E. J., and J. T. Edsall: Proteins, amino acids and peptides as ions and dipolar ions. S. 445. New York: Reinhold Publ. Corp. 1943.Google Scholar
  11. Craig, L. C.: Fractionation and characterization by dialysis. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P Alexander and R. J. Block, Bd. I, S. 103–119. London: Pergamon Press 1960 a.Google Scholar
  12. Craig, L. C.: Partition. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block, Bd. I. S. 121–160. London: Pergamon Press 1960 b.Google Scholar
  13. Doty, P., and E. P. Geiduschek: Optical properties of proteins. In: The proteins. Hrsg. von H. Neurath and K. Bailey. Bd. IA, S. 393–460. New York: Acad. Press Inc. 1953.Google Scholar
  14. Edsall, J. T.: The size, shape and hydration of protein molecules. In: The proteins. Hrsg. von H. Neurath and K. Bailey Bd. I B, S. 549–726. New York: Acad. Press Inc. 1953Google Scholar
  15. Fischer, F. G., u. H. Dörfel: Nucleoside, Nucleotide, Nucleinsäuren und Nucleoproteide. In: Hoppe-Seyler/ThierfelderS Handbuch der physiologisch-und pathologischchemischen Analyse. Hrsg. von K. Lang u. E. Lehnhartz. 10. Aufl., Bd. IV/2. Bandteil, S. 1065–1355. Berlin: Springer-Verlag 1960.Google Scholar
  16. Fox, S. W., and J. F. Foster: Introduction to protein-chemistry. New York: J. Wiley and Sons, Inc. 1957.Google Scholar
  17. Frazer, R. D. B.: Infra-red spectra. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block. Bd. II, S. 285–351. London: Pergamon Press 1960.Google Scholar
  18. GreenberG, D. M.: Carbon catabolism of amino acids. In: Metabolic pathways. Hrsg. von D. M. Greenberg, Bd. II, S. 79–172. New York: Acad. Press 1961a.Google Scholar
  19. GreenberG, D. M.: GBiosynthesis of amino acids and related compounds. In: Metabolic pathways. Hrsg. von D. M. Greenberg, Bd. II, S. 173–236. New York: Acad. Press Inc. 1961 b.Google Scholar
  20. Guggenheim, M.: Die biogenen Amine. Basel, New York: S. Karger 1951.Google Scholar
  21. Gustavson, K. H.: The chemistry and reactivity of collagen. New York: Acad. Press Inc. 1956.Google Scholar
  22. Hamilton, L. D. G.: The estimation of side-chain groups in the intact protein. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block. Bd. II, S. 59–100. London: Pergamon Press 1960.Google Scholar
  23. Hannig, K.: Proteine, Physikalisch-chemische Daten. In: Biochem. Taschenbuch. Hrsg. Von H. M. Rauen, S. 234–242. Berlin: Springer-Verlag 1956.Google Scholar
  24. Harris, J. I., and V. M. Ingram: Methods of sequence analysis in proteins. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block. Bd. II, S. 421–499. London: Pergamon Press 1960.Google Scholar
  25. Hal’Rowitz, F.: Eiweißdenaturierung. In: Hoppe-Seyler/Thierfelders Handbuch der physiologisch-und pathologisch-chemischen Analyse. Hrsg. von K. Lang u. E. lehnhartz. 10. Aufl., Bd. IV/1. Bandteil, S. 116–125. Berlin: Springer-Verlag 1960.Google Scholar
  26. Hal’Rowitz, F.: Hand R. L. Hardin: Respiratory proteins. In: The proteins. Hrsg. von H. Neurath and K. Bailey. Bd. II A, S. 279–344. New York: Acad. Press Inc. 1954.Google Scholar
  27. Heyningen, W. E. Van: Toxic proteins. In: The proteins. Hrsg. von H. Nerratu u. K. Bailey. Bd. II A, S. 345 387. New York: Acad. Press Inc. 1954.Google Scholar
  28. Jaenicke L.: Pyrimidine. In: Hoppe-Seiler/Thierfelders Handbuch der physiologisch-und pathologisch-chemischen Analyse. Hrsg. von K. Lang u. E. Lehnhartz. 10. Aufl., Bd. 1II/2. Bandteil, S. 1217–1244. Berlin: Springer-Verlag 1955a.Google Scholar
  29. Jaenicke, L.: JPurine. In: Hoppe-Seyler/Thierfelders Handbuch der physiologisch-und pathologisch-chemischen Analyse. Hrsg. von K. Lang u. E. Lehnhartz. 10. Aufl., Bd. III/2. Bandteil, S. 1245–1338. Berlin: Springer-Verlag 1955 b.Google Scholar
  30. Keller, S., and R. J. Block: Separation of proteins. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block, Bd. I, S. 1–30. London: Pergamon Press 1960a.Google Scholar
  31. Keller, S., and R. J. Block: Fractionation of proteins by adsorption and ion exchange. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block: Bd. I, S. 65–87. London: Pergamon Press 1960b.Google Scholar
  32. Kenchington, A. W.: Analytical information from titration curves. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block. Bd. II, S. 353–388. London: Pergamon Press 1960.Google Scholar
  33. Klingmüller, V.: Spezifische Drehung organischer Verbindungen. In: Biochemisches Taschenbuch. Hrsg. von H. M. Rauen. S. 482–489. Berlin: Springer-Verlag 1956.Google Scholar
  34. Kofranyi, E.: Aminosäuren. In: Biochemisches Taschenbuch. Hrsg. von H. M. Raven. S. 181–190. Berlin: Springer-Verlag 1956.Google Scholar
  35. Kossel, A.: Protamine und Histone. Wien: S. Deuticke 1929.Google Scholar
  36. Kragh, A. M.: Viscosity. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block. Bd. III, S. 173–209. London: Pergamon Press 1960.Google Scholar
  37. Linderström-Lang, K.: Proteins and enzymes. Stanford: Stanford University Press 1952.Google Scholar
  38. Mcmeekin, T. L.: Milk proteins. In: The proteins. Hrsg. von H. Neurath and K. Bailey Bd. IIA, S. 389–434. New York: Acad. Press 1954.Google Scholar
  39. Meienhofer, J., u. H. Zahn. Gewinnung und Reindarstellung von Proteinen. In: Hoppeseyler/Thierfelders Handbuch der physiologisch-und pathologisch-chemischen Analyse. Hrsg. von K. Lang u. E. Lehnhartz. 10. Aufl., Bd. IV/1. Bandteil, S. 1–115. Berlin: Springer-Verlag 1960.Google Scholar
  40. Meister, A.: Biochemistry of the amino acids. New York: Acad. Press 1957.Google Scholar
  41. Müller, E.: Kohlensäurederivate (Harnstoff, Guanidinderivate) und tierische Basen. In: HoppE-Seyler/Thierfelders Handbuch der physiologisch-und pathologisch-chemischen Analyse. Hrsg. von K. Lang u. E. Lehnhartz. 10. Aufl., Bd. I11/2. Bandteil, S. 1072–1187. Berlin: Springer-Verlag 1955.Google Scholar
  42. Northrop, J. H., M. Kunitz and R. M. Herriott: Crystalline Enzymes. S. 88. New York: Columbia Press 1948.Google Scholar
  43. Osborne, T. B.: The protein of the wheat kernel. Washington: Carnegie Inst. publ. No. 84, 1907.Google Scholar
  44. Perutz, M. F.: Proteins and nucleic acids. Structure and function. Amsterdam, London, New York: Elsevier Publ. Comp. 1962.Google Scholar
  45. Pfeiffer, P.: Organische Molekülverbindungen. 2. Aufl., S. 141, 250. Stuttgart: F. Enke 1927.Google Scholar
  46. Schwyzer, R.: Synthesen von hormonaktiven Peptiden. XVII. Int. Kongr. f. Reine u.Angew, Chem., München. Hauptvorträge, Bd. II, S. 130–142. London: Butterworth, und Weinheim: Verlag Chemie 1960.Google Scholar
  47. Signer, R., u. R. Butler: Nucleinsäuren. In: Biochem. Taschenbuch. Hrsg. von H. M. Rauen. S. 433–441. Berlin: Springer-Verlag 1956.Google Scholar
  48. Sobotka, H., and H. S. Trurnit: Unimolecular layers in protein analysis. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block. Bd. III, S. 211–244. London: Pergamon Press 1960.Google Scholar
  49. Souci, S. W., W. Facmgann u H Kraut: Die Zusammensetzung der Lebensmittel (Nährwert-Tabellen). Stuttgart: Wissenschaftliche Verlagsgesellschaft M. B. H. 1962.Google Scholar
  50. Stacey, K. A.: The use of light-scattering for the measurement of the molecular weight and size of proteins. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block. Bd. III, S. 245–275. London: Pergamon Press 1960.Google Scholar
  51. Stauff, J.: Physikalische Chemie der Lösungen. In: Biochemisches Taschenbuch. Hrsg. von H. M. Rauen. S. 617–667. Berlin: Springer-Verlag 1956.CrossRefGoogle Scholar
  52. Svensson, H., and T. E. Thompson: Translational diffusion methods in protein chemistry. In: A laboratory manual of analytical methods of protein chemistry (including polypeptides). Hrsg. von P. Alexander and R. J. Block. Bd. III, S. 57–118. London: Pergamon Press 1960.Google Scholar
  53. Taylor, J. F.: The isolation of proteins. In: The proteins. Hrsg. von H. Neurath and K. Bailey. Bd. IA, S. 1–85. New York: Academic Press Inc. 1953.Google Scholar
  54. Todd, A.: Optical rotation. In: A laboratory manual of analytical methods of protein chemistry. Hrsg. von P. Alexander and R. J. Block. Bd. II, S. 245–283. London: Perga-mon Press 1960.Google Scholar
  55. Turba, F.: Chromatographische Methoden in der Proteinchemie. Berlin: Springer-Verlag 1954.CrossRefGoogle Scholar
  56. Turba, F.: TAminosäuren. In: Hoppe-Seyler/Thierfelders Handbuch der physiologisch-und pathologisch-chemischen Analyse. Hrsg. von K. Lang u. E. lehnhartz. 10. Aufl., Bd. I11/2. Bandteil, S. 1648–1998. Berlin: Springer-Verlag 1955.Google Scholar
  57. WerlE, E., u. D. PALM: Amine. In: Biochemisches Taschenbuch. Hrsg. von H. M. Rauen. S. 244–256. Berlin: Springer-Verlag 1956.Google Scholar
  58. Zahn, H.. u. W. Gesierich: Raum-Modelle von Naturstoffen. In: Biochemisches Taschenbuch. Hrsg. von H. M. RAUEN. S. 599–616. Berlin: Springer-Verlag 1956.Google Scholar

Zeitschriftenliteratur

  1. Abderhalden, E., U. H. Brockmann: Beitrag zur Konstitutionsermittlung von Proteinen bzw. Polypeptiden. Biochem. Z. 225, 386–408 (1930).Google Scholar
  2. Abderhalden, E., u. H. Brockmann: Au. K. Heyns: Die Synthese von a-Amino-ß-oxy-n-buttersäure, a-Amino-ß-oxyisovaleriansäure (ß-Oxyvalin) und a-Amino-ß-oxy-n-valeriansäure (ß-Oxynorvalin), zugleich ein Beitrag zur Frage des Vorkommens dieser Oxyaminosäuren als Bausteine von Eiweißstoffen. Ber. dtsch. chem. Ges. 67, 530–547 (1934).CrossRefGoogle Scholar
  3. Abderhalden, E., u. H. Brockmann: Au. W. Stix: Weiterer Beitrag zur Frage der Konstitution der Proteine. Untersuchungen über den Aufbau des Seidenfibroins. Hoppe-Seylers Z. physiol. Chem. 129, 143–156 (1923).CrossRefGoogle Scholar
  4. Abraham, S., L. A. Hillyard and I. L. Chaikoff: Components of serum and egg yolk lipoproteins: galactose, mannose, glucosamine and sialic acid. Arch. Biochem. Biophys. 89, 74–78 (1960).Google Scholar
  5. Abrams, R.: Nucleic acid metabolism and biosynthesis. Ann. Rev. Biochem. 30, 165–188 (1961).CrossRefGoogle Scholar
  6. Acher, R., and J. Chauvet: Structure of ox vasopressin. Biochim. biophys. Acta 12, 487–488 (1953).Google Scholar
  7. Ackermann, D., O. Timpe u. K. Poller: Über das Anserin, einen neuen Bestandteil der Vogelmuskulatur. Hoppe-Seylers Z. physiol. Chem. 183, 1–10 (1929).Google Scholar
  8. Agren, G., and S. Eklund: The presence of djencolic acid in hydrolysates of mammalian tissues. Acta chem. stand. 6, 1129–1130 (1952).CrossRefGoogle Scholar
  9. Albert, A.: Quantitative studies of the avidity of naturally occurring substances for trace metals I Amino acids having only two ionizing groups. Biochem. J. 47, 531–538 (1950).Google Scholar
  10. Albert, A.: AQuantitative studies of the avidity of naturally occurring substances for trace metals. H. Amino acids having three ionizing groups. Biochem. J. 50, 690–697 (1952).Google Scholar
  11. Alderton, G., and H. L. FEVOLD: Preparation of the egg-yolk lipoprotein, lipovitellin. Arch. Biochem. 8, 415–419 (1945).Google Scholar
  12. Alderton, G., and H. L. FEVOLD: Direct crystallization of lysozyme from egg white and some crystalline salts of lysozyme. J. biol. Chem. 164, 1–5 (1946).Google Scholar
  13. Alderton, G., and H. L. FEVOLD: AW. H. WARD and H. L. FEVOLD: Isolation of lysozyme from egg white. J. biol. Chem. 157, 43–58 (1945).Google Scholar
  14. Allen, D. W., W. A. Schroeder and J. Balog: Observations on the chromatographic heterogeneity of normal adult and fetal human hemoglobin: A study of the effects of crystallization and chromatography on the heterogeneity and isoleucin content. J. amer. them. Soc. 80, 1628–1634 (1958).CrossRefGoogle Scholar
  15. Amiard, G., R. Heymes , L. Velluz: Nouvelle synthèse du glutathion. Bull. Soc. chim. France 1956, 698–700.Google Scholar
  16. Anderson, G. W., J. BLODINGER and A. D. Welcher: Tetraethyl pyrophosphite as a reagent for peptide syntheses. J. amer. chem. Soc. 74, 5309–5312 (1952).CrossRefGoogle Scholar
  17. Anderson, L., and J. J. Kelley: The dephosphorylation of casein by alkalies. J. amer. them. Soc. 81, 2275–2276 (1959).CrossRefGoogle Scholar
  18. Ando, T., S.-I. Ishii and M. Yamasaki: Peptides obtained by tryptic digestion of clupeine. Biochim. biophys. Acta 34, 600–601 (1959).Google Scholar
  19. Arthur, J. C.: Peanut protein. Isolation, composition and properties. Advanc. Protein Chem. 8, 393–414 (1953).CrossRefGoogle Scholar
  20. Aschaffenburg, R., and J. Drewry: Genetics of the ß-Lactoglobulins of cow’s milk. Nature (Lond.) 180, 376–378 (1957).CrossRefGoogle Scholar
  21. Bailey, K.: Troponiyosin: a new asymmetric protein component of the muscle fibril. Biochem. J. 43, 271–279 (1948).Google Scholar
  22. and F. R. Bettelheim: Clothing of fibrinogen. I. Liberation of peptide material. Biochim. biophys. Acta 18, 495–503 (1955).Google Scholar
  23. Banga, I., and J. BalÔ: Elastin and elastase. Nature (Lend.) 171, 44 (1953).CrossRefGoogle Scholar
  24. Birâny, _M., K. Biriny and F. Grba: Preparation of actin without extraction of myosin. Nature (Lend.) 179, 818–819 (1957).Google Scholar
  25. Battersby, A. R., and L. C. Craig: The molecular weight determination of polypeptides. J. amer. Chem. Soc. 73, 1887–1888 (1951).CrossRefGoogle Scholar
  26. Beatty, I. M., D. I. Magrath and A. H. ESSOR: Occurrence of D-serine in lombricine. Nature (Lond.) 183, 591 (1959).CrossRefGoogle Scholar
  27. Beisenherz, G., H. J. Boltze, T. Buciier. R. Czoic, K. H. Garbade, E. meyer-Arendt U. G. Pfleiderer: Diphosphofructose-aldolase, Phosphoglyceraldehyd-Dehvdrogenase, Milclisäure-Dehvdrogenase, Glycerophosphat-Dehvdrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8 b, 555–577 (1953).Google Scholar
  28. Belitz, H.-D.: Proteine des Eidotters. Z. Lebensmittel- Untersuch. u. -Forsch. 119, 201 bis 210 (1963a).Google Scholar
  29. Belitz, H.-D.: Eidotterproteine und ihre Spaltprodukte. I. Mitt. Fraktionierung von Phosvitin. Z. Lebensmittel-Untersuch. u. -Forsch. 119, 346–350 (1963b).CrossRefGoogle Scholar
  30. Eidotterproteine und ihre Spaltprodukte. II. Mitt. Phosphopeptide aus Phosvitin. Z. Lebensmittel-Untersuch. u. -Forsch. 119, 381–389 (1963c).CrossRefGoogle Scholar
  31. Bennich, H., B. Joiiansson and R. Osterberg: A phosphopeptide isolated from bovine a-casein after tryptic hydrolysis. Acta ehem. scand. 13, 1171–1175 (1959).CrossRefGoogle Scholar
  32. Berg, A. M., S. Kari, M. Alfthan and A. I. Virtanen: Homoserine and x-amino-adipic acid in green plants. Acta ehem. scand. 8, 358 (1954).CrossRefGoogle Scholar
  33. Bergmann, M., u. L. Zervas: Liber ein allgemeines Verfahren der Peptidsynthese. Ber. dtsch. ehem. Ges. 65, 1192–1201 (1932).CrossRefGoogle Scholar
  34. Bernardi, G., and W. H. Cook: An electrophoretic and ultracentrifugal study on the proteins of the high density fraction of egg yolk. Biochim. biophys. Acta 44, 86–96 (1960a).Google Scholar
  35. Bernardi, G., and W. H. Cook: Separation and characterization of the two high density lipoproteins of egg yolk, a-and fl-lipovitellin. Biochim. biophys. Acta 44, 96–105 (1960b).Google Scholar
  36. Bernardi, G., and W. H. Cook: Molecular weight and behaviour of lipovitellin in urea solutions. Biochim. biophys. Acta 44, 105–109 (1960e).Google Scholar
  37. Berridge, N. J., G. G. F. Newton and E. P. Abraham: Purification and nature of the antibiotic nisin. Biochem. J. 52, 529–535 (1952).Google Scholar
  38. Bielig, 11.-J., u. E. Bayer: Uber die Molekulargrölle des Hämovanadins. Experientia (Basel) 10, 300–302 (1954).CrossRefGoogle Scholar
  39. Blanchard, M., D. E. Green, V. Nocito and S. Ratner: Isolation of L-amino acid oxidase. J. biol. Chem. 161, 583–597 (1945).Google Scholar
  40. Block, R. J., and D. Bolling: The microestimation of threonine. J. biol. Chem. 130, 365–374 (1939).Google Scholar
  41. Blomback, B., P. Wallén and J. Sjöql-Ist: On the amino acid sequence of bovine fibrinopeptides. Acta ehem. scand. 13, 819–822 (1959).CrossRefGoogle Scholar
  42. Blomback, B., P. Wallén and J. Sjöql-Ist: and J. Yamashina: The determination of N-terminal amino acids during the conversion of fibrinogen to fibrin. Acta them. stand. 11, 194–195 (1957).Google Scholar
  43. Bodo, G., H. M. Dintzis, J. C. Kendrew and H. W. Wyckoff: Crystal structure of myoglobin. V. Low resolution three-dimensional Fourier synthesis of sperm-whale myoglobin crystals. Proc. roy. Soc., Ser. A (Lond.) 253, 70–102 (1959).Google Scholar
  44. Boissonnas, R. A.: Une nouvelle méthode de synthèse peptidique. Helv. chim. Acta 34 874–879 (1951).Google Scholar
  45. Boissonnas, R. A.: St. Guttmann et P.-A. JAQUENOUD: Synthèse de la L-arginyl-L-prolyl-L-prolyl-glycylL-phenyl-alanyl-L-sérvl-L-prolyl-L-phénylalanyl-L-arginine, un nonapeptide présentant les propriétés de la bradykinine. Helv. chim. Acta 43, 1349–1358 (1960).Google Scholar
  46. Boulanger, P., et R. Osteux: Dosage des formes D et L de l’acide glutamique dans les protéines des tissus normaux et néoplasiques et dans les corps microbiens. Biochim. biophys. Acta 5, 416–425 (1950).Google Scholar
  47. Braunitzer, G.: Konstitutionsermittlung bei Peptiden und Proteinen. Angew. Chem. 69, 189–197 (1957).Google Scholar
  48. Braunitzer, G.: Vergleichende Untersuchungen zur Primärstruktur der Proteinkomponenten einiger Hämoglobine. Hoppe-Seylers Z. physiol. Chem. 312, 72–84 (1958).Google Scholar
  49. Braunitzer, G.: R. Gehring-Muller, J. Hilschmann, K. Hilse, G. Hobom, V. Rudloff u. B. Wittmann Liebold: Die Struktur des normalen Human-H?moglobins. Hoppe-Seylers Z. physiol. Chem. 325, 283–286 (1961 c).Google Scholar
  50. Braunitzer, G.: N. Hilschmann, K. Hilse, B. Liebold u. R. Müller. Die Konstitution der ß-Kette der Hauptkomponente des normalen adulten Human-Hämoglobins. Hoppe-Seylers Z. physiol. Chem. 322, 96–100 (1960b)Google Scholar
  51. Braunitzer, G.: V. Rudloff, K. Hilse, B. Liebold and R. Muller: The hemoglobin particles. Chemical and genetic aspects of their structure. Nature (Lond.) 190 480–482 (1961 a).Google Scholar
  52. Braunitzer, G.: B. Wittmann-Liebold: Unterbrochene, homologe und identische Sequenzen in den Peptidketten der Hauptkomponenten der normalen Human-Hämoglobine. Hoppe-Seylers Z. physiol. Chem. 325, 94–96 (1961b).Google Scholar
  53. Braunitzer, G.: V. Rudloff, K. Hilse, B. Liebold u. R. Muller. Eine Partialformel der a-Kette der Hauptkomponente des adulten menschlichen Hämoglobins. Hoppe-Seylers Z. physiol. Chem. 320, 283–288 (1960a).Google Scholar
  54. Brockmann, H., G. Bohnsack, B. Franck, H. Gröne, H. Muxfeldt U. C. Suling: Zur Konstitution der Actinomycine. Angew. Chem. 68, 70–71 (1956).Google Scholar
  55. Brockmann, H., G. u. B. Franck: Bouillon-Geruch der Proteinhydrolysate. Angew. Chem. 67, 303 (1955).Google Scholar
  56. Brockmann, H., G. u. H. Geeren: Die Konstitution des Valinomycins. Liebigs Ann. Chem. 603, 216–232 (1957).CrossRefGoogle Scholar
  57. Bromer, W. W., L. G. Sinn and O. K. Behrens: The amino acid sequence of glucagon. V. Location of amide groups, acid degradation studies and summary of sequential evidence. J. amer. them. Soc. 79, 2807–2810 (1957).Google Scholar
  58. Brown, H., F. Sanger and R. Kitai: Structure of pig and sheep insulins Biochem. J. 60, 556–565 (1955).Google Scholar
  59. Brunner, J. R., C. A. Ernstrom, R. A. Hollis, B. L. Larson, R. McL. Whitney and C. A. Zittle: Nomenclature of the proteins of bovine milk. First revision. J. Dairy Sci. 43, 901–911 (1960).CrossRefGoogle Scholar
  60. Buehler, H. J., E. J. Schantz and C. Lamanna: The elemental and amino acid composition of crystalline clostridium botulinium type A toxin. J. biol. Chem. 169, 295–302 (1947).Google Scholar
  61. BURLEY, R. W., and W. H. Coox: Isolation and composition of avian egg yolk granules and their constituent a-and ß-lipovitellins. Canad. J. Biochem. Physiol. 39, 1295–1307 (1961).CrossRefGoogle Scholar
  62. Burroughs, L. F.: 1-Aminocyclopropane-1-carboxylic acid: a new amino acid in perry pears and cider apples. Nature (Lond.) 179, 360–361 (1957).CrossRefGoogle Scholar
  63. Canellaurs, E. S.: Metabolism of nucleic acids. Ann. Rev. Biochem. 31, 271–300 (1962).CrossRefGoogle Scholar
  64. Carpenter, F. H., and D. T. Gish: The application of p-nitrobenzyl-chloroformate to peptide synthesis. J. amer. chem. Soc. 74, 3818–3821 (1952).CrossRefGoogle Scholar
  65. Caspary, E. A., and R. A. Kekwick: Observations on the molecular weight of human fibrinogen. Biochem. J. 56, 35–36 (1954).Google Scholar
  66. Cavalieri, L. F., and B. H. Rosenberg: Nucleic acids: molecular biology of DNA. Ann. Rev. Biochem. 31, 247–270 (1962).CrossRefGoogle Scholar
  67. Chapelle, E. W., and J. M. Lucx: The decarboxylation of amino acids, proteins and peptides by N-bromosuccinimide. J. biol. Chem. 229, 171–179 (1957).Google Scholar
  68. Chargaff, E.: Lipoproteins. J. biol. Chem. 142, 491–504 (1942).Google Scholar
  69. Cheeseman, G. C., and N. J. Berridge: Observations on the molecular weight and chemical composition of nisin A. Biochem. J. 71, 185–194 (1959).Google Scholar
  70. Chibnall, A. C.: Spinacin, ein neuer Eiweißstoff aus Spinatblättern. J. biol. Chem. 61, 303–308 (1924).Google Scholar
  71. Cohen, G. N., and F. Gros: Protein biosynthesis. Ann. Rev. Biochem. 29, 525–546 (1960).CrossRefGoogle Scholar
  72. Cohn, E. J., F. R. N. Gurd, D. M. Surgenor, B. A. BARNES, R. K. Brown, G. Derouaux, J. M. Gillespie, F. W. Kahn’’, W. F. Lever, C. H. Liu, D. Mprtelman, R. F. Mouton, K. Schmid and E. Uroma: A system for the separation of the components of human blood: quantitative procedures for the separation of the protein components of human plasma. J. amer. chem. Soc. 72, 465–474 (1950).CrossRefGoogle Scholar
  73. Cohn, E. J., F. R. N. Gurd, D. M. Surgenor, B. A. BARNES, R. K. Brown, G. Derouaux, J. M. Gillespie, F. W. Kahn’’, W. F. Lever, C. H. Liu, D. Mprtelman, R. F. Mouton, K. Schmid and E. Uroma: L. E. Strong, W. L. Hughes Jr., D. J. Mulford, J. N. Ashworth, M Melin and H. L. Taylor: Preparation and properties of serum and plasmaproteins. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids. J. amer. chem. Soc. 68, 459–475 (1946).Google Scholar
  74. Connelly, C., and G. Taborsky: Chromatographic fractionation of phosvitin. J. biol. Chem. 236, 1364–1368 (1961).Google Scholar
  75. Consden, R., and W. M. Stanier: Ionophoresis of sugars on paper and some applications to the analysis of protein polysaccharide complexes. Nature (Lond.) 169, 783–785 (1952).CrossRefGoogle Scholar
  76. Cook, A. H., and G. Harris: Degradation and synthesis of peptides and proteins. Progr. In Org. Chem. 4, 140–180 (1958).Google Scholar
  77. Corfield, M. C., and A. Robson. Amino acid composition of salmine. Biochem. J. 55, 517–522 (1953).Google Scholar
  78. Craine, E. M., and K. E. Fahrenbholtz: The proteins in water extracts of corn. Cereal Chem. 35, 245–259 (1958).Google Scholar
  79. Crampton, C. F., W. H. Stein and S. Moore: Comparativs studies on chromatographically purified histones. J. biol. Chem. 225, 363–368 (1957).Google Scholar
  80. Crick, F. H. C., and J. C. Kendrew: x-Ray analysis and protein structure. Advanc. Protein Chem. 12, 134–215 (1957).Google Scholar
  81. Cruet, H. J., C. M. Maurizen and E. Stedman: Abnormal properties of histones from malignant cells. Nature (Lond.) 174, 580–585 (1954).CrossRefGoogle Scholar
  82. Daly, M. M., A. E. Mirsky and H. R’s: Amino acid composition and some properties of histones. J. gen. Physiol. 34, 439–450 (1951).CrossRefGoogle Scholar
  83. Damodaran, M., and B. V. Ramachandran: Enzymic proteolysis. 4. Amino acids of casein phosphopeptone. Biochem. J. 35, 122–134 (1941).Google Scholar
  84. Dekker, C. A.: Nucleic acids. Selected topics related to their enzymology and chemistry. Ann. Rev. Biochem. 29, 453–474 (1960).CrossRefGoogle Scholar
  85. Done, J., and L. Fowden: New amino acid amide in the ground-nut plant (Arachis hypogaea): evidence of the occurrence of y-methylene-glutamine and y-methylene-glutamic acid. Biochem. J. 51, 451–458 (1952).Google Scholar
  86. Drucker, B., R. Hainsworth and S. G. Smith: Chemistry of silk fibroin. I. The action of some proteolytic enzymes of fibroin in aqueous solution and its bearing on the molecular structure of silk. J. Textile Inst. 44, T 420–435 (1953).Google Scholar
  87. Drucker, B., R. Hainsworth and S. G. Smith: and S. G. S.ith: Structure of silk fibroin. Nature (Lond.) 165, 196–197 (1950).CrossRefGoogle Scholar
  88. Dunn, M. S., M. N. Camien and L. Pillemer. The amino acid composition of tetanal toxin. Arch. Biochem. Biophys. 22, 374–376 (1949).Google Scholar
  89. Earland, C., and C. S. Knight: Structure of keratin. I. Analysis of fractions isolated from wool oxidized with peracetic acid. Biochim. biophys. Acta 17, 457–461 (1955).Google Scholar
  90. Edman, P.: Method for determination of the amino acid sequence in peptides. Acta them. scand. 4, 283–293 (1950).CrossRefGoogle Scholar
  91. Edman, P.: Chemistry of amino acids and peptides. Ann. Rev. Biochem. 28, 69–96 (1959).CrossRefGoogle Scholar
  92. Edmundsson, A. B., and C. H. W. Hies: The amino-acid sequence of sperm whale myoglobin. Chemical studies. Nature (Lund.) 190, 663–665 (1961).CrossRefGoogle Scholar
  93. Ehrenpreis, S., S. J. Leach and H. A. Scheraga: Action of thrombin on lysine substrates. J. amer. them. Soc. 79, 6086–6087 (1957).CrossRefGoogle Scholar
  94. Elliott, D. F., E. W. Horton and G. P. Lewis: The isolation of bradykinin, a plasma kinin from ox blood. Biochem. J. 78, 60–65 (1961).Google Scholar
  95. Fearon, W. R., and E. A. Bell: Canavanine: detection and occurrence in colutea arborescens. Biochem. J. 59, 221–224 (1955).Google Scholar
  96. Felix, K., H. M. Batten u. G. H. Zimmer: Über Clupein. XI. Mitt. Hoppe-Seylers Z. physiol. Chem. 291, 228–234 (1952).Google Scholar
  97. Fevold, H. L., and A. Lausten: Isolation of a new lipoprotein, lipovitellenin, from egg yolk. Arch. Biochem. 11, 1–7 (1946).Google Scholar
  98. Fischer, H., u. F. Meyer-Betz: Zur Kenntnis der Gallenfarbstoffe. II. Mitt.: Über das Urobilinogen des Urins and das Wesen der Ehrlichschen Aldehydreaktion. Hoppe-Seylers Z. physiol. Chem. 75, 232–261 (1911).Google Scholar
  99. Fitzgerald, J. E., N. S. Schneider and D. F. Waugh: Molecular stability and substructure of bovine fibrinogen. J. amer. them. Soc. 79, 601–608 (1957).CrossRefGoogle Scholar
  100. Flavin, M., and S. Ochoa: Metabolism of propionic acid in animal tissues. I. Enzymatic conversion of propionate to succinate. J. biol. Chem. 229, 965–979 (1957).Google Scholar
  101. Flavin, M., and S. Ochoa: and C. Slaughter: Threonine synthetase mechanism: Studies with isotopic hydrogen. J. biol. Chem. 235, 1112–1118 (1960).Google Scholar
  102. Fölsch, G.: Synthesis of phosphopeptides. I. Peptides of D,L-serine and glycine. Acta them. scand. 12, 561–567 (1958).CrossRefGoogle Scholar
  103. Fölsch, G.: Synthesis of phosphopeptides. II. 0-phosphorylated dipeptides of L-serine. Acta them. scand. 13, 1407–1421 (1959).CrossRefGoogle Scholar
  104. Folin, O.: A colorimetric determination of the amino acid nitrogen in normal urine. J. biol. Chem. 51, 393–394 (1922).Google Scholar
  105. Folin, O.: A system of blood analysis. Supplement II. A new colorimetric method for the determination of the amino acid nitrogen in blood. J. biol. Chem. 51, 377–391 (1922).Google Scholar
  106. Forsythe, R. H., and J. F. Foster: Egg white proteins. I. Electrophoretic studies on whole white. J. biol. Chem. 184, 377–383 (1950).Google Scholar
  107. Folin, O.: Egg white proteins. II. An ethanol fractionation scheme. J. biol. Chem. 184, 385–392 (1950).Google Scholar
  108. Fowden, L.: Die nichtproteinogenen Aminosäuren. Endeavour 21, 35–42 (1962).CrossRefGoogle Scholar
  109. Fowden, L.: F. F. Noe, J. H. Ridd and R. F. M. White: Nuclear magnetic resonance spectrum of a new plant amino acid: evidence for a pyrazole ring. Proc. Chem. Soc. 1959, 131–132.Google Scholar
  110. Fraenkel-Conrat, H.: A technique for stepwise degradation of proteins from the amino end. J. amer. chem. Soc. 76, 3606–3607 (1954).CrossRefGoogle Scholar
  111. Fraenkel-Conrat, H.: A. Mohammad, E. D. Ducay and D. K. Mecham: The molecular weight of lysozyme after reduction and alkylation of the disulfide bonds. J. amer. chem. Soc. 73, 625–627 (1951).CrossRefGoogle Scholar
  112. Fraenkel-Conrat, H.: and R. R. Porter: The terminal amino groups of conalbumin, ovomucoid and avidin. Biochim. biophys. Acta 9, 557–562 (1952).Google Scholar
  113. Fredericq, E., and H. F. Deutsch: Studies on ovomucoid. J. biol. Chem. 181, 499–510 (1949).Google Scholar
  114. Fromageot, C., M. JustisZ, D. M.yer et L. Penasse: Méthode pour la charactérisation des groupes carboxyliques terminaux dans les protéines. Application à l’insuline. Biochim. biophys. Acta 6, 283–289 (1950).Google Scholar
  115. Gerald, P. S., and V. M. Ingram: Recommendations for the nomenclature of hemoglobins. J. biol. Chem. 236, 2155–2156 (1961).Google Scholar
  116. Gergely, J.: Studies on myosin-adenosintriphosphatase. J. biol. Chem. 200, 543–505 (1953).Google Scholar
  117. Gergely, J.: The interaction between actomyosin and adenosine triphosphate. Light scattering studies. J. biol. Chem. 220, 917–926 (1956).Google Scholar
  118. Gergely, J.: M. A. Gouvea and A. Martouosi: Studies on actin. II. Partially polymerized actin solutions. J. biol. Chem. 235, 1704–1706 (1960).Google Scholar
  119. Gershbein, L. L., and M. Krup: Secretion studies. I. The preparation of potent secretion concentrates. J. amer. chem. Soc. 74, 679–685 (1952).CrossRefGoogle Scholar
  120. Geschwind, I. I C. H. Li and L. Barnafi: The structure of the ?-melanocyte-stimulating hormone. J. amer. chem. Soc. 79 620–625 (1957).Google Scholar
  121. Gish, D. T., and F. H. Carpenter: p-Nitrobenzyloxycarbonyl derivatives of amino acids. J. amer. chem. Soc. 75, 950–952 (1953).CrossRefGoogle Scholar
  122. Gladner, J. A., J. E. Folk and K. Laki: Purification and structure studies of peptides released from fibrinogen by thrombin. Federat. Proc. 17, 229 (1958).Google Scholar
  123. Gladner, J. A., J. E. Folk and K. Laki: and K. Laki. The active site of thrombin. J. amer. chem. Soc. 80, 1263–1264 (1958).CrossRefGoogle Scholar
  124. Gmelin, R.: Mimosaceen-Aminosäuren. Teil VII. Isolierung von Willardiin (3-(1-Uracyl)- L-alanin) aus den Samen von Acacia millefolia, Acacia lemmonis u. Mimosa asperata. Acta chem. stand. 15, 1188–1189 (1961).CrossRefGoogle Scholar
  125. Goodman, M., and G. W. Kenner: The synthesis of peptides. Advanc. Protein Chem. 12, 465–638 (1957).Google Scholar
  126. Gordon, W. G., and W. F. Semmet: Isolation of crystallin a-lactalbumin from milk. J. amer. chem. Soc. 75, 328–330 (1953).CrossRefGoogle Scholar
  127. Grassmann, W., K. Hannig, H. Endres u. A. RIEDEL: Die Sequenz der Aminosäuren im Kollagen. I. Die Stellung von Prolin und Hydroxyprolin. Hoppe-Seylers Z. physiol. Chem. 306, 123–131 (1956).Google Scholar
  128. Grassmann, W., K. Hannig, H. Endres u. A. RIEDEL: u. M. Schleyer: Zur Aminosäuresequenz des Kollagens. II. Hoppe-SeylersZ. physiol. Chem. 322, 71–95 (1960).Google Scholar
  129. Gray, D. O., and L. Fowden: a-(Methylencyclopropyl)-glycin from Litchi seeds. Biochem. J. 82, 385 (1962).Google Scholar
  130. Green, N. M., and E. Work: Pancreatic trypsin inhibitor. Biochem. J. 49, 37 (1951). Groot, E. H., L. W. Jansen, A. Kenntie, H. K. Oosterhuis and H. L. J. Trap: A new protein in potatoes. Biochim. biophys. Acta 1, 410–414 (1947).Google Scholar
  131. Groves, M. L., T. L. Mcmeekin, N. J. Hipp and W. G. Gordon: Preparation of ß-and y-casein by column chromatography. Biochim. biophys. Acta 57, 197–203 (1962).Google Scholar
  132. Grubhofer, N., u. H. H. Weber: Uber Actin-Nucleotide und die Funktion und Bindung der Nucleotidphosphate in G- und F-Actin. Z. Naturforsch. 16b, 435–444 (1961).Google Scholar
  133. Gullwitsch, W., u. S. Amiradzibi: Zur Kenntnis der Extraktivstoffe der Muskeln. Hoppeseylers Z. physiol. Chem. 30, 565–573 (1900).CrossRefGoogle Scholar
  134. Gundlach, H. G., S. Moore and W. H. Stein: The reaction of jodoacetate with me-thionine. J. biol. Chem. 234, 1761–1764 (1959).Google Scholar
  135. Gundlach, H. G., S. Moore and W. H. Stein: W. H. STEIN and S. Moore: The nature of the amino acid residues involved in the inactivation of ribonuclease by jodoacetate. J. biol. Chem. 234, 1754–1760 (1959).Google Scholar
  136. Hagan, J. J., F. B. Ablondi and E. C. De Renzo: Purification and biochemical properties of human plasminogen. J. biol. Chem. 235, 1005–1010 (1960).Google Scholar
  137. Hall, D. A.: The complex nature of the enzyme elastase. Arch. Biochem. Biophys. 67, 366–377 (1957).Google Scholar
  138. Hamilton, P. B., and R. A. Anderson: Hydroxylysine in proteins. J. amer. chem. Soc. 77, 2892–2893 (1955).CrossRefGoogle Scholar
  139. Hardegger, E., P. Liechti, L. M. Jackman, A. Boller U PL. A. Plattner: Welkstoffe und Antibiotica. 24. Mitt. Die Konstitution der Lycomarasmins. Heiv. shim. Acta 46, 60–74 (1963).CrossRefGoogle Scholar
  140. Harrington, W. F., and P. H. v. Hippel: The structure of collagen and gelatin. Advanc. Protein Chem. 16, 1–138 (1961).CrossRefGoogle Scholar
  141. Harris, J. I., and P. Roos: Amino-acid sequence of a melanophorc-stimulating peptide. Nature (Lond.) 178, 90 (1956).CrossRefGoogle Scholar
  142. Harris, J. I., and P. Roos: F. Sanger and M. A. Nat Ghton: Species differences in insulin. Arch. biochem. Biophys. 65, 427–438 (1956).Google Scholar
  143. Harris, J. I., and P. Roos: and T. S. WORK: The synthesis of peptides related to gramicidin S and the significance of optical configuration in antibiotic peptides. 2. Pentapeptides. Biochem. J. 46, 582–589 (1950).Google Scholar
  144. Hartman, S. C.. and J. M. Buchanan: Nucleic acids, purines, pyrimidines (nucleotide synthesis). Ann. Rev. Biochem. 28, 335–410 (1959).CrossRefGoogle Scholar
  145. Hassall, C. H., and K. Reyle: Hypoglycin A and B, two biologically active polypeptides from Blighia sapida. Biochem. J. 60, 334–338 (1955).Google Scholar
  146. Hasselbach, W., u. G. Schneider: L-Myosin-und Actin-Gehalt von Kaninchenmuskel. Biochem. Z. 321. 462–475 (1951).Google Scholar
  147. Hattori, S., and A. Komamlna: Stizolobic acid: a new amino-acid in stizolobium hassjo. Nature (Lond.) 183, 1116 1117 (1959).Google Scholar
  148. Hausmann, W., J. R. Weisiger and L. C. Craig: Bacitracin A. Further studies on the composition. J. amer. chem. Soc. 77, 721–722 (1955a).CrossRefGoogle Scholar
  149. Hausmann, W., J. R. Weisiger and L. C. Craig: Partial hydrolysis studies with Bacitracin A. J. amer. chem. Soc. 77, 723–731P(1955 b).Google Scholar
  150. Haworth, R. D., R. Mcgillivrav and D. H. Peacock: Isolation of sarcosine from an acid hydrolysate of groundnut protein. Nature (Lond.) 167, 1068 (1951).CrossRefGoogle Scholar
  151. Hektoen, L., and A. G. Cole: The proteins in egg white and their relationship to the blood proteins of the domestic fowl as determined by the precipitin reaction. J. infect. Diseases 42, 1–24 (1928).CrossRefGoogle Scholar
  152. Hellerman, L., F. P. Chinard and V. R. Deitz: Protein sulfhydryl groups and the reversible inactivation of the enzyme urease. The reducing groups of egg albumin and of urease. J. biol. Chem. 147, 443–462 (1943).Google Scholar
  153. Hess, K.: Protein, Kleber und Lipoid in Weizenkorn und Mehl. Kolloid-Z. 136. 84–99 (1954).CrossRefGoogle Scholar
  154. Hess, K.: Die Bedeutung von Zwickelprotein und Haftprotein im Weizenmehl für Teig, Brot und Gebäck. Kolloid-Z. 141, 61–76 (1955).CrossRefGoogle Scholar
  155. Heyns, K., G. Anders u. E. Becker: Proteine und ihre Abbauprodukte. VII. Trennung partiell hvdrolysierter Gelatine-Fraktionen durch Fällungsmethoden. Hoppe-Seylers Z. physiol. Chem. 287, 120–133 (1951).Google Scholar
  156. Heyns, K., G. Anders u. E. Becker: u. W. Walter: Über Proteine und deren Abbauprodukte. X. Zur Frage des Vor- kommens von a-Amino-buttersäure in Proteinen. Transaminierungen in den Schmelzen der Hydrochloride von Aminosäuren. Hoppe-Seylers Z. physiol. Chem. 294, 111–122 (1953).Google Scholar
  157. Hill, R. L., J. R. Kimrmel and E. L. Smith: The structure of proteins. Ann. Rev. Biochem. 28, 97–144 (1959).CrossRefGoogle Scholar
  158. Hill, R. J., and W. Konigsberg: The structure of human hemoglobin. 1V. The chymotryptic digestion of the a-chain of human hemoglobin. J. biol. Chem. 237, 3151–3156 (1962).Google Scholar
  159. Hill, R. L., and W. R. SCH:IIIDT: Complete enzymic hydrolysis of proteins. J. biol. Chem. 237, 389–396 (1962).Google Scholar
  160. Hilschm Ann, N, u. G. Brahnitzer: Über die N-terminale Sequenz der ß-Kette des menschlichen Hämoglobins. Hoppe-Seylers Z. physiol. Chem. 317, 285–287 (1959).CrossRefGoogle Scholar
  161. Hilse, K., u. G. Bradnitzer: Über Hämoglobine. VIT. Untersuchungen zur Konstitution der Peptidketten aus Humanhämoglobin A. Z. Naturforsch. 14 b, 603–604 (1959a).Google Scholar
  162. Hilse, K., u. G. Bradnitzer: Uber H?moglobine. VIII. Zur chemischen Charakterisierung des Proteins aus Humanh?moglobin A. Z. Naturforsch. 14 b, 604–606 (1959 b).Google Scholar
  163. Hinton, J. S. C.: The distribution of protein in the maize kernel in comparison with that in wheat. Cereal Chem. 30, 441–445 (1953).Google Scholar
  164. Hipp, N. J., J. J. Basch and W. G. Gordon: Amino acid composition of al-, a,- and a3caseins. Arch. Biochem. Biophys. 94, 35–37 (1961 b).Google Scholar
  165. Hipp, N. J., J. J. Basch and W. G. Gordon: M. L. Groves, J. H. Custer and T. L. M.meei IN: Separation of y-Casein. J. amer. chem. Soc. 72, 4928–4931 (1950).CrossRefGoogle Scholar
  166. Hipp, N. J., J. J. Basch and W. G. Gordon: Separation of a-, ß-and y-casein. J. Dairy Sci. 35, 272–281 (1952).CrossRefGoogle Scholar
  167. Hipp, N. J., J. J. Basch and T. L. Mcmeekin: Separation of the components of a-casein. II. The preparation of a3-casein. Arch. Biochem. Biophys. 93, 245–250 (1961 a).Google Scholar
  168. Hippel, P. H. v., and D. F. WAUGH: Casein: Monomers and polymers. J. amer. chem. Soc. 77, 4311–4319 (1955).CrossRefGoogle Scholar
  169. Hochstrasser, K.: Über die Bindungsart von Kohlenhydrat an Protein im Gerstenalbumin. Isolierung von 4-L-Alanyl-D-xylopyranose als Brückenglied. VIII. Mitt. über Samenproteine. Hoppe-Seylers Z. physiol. Chem. 324, 250–253 (1961).CrossRefGoogle Scholar
  170. Hofman, T.: Studies on casein. 2. The action of phosphatases on casein and low-molecularweight phosphates. Biochem. J. 69, 139–145 (1958).Google Scholar
  171. Holme, J., and D. R. Briggs: Studies on the physical nature of gliadin. Cereal Chem. 36, 321–340 (1959).Google Scholar
  172. Holt, C. v., U. W. Leppla: Die Konstitution von Hypoglyein A. Angew. Chem. 70, 25 (1958). Hopkins, F. G.: Über einen selbstoxydierbaren Bestandteil der Zelle. Biochem. J. 15, 286–305 (1921).Google Scholar
  173. Horn, M. J., and D. B. Jones: Isolation from Astragalus pectinatus of a crystallin amino acid complex containing selenium and sulfur. J. biol. Chem. 139, 649–660 (1941).Google Scholar
  174. Howard, K. S., R. G. Shepherd, E. A. Eigner, D. S. DAVIES and P. H. BELL: Structure of ß-corticotropin: Final sequence studies. J. amer. chem. Soc. 77, 3419–3420 (1955).CrossRefGoogle Scholar
  175. Holme, A. C.: A new amino acid in the peel of apple fruits. Nature (Lond.) 174, 1055–1056 (1954).CrossRefGoogle Scholar
  176. Holme, A. C.: and W. Arthington: Methyl-proline in young apple fruits. Nature (Lond.) 173, 588 bis 589 (1954).Google Scholar
  177. Hunt, J. A.: Identity of the a-chains of adult and foetal human haemoglobin. Nature (Lond.) 183, 1373–1375 (1959).CrossRefGoogle Scholar
  178. Hunt, J. A.: and V. M. Ingram: Abnormal human haemoglobin. II. The chymotrypsin digestion of the trypsin-resistent “core” of haemoglobins A and S. Biochim. biophys. Acta 28, 546–549 (1958).Google Scholar
  179. Ingram, V. M.: Abnormal human haemoglobins. I. The comparison of normal human and sickle-cell haemoglobins by “finger-printing”. Biochim. biophys. Acta 28, 539–545 (1958).Google Scholar
  180. Ingram, V. M.: Abnormal human haemoglobins. III. The chemical difference between normal and sickle-cell haemoglobin. Biochim. biophys. Acta 36, 402–411 (1959a).Google Scholar
  181. Ingram, V. M.: Constituents of human haemoglobin. Separation of the peptide chains of human globin. Nature (Lond.) 183, 1795–1798 (1959b).CrossRefGoogle Scholar
  182. Irvine, J. L., and D. W. Wilson: Octopine I: The synthesis and titration curve of octopine. J. biol. Chem. 127, 555–563 (1939 a).Google Scholar
  183. Irvine, J. L., and D. W. Wilson II.: The nitrogenous extractives of squid and octopus muscle. J. biol. Chem. 127, 565–574 (1939 b).Google Scholar
  184. Irvine, J. L., and D. W. Wilson: III.: The precursor of octopine in autolyzing scallop muscle. J. biol. Chem. 127, 575–579 (1939e).Google Scholar
  185. Itano, H. A.: The human hemoglobins: their properties and genetic control. Advanc. Protein Chem. 12, 216–268 (1957).Google Scholar
  186. Itano, H. A.: and E. Robinson: Formation of normal and doubly abnormal Haemoglobins by recombination of haemoglobin I with S and C. Nature (Lond.) 183, 1799–1800 (1959).Google Scholar
  187. Jaenicke, L.: Die Folsäure im Stoffwechsel der Einkohlenstoff-Einheiten. Angew. Chem. 73, 449–460 (1961).Google Scholar
  188. Jirgensons, B.: Investigations of potato proteins. J. Polymer Sci. 1, 484–494 (1946).CrossRefGoogle Scholar
  189. Johansen, P., R. D. Marshall and A. Neuberger: Carbohydrate peptide complex from egg albumin. Nature (Lond.) 181, 1345–1346 (1958).CrossRefGoogle Scholar
  190. Johnson, A. W., and D. J. Mccaldin: The reaction of ninhydrin with cyclic a-Iminoacids. J. chem. Soc. 1958, 817–822.CrossRefGoogle Scholar
  191. Johnson, A. W., and D. J. Mccaldin: The formation of yellow condensation products from amino compounds and ninhydrin. J. chem. Soc. 1960, 3412–3413.Google Scholar
  192. Jollès, J., et P. Jollès: The chemical structure of lysozyme obtained from chicken egg white — the structural formula. Compt. rend. 253, 2773–2775 (1961).Google Scholar
  193. Jollès, P.: Neuere Untersuchungen an Lysozymen. Angew. Chem. 76, 20–28 (1964).Google Scholar
  194. Jollès, P.: C. Alais et J. Jollès: Study of cow’s x-casein. Characterization of the renninsensitive linkage. Biochim. biophysica Acta 69, 511–517 (1963).CrossRefGoogle Scholar
  195. Jones, D. B., and F. A. Csonka: Proteins of the cottonseed. J. biol. Chem. 64, 673–683 (1925).Google Scholar
  196. Jones, M. E., L. Spector and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. amer. chem. Soc. 77, 819–820 (1955).CrossRefGoogle Scholar
  197. Jones, R. W., G. E. Babcock, N. W. Taylor and F. R. Senti: Molecular weights of wheat gluten fractions. Arch. Biochem. Biophys. 94, 483–488 (1961).Google Scholar
  198. Joubert, F. J., and W. H. Cook: Preparation and characterization of phosvitin from hen egg yolk. Canad. J. Biochem. Physiol. 36, 399–408 (1958).CrossRefGoogle Scholar
  199. Kay, L. M., and W. A. Schroeder: The chromatographic separation and identification of some peptides in partial hydrolysates of silk fibroin. J. amer. chem. Soc. 76, 3564–3568 (1954).CrossRefGoogle Scholar
  200. Keil, B., and F. Orm: The stabilization of unstable amino acids in polypeptides by desulphurization and hydrogenation using tritium. Biochim. biophys. Acta 38, 146–147 (1960).Google Scholar
  201. Kenchington, A. W., and A. G. Ward: The titration curve of gelatin. Biochem. J. 58, 202–207 (1954).Google Scholar
  202. Kendrew, J. C., G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff and D. C. Phillips: A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature (Lond.) 181, 662–666 (1958).CrossRefGoogle Scholar
  203. Kendrew, J. C., G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff and D. C. Phillips: H. C. Watson, B. E. Strandberg and R. E. Dickerson: The amino acid sequence of sperm whale myoglobin. A partial determination by x-ray methods and its correlation with chemical data. Nature (Lond.) 190, 666–670 (1961).Google Scholar
  204. Killey, W. W., and W. F. Harrington: A model for the myosin molecule. Biochim. biophys. Acta 41, 401–421 (1960).Google Scholar
  205. King, T. P., and L. C. Craig: The chemistry of tyrocidine. V. The amino acid sequence of tyrocidine B. J. amer. them. Soc. 77, 6627–6631 (1955).CrossRefGoogle Scholar
  206. Kjaer, A., and D. Olesen Larsen: Saccharopin, a new amino acid in baker’s and brewer’s yeast. II. Structure and synthesis. Acta chem. stand. 15. 750–759 (1961).CrossRefGoogle Scholar
  207. Klaushofer, H., F. Mittelbach u. A. Szilvinyi: Versuche zur papierelektrophoretischen Trennung von Gerstenhordein. Mitt. Versuchsstat. Gärungsgewerbe 13, 80–85 (1959).Google Scholar
  208. Kline, D. L.: The purification and crystallization of plasminogen (profibrinolysin). J. biol Chem. 204, 949–955 (1953).Google Scholar
  209. Kong, R. W., D. K. Mecham and J. W. Pence: Determination of sulfhydryl groups in wheat flour. Cereal Chem. 34, 201–210 (1957).Google Scholar
  210. Konigsberg, W., G. Gfidotti and R. J. HILL: The amino acid sequence of the a-chain of human hemoglobin. J. biol. Chem. 236, PC 55 — PC 56 (1961).Google Scholar
  211. Konigsberg, W., G. Gfidotti and R. J. HILL: and R. J. Hill: The structure of human hemoglobin. III. The sequence of amino acids in the tryptic peptides of the a-chain. J. biol. Chem. 237, 2547–2561 (1962a).Google Scholar
  212. Konigsberg, W., G. Gfidotti and R. J. HILL: The structure of human hemoglobin. V. The digestion of the a-chain of human hemoglobin with pepsin. J. biol. Chem. 237, 3157–3162 (1962b).Google Scholar
  213. Kos.Hin, N. P.: Die Eiwei Bstoffe des Roggens und der Roggenkleber. Getreidemühle 2, 122–123 (1958).Google Scholar
  214. Kos.hin, N. P.: W. N. Iljira and C. A. Biitman: Kleberproteine des Roggenkornes. Dokt. Akad. Nauk Sssr 110, 610–612 (1956), russisch; zit. nach Chem. Abstr. 51, 6898 (1957).Google Scholar
  215. Kroner, T. D., W. Tabroff and J. 1. Mcgarr: Peptides isolated from a partial hydrolysate of steer hide collagen. J. amer. chem. Soc. 75, 4084–4086 (1953).CrossRefGoogle Scholar
  216. Kroner, T. D., W. Tabroff and J. 1. Mcgarr: Peptides isolated from a partial hydrolysate of steer hide collagen. II. Evidence for the prolyl-hydroxyprolyl linkage in collagen. J. amer. chem. Soc. 77, 3356–3359 (1955).CrossRefGoogle Scholar
  217. Kronman, M. J., L. E. Weinberger and R. J. Winterbottom: The water-soluble proteins of bovine skeletal muscle. Arch. Biochim. Biophys. 86, 238–250 (1960).Google Scholar
  218. Kunkel, H. G., and A. G. Bearn: Minor hemoglobin components of normal human blood. Federat. Proc. 16, 760–762 (1957).Google Scholar
  219. Laki, K., J. A. Gladner and J. E. Folk: Some aspects of the fibrinogen-fibrin transition. Nature (Lond.) 187, 758–761 (1960).CrossRefGoogle Scholar
  220. Lanni, F., D. G. Sharp, E. A. Eckert, E. S. Dillon, D. Beard and J. W. Beard: The egg white inhibitor of influenza virus hemagglutination. I. Preparation and properties of semipurified inhibitor. J. biol. Chem. 179, 1275–1287 (1949).Google Scholar
  221. Laskowski, M., T. H. Donnelly, B. A. Van Tijn and H. A. Scheraga: The proteolytic action of thrombin on fibrinogen. J. biol. Chem. 222, 815–821 (1956).Google Scholar
  222. Laskowski Jr., M., S. Eihrenpreis, T. H. Donnelly and H. A. Scheraga: Equilibria in the fibrinogen-fibrin conversion. V. Reversibility and thermodynamics of the proteolytic action of thrombin on fibrinogen. J. amer. chem. Soc. 82, 1340–1348 (1960).Google Scholar
  223. Laskowski Jr., M., S. Eihrenpreis, T. H. Donnelly and H. A. Scheraga: and M. Laskowski: Crystalline trypsin inhibitor from colostrum. J. biol. Chem. 190, 563–573 (1951).Google Scholar
  224. Lavine, T. F.: lodometric determination of methionin. J. biol. Chem. 151, 281–297 (1943).Google Scholar
  225. Lawson, W. B., E. Gross, C. M. Foltz and B. WITKOP: Specific cleavage of methionyl peptides. J. amer. chem. Soc. 83, 1509–1510 (1961).CrossRefGoogle Scholar
  226. Levene, P. A., u. C. L. Alsberg: Zur Chemie der Paranucleinsäure. Hoppe-Seylers Z. physiol. Chem. 31, 543–555 (1900).CrossRefGoogle Scholar
  227. Levinthal, C., and P. F. Davidson: Biochemistry of genetic factors. Ann. Rev. Biochem. 30, 641–668 (1961).CrossRefGoogle Scholar
  228. Levy, M., and D. E. Silberman: The reactions of amino and imino acids with formaldehyde. J. biol. Chem. 118, 723–734 (1937).Google Scholar
  229. Lewis, U. J., D. E. Williams and N. G. Brink: Pancreatic elastase: purification, properties and function. J. biol. Chem. 222, 705–720 (1956).Google Scholar
  230. Li, C. H.: Electrophoretic inhomogenity of crystalline beta-lactoglobulin. J. amer. chem. Soc. 68, 2746–2747 (1946).CrossRefGoogle Scholar
  231. Liebold, B., u. G. Braunitzer: Über Hämoglobine. II. Die tryptische Spaltung des Humanglobins A. Hoppe-Seylers Z. physiol. Chem. 315, 270–277 (1959).Google Scholar
  232. Liebold, B., u. G. Braunitzer: K. Hilse u. G. Braunitzer: Über Hämoglobine. III. Die Isolierung einiger Peptide nach Einwirkung von Trypsin auf das Protein des kristallisierten Humanhämoglobins A. Hoppe-Seylers Z. physiol. Chem. 315, 278–284 (1959).Google Scholar
  233. Lindquist, B.: Casein and the action of rennin. Part I. Dairy Sci. Abstr. 25, 257–264 (1963).Google Scholar
  234. Lindquist, B.: Casein and the action of rennin. Part II. Dairy Sci. Abstr. 25, 299–308 (1963).Google Scholar
  235. Lindquist, B.: u. T. Storgards: Untersuchungen über die Käsereifung. IV. Veränderungen im Elektrophoresebild des Kaseins während der Reifung bei verschiedenen Käsesorten. Milchwiss. 12, 462–472 (1957).Google Scholar
  236. Lineweaver, H., and C. W. Mt—Bray: Identification of the trypsin inhibitor of egg white with ovomucoid. J. biol. Chem. 171, 565–581 (1947).Google Scholar
  237. Lipmann, F. A., and P. A. Levene: Serinephosphoric acid obtained an hydrolysis of vitellinic acid. J. biol. Chem. 98, 109–114 (1932).Google Scholar
  238. Locker, R. H.: C-terminal groups in myosin, tropomyosin and actin. Biochim. biophys. Acta 14, 533–542 (1954).Google Scholar
  239. Long, J., Q. Van Winkle and I. R. Gould: Isolation and identification of 2-casein. J. Dairy Sci. 41, 317–318 (1958).CrossRefGoogle Scholar
  240. Lorand, L., and K L4x1’ Simple method for purifying an activator of prothrombin (antihemophilic factor 1). Biochim. biophys. Acta 13, 448–449 (1954).Google Scholar
  241. Lowey, S., and A. Holtzer: Homogeneity and molecular weights of the meromyosins and their relative proportions in myosin. Biochim. biophys. Acta 34, 470–484 (1959).Google Scholar
  242. Lucas, F., J. T. B. Shaw and S. G. Smith: Amino-acid sequence in a fraction of Bombyx silk fibroin. Nature (Lond.) 178, 861 (1956).CrossRefGoogle Scholar
  243. Lucas, F., J. T. B. Shaw and S. G. Smith: Amino-acid sequence in a fraction of the fibroin of Bombyx mori. Biochem. J. 66, 468–479 (1957).Google Scholar
  244. Lucas, F., J. T. B. Shaw and S. G. Smith: The silk fibroins. Advanc. Protein Chem. 13, 108–243 (1958).Google Scholar
  245. Siandeles, S.: Use of DE AE-Cellulose in the separation of proteins from egg white and other biological materials. J. Chromatog. 3, 256–264 (1960).CrossRefGoogle Scholar
  246. Martin, W. G., and W. H. Cook: Preparation and molecular weight of ?-livetin from egg yolk. Canad. J. Biochem. Physiol. 36, 153–160 (1958).CrossRefGoogle Scholar
  247. K. J. Turner and W. H. CooK: Macromolecular properties of vitellenin from egg yolk and its parent complex with lipids. Canad. J. Biochem. Physiol. 37, 1197–1207 (1959).Google Scholar
  248. K. J. Turner and W. H. CooK: J. E. Vandegaer and W. H. Coox: Fractionation of livetin and the molecular weights of the a-and /3-components. Canad. J. Biochem. Physiol. 35, 241–250 (1957).Google Scholar
  249. Martouosi, A., M. A. Gouvea and J. Gergely: Studies on actin. I. The interaction of C14 labeled adenine nucleotides with actin. J. biol. Chem. 235, 1700–1703 (1960a).Google Scholar
  250. Martouosi, A., M. A. Gouvea and J. Gergely: Studies on actin. III. G—F transformation of actin and muscular contraction (experiments in vivo). J. biol. Chem. 235, 1707–1710 (1960b).Google Scholar
  251. Mattenheimer, H., u. H. Nitschmann: Das Lab und seine Wirkung auf das Casein der Milch. VIII. Die Abspaltung von Nicht-Proteinstickstoff (NPN) aus Casein durch verschiedene proteolytische Enzyme, verglichen mit der Abspaltung durch Lab. Hely. chim. Acta 38, 687–698 (1955).Google Scholar
  252. Mcguire, T. A., E. M. Craine and R. J. Dimler: Chromatographic method for fractionating globulins of corn. Cereal Chem. 37, 324–333 (1960).Google Scholar
  253. Mcintyre, R. T.: Investigations of the water-soluble nitrogenous fraction of rice. Cereal Chem. 33, 299–302 (1956).Google Scholar
  254. Mcmeekin, T. L., M. L. Groves and N. J. Hipp: The separation of a new component of a-casein. Abstr. Papers amer. chem. Soc. 1957, 65e.Google Scholar
  255. Mcmeekin, T. L., M. L. Groves and N. J. Hipp: N. J. Hipp and M. L. GROVES: The separation of the components of a-casein. I. The preparation of a1-casein. Arch. Biochem. Biophys. 83, 35–43 (1959).Google Scholar
  256. Mcrorie, R. A., G. L. Sutherland, M. S. Lewis, A. D. Barton, M. R. Glazener and W. Shive: Isolation and identification of a naturally occurring analog of methionin. J. amer. chem. Soc. 76, 115–118 (1954).CrossRefGoogle Scholar
  257. Mecham, D. K., and H. S. OLCOTT: Phosvitin, the principal phosphoprotein of egg yolk. J. amer. chem. Soc. 71, 3670–3679 (1949).CrossRefGoogle Scholar
  258. Mellander, O.: Elektrophoretische Untersuchung von Casein. Biochem. Z. 300, 240–245 (1939).Google Scholar
  259. Meredith, P., H. G. Samenous and A. C. Frazer: Examination of wheat gluten by partial solubility. I. Partition by organic solvent. J. Sci. Food Agric. 11, 320–328 (1960a).CrossRefGoogle Scholar
  260. Mellander, O.: Examination of wheat gluten by partial solubility. II. Partition by dilute formic acid. J. Sci. Food. Agric. 11, 329–337 (1960b).CrossRefGoogle Scholar
  261. Mertz, E. T., and R. Bressani: Studies on corn proteins. I. A new method of extraction. Cereal Chem. 34, 63–69 (1957).Google Scholar
  262. N. E. Lloyd and R. Bressani: Studies on corn proteins. III. The glutelins of corn. Cereal Chem. 35, 156–168 (1958).Google Scholar
  263. Michelson, A. M.: Chemistry of the nucleotides. Ann. Rev. Biochem. 30, 133–164 (1961).CrossRefGoogle Scholar
  264. Mdhx-Lyi, E., and A. G. Szent-Györgyi: Trypsin digestion of muscle proteins. I. Ultra-centrifugal analysis of the process. J. biol. Chem. 201, 189–196 (1953a).Google Scholar
  265. Mdhx-Lyi, E., and A. G. Szent-Györgyi: Trypsin digestion of muscle proteins. III. Adenosine triphosphatase activity and actin-binding capacity of the digested myosin. J. biol. Chem. 201, 211–219 (1953b).Google Scholar
  266. Miller, K. D.: Chromatographic isolation of plasma prothrombin and trans-a-glucosylase. J. biol. Chem. 231, 987–995 (1958).Google Scholar
  267. Monier, R., and M. Justisz: Structure of salmine from Oncorhynchus. I. Amino acid linkage at the N-terminal residue and study of several peptides resulting from partial acid hydrolysis. Biochim. biophys. Acta 14, 551–558 (1954a).Google Scholar
  268. Monier, R., and M. Justisz Structure of salmine from Oncorhynchus. II. Peptides produced by tryptic hydrolysis. Biochim. biophys. Acta 15, 62–68 (1954b).Google Scholar
  269. Moore, S., and W. H. Stein: A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. biol. Chem. 211, 907–913 (1954).Google Scholar
  270. Moore, S., and W. H. Stein: Column chromatography of peptides and proteins. Advanc. Protein Chem. 11, 191–236 (1956).CrossRefGoogle Scholar
  271. Morris, C. J., and J. F. Thompson: The detection, isolation, and identification of y -glutamyl-S-methylcysteine from beans. Arch. Biochem. Biophys. 73, 281–283 (1958).Google Scholar
  272. Ioxrison, M., and J. C. C’ook: Column chromatography of human hemoglobins (Sym- posium on molecular heterogeneity of hemoglobin). Federat. Proc. 16, 763–766 (1957).Google Scholar
  273. Morrlson, R. I.: Isolation of L-pipecolic acid from trifolium repens. Biochem. J. 53, 474–478 (1953).Google Scholar
  274. Mofbasiier, R., and M. Ibrahim: Studies on indene derivatives. Part. V. J. chem. Soc. 1949, 702 iO3.Google Scholar
  275. Mofrgue, Ml, K. Baret, R. Kassab et S. Reynayd: Etude des protýlines de la graine de Jatropha curcas Linn. Bull. Soc. Chim. biol. (Paris) 43, 505–516 (1961 a).Google Scholar
  276. Mofrgue, Ml, K. Baret, R. Kassab et S. Reynayd: J. Delphact, R. Baret et J. Bellini: Localisation de la Ricine et étude des toxicités comparées de la ricine et de ses dérivés guanidyles, acétylés ou benzoylés. Bull. Soc. Chim. biol. (Paris) 40, 1465–1478 (1958).Google Scholar
  277. Mofrgue, Ml, K. Baret, R. Kassab et S. Reynayd: R. Kassab: Etude de la toxicité et localisation de la toxalbumin (curcine) deseegraines de Jatropha curcas Linn. Bull. Soc. Chim. biol. (Paris) 43, 517–531 (1961b).Google Scholar
  278. Mii Dd, S. H., and G. L. Cantoni: Selenomethionine in enzymatic transmethylations. Nature (Loud.) 180, 1052 (1957).CrossRefGoogle Scholar
  279. Neelin, J. M., and G. E. Connell: Zone electrophoresis of chicken erythrocyte histone in starch gel. Biochim. biophysica Acta 31, 539–541 (1959).CrossRefGoogle Scholar
  280. Neelin, J. M., and G. E. Connell: and W. H. COOK: Terminal amino acids of egg yolk lipoproteins. Canad. J. Biochem. Physiol. 39, 1075–1084 (1961).CrossRefGoogle Scholar
  281. Nitschsiann H., u. R. Beeby: Das Lab und seine Wirkung auf das Casein der Milch. XIS“. Aminosäurezusammensetzung des aus x-Casein durch Lab in Freiheit gesetzten GlykoMIakropeptids. Chimia (Zürich) 14, 318–319 (1960).Google Scholar
  282. Nitschsiann, H., u. R. Beeby: u. R. Henzi: Das Lab und seine Wirkung auf das Casein der Milch. X11I. Untersuchung der bei der Labung freigesetzten Peptide. Hely. chim. Acta 42, 1985–1995 (1959).CrossRefGoogle Scholar
  283. Nip, Ching-I., and H. Fraenkel-Conrat: Determination of C-terminal amino acids and peptides by hydrazinolysis. J. amer. chem. Soc. 77, 5882–5885 (1955).CrossRefGoogle Scholar
  284. Nolan, C., and E. L. Smith: Glycopeptides. II. Isolation and properties of glycopeptides from rabbit y-globuline. J. biol. Chem. 237, 446–452 (1962).Google Scholar
  285. Osterberg, R.: Isolation of a phosphopeptide as magnesium-complex from a tryptic hydrolysate of a-casein by anion exchange chromatography. Biochim. biophys. Acta 42, 312–315 (1960).Google Scholar
  286. Osterberg, R.: Phosphorus linkages in OE-casein. Biochim. biophys. Acta 54, 424–431 (1961).Google Scholar
  287. Osterberg, R.: On the arrangement of phosphoamino acids in a part of a-casein. Acta chem. scand. 17, 871 (1963).CrossRefGoogle Scholar
  288. Oncley, J. L., M. Melin, D. A. Richert, J. W. Cameron and P. M. Gross Jr.: Theseparation of the antibodies, isoagglutinins, prothrombin, plasminogen and fi-lipoprotein into subtractions of human plasma. J. amer. chem. Soc. 71, 541–550 (1949).CrossRefGoogle Scholar
  289. Osborne, T. B., and G. F. Campbell: The proteids of the egg yolk. J. amer. chem. Soc. D2, 413–422 (1900).CrossRefGoogle Scholar
  290. Ottesen, M.: Transformation of ovalbumin into plakalbumin. A case of limited proteolysis. C. R. Tray. Lab. Carlsberg, Sér. chim. 30, 211–270 (1957).Google Scholar
  291. Palmer, A. H.: The preparation of a crystalline globulin from the albumin fraction of cow milk. J. biol. Chen. 104, 359–372 (1934).Google Scholar
  292. Partridge, S. M.: Elastin. Advanc. Protein Chem. 17, 227–302 (1962).Google Scholar
  293. Patchornik, A., W. B. Lawson and B. Witkop: Selective cleavage of peptide bonds. II. The tryptophyl peptide bond and the cleavage of glucagon. J. amer. chem. Soc. 80, 4747–4748 (1958 a).Google Scholar
  294. Patschornik, A., W. B. Lawson and B. Witkop: The use of neighboring group effects for the selective cleavage of peptide bonds. I. On the mechanism of oxidation of ß-substituted indoles with N-bromosuccinimide. J. amer. them. Soc. 50, 4748–4749 (1958b).Google Scholar
  295. Paul, R., and G. W. Anderson: N,N’-carbonyldiimidazole, a new peptide forming reagent. J. amer. them. Soc. 82, 4596–4600 (1960).CrossRefGoogle Scholar
  296. Pauling, L and R. B. Corey: Structure of synthetic polypeptides. Proc. nat. Acad. Sci. USA 37, 241–250 (1951a).Google Scholar
  297. Pauling, L and R. B. Corey: Polypeptide-chain configuration in hemoglobin and other globular proteins. Proc. nat. Acad. Sei. USA 37, 282–285 (1951 b).Google Scholar
  298. Pauling, L and R. B. Corey: Configurations of polypeptide chains with favored orientations around single bonds: two new pleated sheets. Proc. nat. Acad. Sci. USA 37, 729–740 (1951 c).Google Scholar
  299. Pauling, L and R. B. Corey: Compound helical configurations of polypeptide chains: Structure of proteins of the a-keratin-type. Nature (Lond.) 171, 59–61 (1953).Google Scholar
  300. Pauly, H.: Über die Einwirkung von Diazoniumverbindungen auf Imidazole. Hoppe-Seylers Z. physiol. Chem. 44, 159–160 (1905).Google Scholar
  301. Pedersen, K. O.: Ultrazentrifugen-und Elektrophoreseuntersuchungen an Milchproteinen.Google Scholar
  302. Pedersen, K. O.: I. Einführung und orientierende Ergebnisse mit Fraktionen der Magermilch. Biochem. J. 30, 948–960 (1936).Google Scholar
  303. Pence, J. W.: Approximate isoelectric pH’s of albumin from wheat flour. Cereal Chem. 30, 328–333 (1953).Google Scholar
  304. Pence, J. W.: and A. H. Elder: The albumin and globulin proteins of wheat. Cereal Chem. 30, 275–287 (1953).Google Scholar
  305. Pence, J. W.: N. E. Weinstein and D. K. Mecram: Differences in the distribution of components in albumin preparations from durum and common wheat flours. Cereal Chem. 31, 396–406 (1954).Google Scholar
  306. Perkoff, G. T., R. L. Hill, D. M. Brown, F. H. Tyler: The characterization of adult human myoglobin. J. biol. Chem. 237, 2820–2827 (1962).Google Scholar
  307. Perlman, G. E.: Enzymic dephosphorylation of ovalbumin and plakalbumin. J. gen. Physiol. 35, 711–726 (1952).CrossRefGoogle Scholar
  308. Perlman, G. E.: Phosphodiester linkages in proteins. Biochim. biophys. Acta 13, 452–453 (1954a).Google Scholar
  309. Perlman, G. E.: Phosphorus linkages in a-casein. Nature (Lond.) 174, 273–274 (1954b).CrossRefGoogle Scholar
  310. Perry, S. V.: Chromatography of L-myosin on diethylaminoethylcellulose. Biochem. J. 74, 94–101 (1960).Google Scholar
  311. Pertjtz, M. F., M. G. Rossmann, A. F. Cull’S, H. Muirhead, G. Will and A. C. T. North: Structure of haemoglobin. A.three-dimensional fourier synthesis at 5.5-A resolution, obtained by x-ray analysis. Nature (Lond.) 185, 416–422 (1960).Google Scholar
  312. Pillemer, L., L. Blum, I. H. Lepow, O. A. Ross, E. W. Todd and A. C. Wardlaw: The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science (Washington) 120, 279–285 (1954).CrossRefGoogle Scholar
  313. Plattner, P. A., u. U. Nager: Welkstoffe und Antibiotica. 8. Mitt. Uber die Konstitution von Enniatin B. Helv. chim. Acta 31, 665–671 (1948).CrossRefGoogle Scholar
  314. Plimmer, R. H. A.: The proteins of egg-yolk. J. them. Soc. 93, 1500–1506 (1908).Google Scholar
  315. Polis, B. D., H. W. Schmukler and J. H. Custer: Isolation of a crystalline albumin from milk. J. biol. Chem. 187, 349–354 (1950).Google Scholar
  316. Pool., A. A., and E. M. Shooter: The salt-soluble proteins of barley. I. A review. J. Sci. Food Agric. 6, 514–524 (1955 a).Google Scholar
  317. Pool., A. A., and E. M. Shooter: The salt-soluble proteins of barley. III. The detailed composition of saline extracts of barley-fractionation by precipitation with ethanol. J. Sci. Food Agric. 6, 534–543 (1955b).CrossRefGoogle Scholar
  318. Porath, J.: Fractionation of polypeptides and proteins on dextran gels. Clin. chien. Acta (Amsterdam) 4, 776–778 (1959).Google Scholar
  319. Porath, J.: Gel filtration of proteines, peptides and amino acids. Biochim. biophys. Acta 39, 193–207 (1960).Google Scholar
  320. Porath, J.: and P. Flodin: Gel filtration: a method for desalting and group separation. Nature (Lond.) 183, 1657–1659 (1959).CrossRefGoogle Scholar
  321. Porter, R. R.: The unreactive amino groups of proteins. Biochim. biophys. Acta 2, 105–112 (1948).Google Scholar
  322. Porter, R. R.: A chemical study of rabbit antiovalbumin. Biochem. J. 46, 473–478 (1950).Google Scholar
  323. Porter, R. R.: Isolation and properties of a fragment of bovine serum albumin which retains the ability to combine with rabbit antiserum. Biochem. J. 66, 677–686 (1957).Google Scholar
  324. Porter, R. R.: and F. Sanger: The free amino groups of hemoglobins. Biochem. J. 42, 287–294 (1948).Google Scholar
  325. Posternak, T., and H. Pollaczek: Protection against enzymic hydrolysis afforded by phosphorylated groups. The enzymic degradation of a phosphorylated peptide and phosphorylated polysaccharides. Helv. chim. Acta 24, 921–930 (1941 a).Google Scholar
  326. Posternak, T., and H. Pollaczek: Casein phosphopeptones (lactotyrines). Helv. chim. Acta 24, 1190–1210 (1941 b).Google Scholar
  327. Pragay, D.: Aktin-Fraktionen. Aktinpolymerisation. Naturwiss. 44 397–398 (1957).Google Scholar
  328. Pi,Nam, F. W.: Abnormal human serum globulins. Science (Washington) 122, 275–277 (1955).CrossRefGoogle Scholar
  329. Rackis, J. J., H. A. Sasame, R. L. Anderson and A. K. Smith: Chromatography of soybean proteins. I. Fractionation of whey proteins on diethylaminoethyl-cellulose. J. amer. chem. Soc. 81, 6265–6270 (1959).Google Scholar
  330. Rackis, J. J., H. A. Sasame, R. L. Anderson and A. K. Smith: R. K. Mann, R. L. Anderson and A. K. Smith: Soybean trypsin inhibitors: Isolation, purification and physical properties. Arch. Biochem. Biophys. 98, 471–478 (1962).Google Scholar
  331. Ramachandran, G. N., and M. S. Santhanam: Structure of elastin. Proc. Indian Acad. Sci., Sect. A 45, 124–132 (1957).Google Scholar
  332. Rao, D. R., and D. M. Greenberg: Studies on the enzymic decomposition of urocanic acid. IV. Purification and properties of 4(5)-imidazolone-5(4)-propionic acid hydrolase. J. biol. Chem. 236, 1758–1763 (1961).Google Scholar
  333. Reichmann, M. E., and J. R. Colvin: Subunits in the molecule of bovine plasma albumin. Canad. J. Chem. 33, 163–164 (1955).Google Scholar
  334. Reynolds, L. M., G. O. Henneberry and B. E. Baker: Studies on Casein. II. The carbohydrate moiety of casein. J. Dairy Sci. 42, 1463–1471 (1959).CrossRefGoogle Scholar
  335. Rühngton, C.: Note on the amino acids present in phosphopeptone. Biochem. J. 35, 321–327 (1941).Google Scholar
  336. Rosevear, J. W., and E. L. Smith: Structure of glycopeptides from a human y-globulin. J. amer. chem. Soc. 80, 250–251 (1958).CrossRefGoogle Scholar
  337. Rossi-Fanelli, A., E. Antonini and A. Caputo: Pure native globin from human hemoglobin: preparation and some physicochemical properties. Biochim. biophys. Acta 28, 221 (1958).Google Scholar
  338. Rvhemann, S.: Triketohydrindene hydrate. J. chem. Soc. 97, 2025–2031 (1910).CrossRefGoogle Scholar
  339. Ryle, A. P., F. Sanger, L. F. Smith and R. Kitai: Disulfide bonds of insulin. Biochem. J. 60, 541–556 (1955).Google Scholar
  340. Sakato, Y.: The chemical constituents of tea. III. A new amide, thcanine. J. agric. chem. Soc. Japan 23, 262–267 (1950).Google Scholar
  341. Salton, M. R. J., and J. M. Ghuysen: Structure of di-and tetrasaccharides released from cell walls by lysozyme and streptomyces F, enzyme and the ß(1–4)-N-acetylhexosarninidase activity of these enzymes. Biochim. biophys. Acta 36, 552–554 (1959).Google Scholar
  342. Sanger, F.: Free amino groups of insulin. Biochem. J. 39, 507–515 (1945).Google Scholar
  343. Sanger, F.: Fractionation of oxidized insulin. Biochem. J. 44, 126–128 (1949).Google Scholar
  344. Sanger, F.: and E. O. P. Thompson: Amino acid sequence in the glycyl chain of insulin. I. Identi- fication of lower peptides from partial hydrolyzates. Biochem. J. 53, 353–366 (1953 a).Google Scholar
  345. Sanger, F.: Amino acid sequence in the glycyl-chain of insulin. II. Peptides from enzymic hydrolyzates. Biochem. J. 53, 366–374 (1953b).Google Scholar
  346. Sanger, F. and H. Tuppy: Amino acid sequence in the phenylalanyl chain of insulin. I. Identi- fication of lower peptides from partial hydrolyzates. Biochem. J. 49, 463–481 (1951 a).Google Scholar
  347. Sanger, F.Amino acid sequence in the phenylalanyl chain of insulin. II. Investigation of peptides from enzymic hydrolyzates. Biochem. J. 49, 481–490 (1951b).Google Scholar
  348. Schemjakin, M. M.: Die Chemie der Depsipeptide. Angew. Chem. 72, 342–345 (1960). Scheraga, H. A., and M. Laskowski Jr.: The fibrinogen-fibrin conversion. Advanc. Protein Chem. 12, 2–133 (1957).Google Scholar
  349. Schmir, G. L., L. A. Cohen and B. Witkop: The oxidative cleavage of tyrosyl-peptide bonds. I. Cleavage of dipeptides and some properties of the resulting spirodienane lactones. J. amer. chem. Soc. 81, 2228–2233 (1959).Google Scholar
  350. Schönberg, A., u. R. Moubacher: The strecker degradation of ce-amino acids. Chem. Rev. 50, 272–277 (1952).CrossRefGoogle Scholar
  351. Schormüller, J., u. H.-D. Belitz: Beiträge zur Biochemie der Käsereifung. XXIII. Quantitative Untersuchungen über die Veränderungen der Peptid-und Aminosäurefraktion beim Reifen von Sauermilchkäse Z Lebensmittel-Untersuch. u. -Forsch. 108, 414 421 (1958).Google Scholar
  352. Schormüller, J., u. H.-D. Belitz: u. E. Bachmann. Phosphate und organische Phosphorverbindungen in Lebensmitteln. X. Phosphopeptide aus enzymatischen Hydrolysaten von a-und ß-Casein. Z. Lebensmittel-Untersuch. u. -Forsch. 115, 402–409 (1961).CrossRefGoogle Scholar
  353. Schroeder, W. A.: Column chromatography in the study of the structure of peptides and proteins. Fortschr. Chem. org. Naturstoffe (Wien) 11, 241–298 (1954).Google Scholar
  354. Schroeder, W. A. L. Honnen and F. C. Green: Chromatographic separation and identification of some peptides in partial hydrolyzates of gelatin. Proc. nat. Acad. Sci. USA 39, 23–30 (1953).CrossRefGoogle Scholar
  355. Schroeder, W. A. L. M. Kay, J. Legette, L. Honnen u. F. C. Green: The constitution of gelatin. Separation and estimation of peptides in partial hydrolyzates. J. amer. chem. Soc. 76, 3556 to 3564 (1954).Google Scholar
  356. Schroeder, W. A. R. T. Jones, J. R. Shelton, J. B. Shelton, J. Cormick and K. Mccalla. A partial sequence of the amino acid residues in the y-chain of human hemoglobin F. Proc. nat. Acad. Sci. USA 47, 811–818 (1961).CrossRefGoogle Scholar
  357. Sciirohenloher, R. E., J. D. Ogle and M. A. Logan: Two tripeptides from an enzymatic digest of collagen. J. biol. Chem. 234, 58–61 (1959).Google Scholar
  358. Schultze, H. E., I. Göllner, K. Heide, M. Schönen Berger u. G. Schwick: Zur Kenntnis der a-Globuline des menschlichen Normalserums. Z. Naturforsch. 10 b, 463–473 (1955).Google Scholar
  359. Schwyzer, R.: Synthese von Polypeptid-Wirkstoffen. Chimia (Zürich) 12, 53–68 (1958).Google Scholar
  360. Schwyzer, R.: Chemistry of amino acids and peptides. Ann. Rev. Biochem. 29, 183–206 (1960).CrossRefGoogle Scholar
  361. Schwyzer, R.: M. Feurer, B. Iselin u. H. Kagi: Uber aktivierte Ester. II. Synthese aktivierter Ester von Aminosäure-Derivaten. R.ly. chim. Acta 38, 80–83 (1955).CrossRefGoogle Scholar
  362. Schwyzer, R.: P. Sieber u. K. Zatskô: Farbige Schutzgruppen für die Synthese von Polypeptiden. Rely. chim. Acta 41, 491–498 (1958).Google Scholar
  363. Seegers, W. H., W. G. Levine and R. S. Shepard: Purification of thrombin. Canad. J. Biochem. Physiol. 36, 603–611 (1958).CrossRefGoogle Scholar
  364. Sharp, D. G., F. Lanni, Y. T. Lanni, T. Z. Csaky and J. W. Beard: The egg white inhibitor of influenza virus hemagglutination. V. Arch. Biochem. 30. 251–260 (1951).Google Scholar
  365. Sheehan, J. C., and V. S. Frank: A new synthetic route to peptides. J. amer. them. Soc. 71, 1856–1861 (1949).CrossRefGoogle Scholar
  366. Sheehan, J. C., and V. S. Frank: and G. P. Hess: A new method forming peptid bonds. J. amer. them. Soc. 77, 1067–1068 (1955).CrossRefGoogle Scholar
  367. Sheehan, J. C., and V. S. Frank: H. G. Zaciiau and W. B. Lawson: The structure of etamycin. J. amer. Chem. Soc. S0, 3349–3355 (1958).CrossRefGoogle Scholar
  368. Shinn, L. A., and B. H. Nicolet: The determination of threonine by use of periodate. J. biol. Chem. 138, 91–96 (1941).Google Scholar
  369. Signer, R., u. R. Glanzmann: Über die Polydispersität von Seidenfibroin. Makromol. Chem. 5, 257–261 (1950).Google Scholar
  370. Slmkin, J. L.: Protein biosynthesis. Ann Rev. Biochem. 28, 145–170 (1959).CrossRefGoogle Scholar
  371. Simmonds, D. H., and D. S. WINZOR: Chromatographic fractionation of the acetic acid soluble proteins of wheat flour on carboxymethylcellulose. Austral. J. biol. Sci. 14, 690 bis 699 (1961).Google Scholar
  372. Simpson, M. V.: Protein biosynthesis. Ann. Rev. Biochem. 31, 333–368 (1962).CrossRefGoogle Scholar
  373. Sjöquist, J.: Amino acid composition of the fibrinopeptides A and B. Acta them. scand. 13, 1727–1728 (1959).CrossRefGoogle Scholar
  374. Sjöquist, J., B. Blomback and P. Wallén: Amino acid sequence of bovine fibrinopeptides. Ark. Kemi 16, 425–436 (1961).Google Scholar
  375. Slyke, D. D. Van, R. T. Dillon, D. A. Mcfadyen and P. Hamilton. Gasometric determination of carboxyl groups in free amino acids. J. biol. Chem. 141, 627–669 (1941).Google Scholar
  376. Smith Jr., C. R., F. R. Earle and I. A. Wolff: Comparison of solubility characteristics of selected seed proteins. J. agric. Food Chem. 7, 133–136 (1959).CrossRefGoogle Scholar
  377. Smith, D. B., and M. F. Perutz: Identification of the black sub-unit of the crystallographic model of horse haemoglobin with the valyl-glutaminyl polypeptid chain. Nature (Lond.) 188, 406–407 (1960).CrossRefGoogle Scholar
  378. Smith, E. L.: The immune proteins of bovine colostrum and plasma. J. biol. Chem. 164, 345–358 (1946).Google Scholar
  379. Smith, E. L.: The isolation and properties of the immune proteins of bovine milk and colostrum and their role in immunity. A review. J. Dairy Sei. 31, 127–138 (1948).CrossRefGoogle Scholar
  380. Snellman, O.: A peptide material from myosin containing sulfhydryl groups. Acta them. scand. 12, 503–510 (1958).CrossRefGoogle Scholar
  381. Sörensen, S. P. L., u. M. Hoyrup: I. Mitt. Über die Darstellung von Eieralbuminlösungen mit wohldefinierter Zusammensetzung nebst den angewandten analytischen Methoden. HoppeSeylers Z. physiol. Chem. 103, 15–79 (1918).CrossRefGoogle Scholar
  382. Staab, H. A.: Neuer Weg zur Darstellung von Carbonsäureestern. Angew. Chem. 71, 194–195 (1959).Google Scholar
  383. Staub, A., L. Sinn and O. K. Behrens: Purification and crystallization of hyper glycemic glycogenolytic factor (HGF). Science (Washington) 117, 628–629 (1953).CrossRefGoogle Scholar
  384. Staub, A., L. Sinn and O. K. Behrens: Purification and crystallization of glucagon. J. biol. Chem. 214, 619–632 (1955).Google Scholar
  385. Stauffer, C. E., O. J. Banasik and R. H. Harris: Amino acid distribution in gluten fractions. Food Res. 24, 401–409 (1959).CrossRefGoogle Scholar
  386. Steinberg, D.: The action of carboxypeptidase on ovalbumin. J. amer. them. Soc. 74, 4217–4218 (1952).CrossRefGoogle Scholar
  387. Stevens, C. M., P. E. Halpern and R. P. Gigger: Occurrence of D-amino acids in some natural materials. J. biol. Chem. 190, 705–710 (1951).Google Scholar
  388. Stoll, A., A. Hofmann u. TH. Petrzilka: Die Konstitution der Mutterkornalkaloide. Struktur des Peptidteils. III. Rely. chim. Acta 34, 1544–1576 (1951 b).Google Scholar
  389. Stoll, A., A. Hofmann u. TH. Petrzilka: u. E. Seebeck: Die Synthese des natýrlichen Alliins und seiner drei optisch aktiven Isomeren. Helv. chim. Acta 34, 481–487 (1951 a).Google Scholar
  390. Strecker, H. J.: Glutamic dehydrogenase. Arch. Biochem. Biophys. 46, 128–140 (1953).Google Scholar
  391. Sltgano, H.: Studies on egg yolk proteins. II. Electrophoretic studies on phosvitin, lipovitellin and lipovitellenin. J. Biochem. (Tokyo) 44, 205–215 (1957).Google Scholar
  392. Sltgano, H.: Studies on egg yolk proteins. III. Preparation and properties of two major lipoproteins of the egg yolk, a-and ß-lipovitellin. J. Biochem. (Tokyo) 45, 393–401 (1958).Google Scholar
  393. Sltgano, H.: Studies on egg yolk proteins. V. Electrophoretic and ultra-centrifugal investigations on the homogeneities and some properties of a-and ß-lipovitellin. J. Biochem. (Tokyo) 46, 417–424 (1959).Google Scholar
  394. Sundararajan, T. A., and P. S. Sarma: Preparation and amino acid composition of enzymically dephosphorylated casein. Biochem. J. 65, 261–266 (1957).Google Scholar
  395. Sundararajan, T. A., and P. S. Sarma: K. S. V. Sampath Kumar and P. S. Sarma: Preparation of phosvitin and vitellin. Biochim. biophvs. Acta 38, 360–362 (1960).Google Scholar
  396. Swaisgoon, H. E., and J. R. Brunner: Characterization of x-casein obtained by fractionation with trichloracetic acid in a concentrated urea solution. J. Dairy Sci. 45, 1 11 (1962).Google Scholar
  397. Swan, J. M.: Thiols, disulphides and thiosulphates: some new reactions and possibilities in peptide and protein chemistry. Nature (Lond.) 180, 643–645 (1957).CrossRefGoogle Scholar
  398. Tagawa, K., and M. Shin: Hemoproteins of wheat germ. I. Crystallization and properties of peroxidase from wheat germ. J. Biochem. (Tokyo) 46, 865–873 (1959).Google Scholar
  399. Tallas, H. H., and W. H. Steln: Chromatographic studies on lysozyme. J. biol. Chem. 200, 507–514 (1953).Google Scholar
  400. Tavel, P. v., and R. Signer: Countercurrent distribution in protein chemistry. Advanc. Protein Chem. 11, 238–310 (1956).Google Scholar
  401. Tiieodoropot.-los, D., H. Bennicii and G. Fölsch: Action of trypsin on a-carbethoxy-Llysyl-L-seryl-glycine and its 0-phosphorylated analogue. Nature (Lond.) 184, 187–188 (1959).CrossRefGoogle Scholar
  402. Thompson, E. O. P.: The N-terminal sequence of serum albumins; observations on the thiohydantoin method. J. biol. Chem. 208, 565–572 (1954).Google Scholar
  403. Thompson, E. O. P.: N-terminal amino acids of bovine serum albumin. Biochim. biophys. Acta 29, 643–644 (1958).Google Scholar
  404. Thompson, E. O. P.: and A. R. Thompson: Paperchromatography in the study of the structure of peptides and proteins. Fortschr. Chem. org. Naturstoffe (Wien) 12, 270–348 (1955).Google Scholar
  405. Tiiompson, J. F., C. J. Morris and R. M. Zacharius: Isolation of (—) S-Methyl-L-cysteine from beans (Phaseolus vulgaris) Nature (Lond.) 178, 593 (1956).Google Scholar
  406. Timasheff, S. N., and R. Townend: The association behavior of ß-lactoglobulins A and B. J. amer. chem. Soc. 80, 4433–4434 (1958).CrossRefGoogle Scholar
  407. Timmer, R., H. J. Van Der Helm u. T. H. J. Huisman: Amino-acid composition of adult and foetal myoglobine of the cow. Nature (Lond.) 180, 239–240 (1957).CrossRefGoogle Scholar
  408. Toennies, G., and R. P. Homiller: Oxidation of amino acids by hydrogen peroxide in formic acid. J. amer. chem. Soc. 64, 3054–3056 (1942).CrossRefGoogle Scholar
  409. Tritsch, G. L., and D. W. Woolley: The isolation and determination of structure of peptides with strepogenin activity. II. The disulfide of leucylvalylcysteinylglycylglutamylarginine from insulin. J. amer. chem. Soc. S0, 1490–1493 (1958).CrossRefGoogle Scholar
  410. Tsao, T.-C.: The molecular dimensions and the monomer-dimer transformation of actin. Biochim. biophys. Acta 11, 227–235 (1953).Google Scholar
  411. Tsao, T.-C.: and K. Bailey: Extraction, purification and some chemical properties of actin. Biochim. biophvs. Acta 11, 102–113 (1953).Google Scholar
  412. Tunmann, P., u. H. Silberzahn: Über die Kohlenhydrate im Hühnerei. II. Mitt. Gebundene Kohlenhydrate. Z. Lebensmittel-Untersuch. u. -Forsch. 116, 340–343 (1962).CrossRefGoogle Scholar
  413. Tuppy, H.: Amino acid sequence in oxytocin. Biochim. biophys. Acta 11, 449–450 (1953).Google Scholar
  414. Turner, K. J., and W. H. Cook: Molecular weight and physical properties from the floating fraction of egg yolk. Canad. J. Biochem. Physiol. 36, 937–949 (1958).CrossRefGoogle Scholar
  415. Urnes, P., and P. Doty: Optical rotation and the conformation of polypeptides and proteins. Advanc. Protein Chem. 16, 402–544 (1961).Google Scholar
  416. Vigneaud, V. Du, H. C. Bawler and E. A. Popenoe: Enzymatic cleavage of glycinamide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J. amer. chem. Soc. 75, 4880–4881 (1953).CrossRefGoogle Scholar
  417. Vigneaud, V. Du, H. C. Bawler and E. A. Popenoe: and C. E. Meyer: Die Racemisierung von Aminosäuren in wäßriger Lösung mittels Essigsäureanhydrid. J. biol. Chem. 98, 295–308 (1932).Google Scholar
  418. Vigneaud, V. Du, H. C. Bawler and E. A. Popenoe: C. Ressler and S. Trippett: The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. biol. Chem. 205, 949–957 (1953).Google Scholar
  419. Virtanen, A. I., and T. Ettala: A new y-glutamyltripeptide in Juncus species. Acta chem. scand. 12, 787–789 (1958).CrossRefGoogle Scholar
  420. Virtanen, A. I., and T. Ettala: and P. K. Hietala: y-hydroxyglutamic acid in green plants. Acta chem. scand. 9, 175–176 (1955 a).Google Scholar
  421. Virtanen, A. I., and T. Ettala: Enzymatic decarboxylation of y-hydroxyglutamic acid to a-hydroxy-y-amino-nbutyric acid. Acta chem. scand. 9, 549–550 (1955b).CrossRefGoogle Scholar
  422. Virtanen, A. I., and E. J. Matikeala: The structure and synthesis of cycloalliin isolated from allium cepa. Acta them. stand. 13, 623–626 (1959).CrossRefGoogle Scholar
  423. Virtanen, A. I., and E. J. Matikeala: and J. K. Miettinen: Composition of the soluble nitrogen fraction in the pea plant and alder. Biochim. biophys. Acta 12, 181–187 (1953).CrossRefGoogle Scholar
  424. Wada, M.: Über Citrullin, eine neue Aminosäure im Prellsaft der Wassermelone, Citrullus vulgaris schrad. Biochem. Z. 224, 420–429 (1930).Google Scholar
  425. Wagman, J.: Isolation and sedimentation study of low molecular weight forms of type A botulinus toxin. Arch. Biochim. biophys. 50, 104–112 (1954).CrossRefGoogle Scholar
  426. Wagner-Jauregg, T., J. J. Oneill and W. H. Summerson: The reaction of phosphorus. containing enzyme inhibitors with amines and amino acid derivatives. J. amer. chem. Soc. 73, 5202–5206 (1951).CrossRefGoogle Scholar
  427. Wake, R. G.: Studies on casein. IV. The isolation of x-casein. Austral. J. biol. Sci. 12, 538–540 (1959 a).Google Scholar
  428. Wake, R. G.: Studies on casein. V. The action of rennin on casein. Austral. J. biol. Sci. 12, 479–489 (1959 b).Google Scholar
  429. Wake, R. G.: and R. L. Baldwin: Analysis of casein fractions by zone electrophoresis in concentrated urea. Biochim. biophys. Acta 47, 225–239 (1961).Google Scholar
  430. Waldsciimidt-Leitz, E., u. K. Hociistrasser: Über die Albumine von Gerste und Weizen (VII. Mitt. Über Samenproteine). Hoppe-Seylers Z. physiol. Chem. 324, 243–249 (1961).CrossRefGoogle Scholar
  431. Waldsciimidt-Leitz, E., u. K. Hociistrasser: u. O. Zeisse: Protofibroin, die kristalline Hauptkomponente der Seidenfaser. HoppeSeylers Z. physiol. Chem. 300, 49–67 (1955).CrossRefGoogle Scholar
  432. Waley, S. G.: Acidic peptides of the lens. Biochem. J. 64, 715–726 (1956).Google Scholar
  433. Ware, A. G., and W. H. Seegers: Plasma accelerator globulin: Partial purification, quantitative determination and properties. J. biol. Chem. 172, 699–705 (1948).Google Scholar
  434. Warner, R. C., and E. Polis: On the presence of a proteolytic enzyme in casein. J. amer. chem. Soc. 67, 529–532 (1945).CrossRefGoogle Scholar
  435. Waugh, D. F., and P. H. vox Hippel: x-casein and the stabilisation of casein micelles. J. amer. chem. Soc. 78, 4576–4582 (1956).CrossRefGoogle Scholar
  436. Waugh, D. F., and P. H. vox Hippel: M. Ludwig, J. M. Gillespie, J. Garnier, E. S. Kleiner and R. W. Noble JR.: Certain properties of as-casein. Federat. Proc. 19, 337 (1960).Google Scholar
  437. Weber, H. H., u. K. Meyer: Das kolloidale Verhalten der Muskeleiweißkörper. V. Mitt.: Das Mengenverhältnis der Muskeleiweißkörper in seiner Bedeutung für die Struktur des quer-gestreiften Kaninchenmuskels. Biochem. Z. 266, 137–152 (1933).Google Scholar
  438. Weisiger, J. R., W. Hausmann and L. C. Craig: On the partial hydrolysis of DNP-Bacitracin A. J. amer. chem. Soc. 77, 731–736 (1955).CrossRefGoogle Scholar
  439. Werle, E.: Kinine und Angiotensine. Pharmakologie, Chemie, physiologische und pathologische Bedeutung. Angew. Chem. 73, 689–695 (1961).Google Scholar
  440. Wetlaufer, D. B.: The degradation and reactivity of myosin in urea solutions. Federat. Proc. 19, 256 (1960).Google Scholar
  441. Wetlaufer, D. B.: Terminology of protein structure. Nature (Loud.) 190, 1113 (1961).CrossRefGoogle Scholar
  442. Wetlaufer, D. B.: R. J. Dimler and F. R. Senti: Chromatographic fractionation of wheat gluten on carboxymethylcellulose columns. Arch. Biochem. Biophys. 91, 235–239 (1960).Google Scholar
  443. Weygand, F u. E. Csendes: N-Trifluoracetyl-aminos?uren. Angew. Chem. 64 136 (1952).Google Scholar
  444. White, W. F., J. Shields and K. C. Robbins: C-terminal sequence of crystalline bovine acid human serum albumin. relationship of C-terminus to antigenic determinants of bovine serum albumin. J. amer. chem. Soc. 77, 1267–1269 (1955).CrossRefGoogle Scholar
  445. Wieland, TH.: Peptidsynthesen I. Angew. Chem. 63, 7–14 (1951).Google Scholar
  446. Wieland, TH.: Peptidsynthesen II. 9. Mitt. Angew. Chem. 66, 507–512 (1954).Google Scholar
  447. Wieland, TH.: Die Giftstoffe des grünen Knollenblätterpilzes (Amanita phalloides). Angew. Chem. 69, 44–50 (1957).Google Scholar
  448. Wieland, TH.: Aus der Chemie der Polypeptide. Peptidsynthesen IV. Angew. Chem. 71, 417–425 (1959).Google Scholar
  449. Wieland, TH.: Giftstoffe des grünen Knollenblätterpilzes. Angew. Chem. 73, 343 (1961).Google Scholar
  450. Wieland, TH.: u. B. HEINKE: Peptidsynthesen III. 17. Mitt. Angew. Chem. 69, 362–371 (1957).Google Scholar
  451. Wieland, TH.: u. A. Höfer: Die Giftstoffe des grünen Knollenblätterpilzes. XVI. Die Bausteine des a-Amanitins. Liebigs Ann. Chem. 619, 35–42 (1959).Google Scholar
  452. Wieland, Th.: u. A. Schöpf: Über die Giftstoffe des grünen Knollenblätterpilzes. XVIII. Ergänzungen zur Phalloidin-Formel: Ketophalloidin. Liebigs Ann Chem. 626, 174–184 (1959).CrossRefGoogle Scholar
  453. Wieland, Th,u. H. Wiegandt: Bouillon-Geruch bei der Threonin-Spaltung. Angew. Chem. 67, 399 bis 400 (1955).Google Scholar
  454. Wieland, TH.: u. L. Wirth: Papierchromatographische Analyse der durch Erhitzen mit Alkali gebildeten Zersetzungsprodukte von Serin, Threonin und Cystein. Chem. Ber. 82, 468–473 (1949).CrossRefGoogle Scholar
  455. Williams, J., and F. Sanger: The grouping of serine phosphate residues in phosvitin and casein. Biochim. biophys. Acta 33, 294–296 (1959).Google Scholar
  456. Wilson, S., and D. B. Sreith: Separation of the valyl-leucyl-and valyl-glutamyl-poly-peptid chains of horse globin by fractional precipitation and column chromatography. Canad. J. Biochem. Physiol. 37, 405–416 (1959).CrossRefGoogle Scholar
  457. Wiltshire, G. H.: The estimation of D- and L-glutamic acid in proteins. Biochem. J. 55, 46–49 (1953).Google Scholar
  458. Windsor, E.: a-Aminoadipic acid as a constituent of a corn protein. J. biol. Chem. 192, 595–606 (1951).Google Scholar
  459. Wissmann, H., u. H. Nitschmann: Das Lab und seine Wirkung auf das Casein der Milch. XI. Die aminoseitigen Endgruppen des a-Caseins vor und nach der Labung. Rely. chim. Acta 40, 356–363 (1957).Google Scholar
  460. Witkop, B.: Non enzymatic methods for the preferential and selective cleavage and modification of proteins. Advanc. Protein Chem. 16, 221–322 (1961).CrossRefGoogle Scholar
  461. Witkop, B.: Neuere Beiträge zur Chemie und Biochemie der Aminosäuren. Angew. Chem. 74, 722 (1962).Google Scholar
  462. Wod Sax, W.: Nisin und seine Verwendungsmöglichkeiten. Dtsch. Lebensmittel-Rdsch. 58, 135–137 (1962).Google Scholar
  463. Wolf, W. J., and A. K. Smith: Food uses and properties of soybean-protein. II. Physicaland chemical properties of soybean-protein. Food Technol. 15, 12–33 (1961).Google Scholar
  464. Wolfgang, H., u. K. Mothes: Papierchromatographische Untersuchungen an pflanzlichen Blutungssäften. Naturwiss. 40, 606 (1953).CrossRefGoogle Scholar
  465. Woolley, D. W.: New growth factor required by certain hemolytic streptococci. J. exp. Medicine 73, 487–492 (1941).CrossRefGoogle Scholar
  466. Woolley, D. W.: Strepogenin activity of derivatives of glutamic acid. J. biol. Chem. 172, 71–81 (1948).Google Scholar
  467. G. Schaffner and A. C. Braun: Studies on the structure of the phytopathogenic toxin of Pseudonionas tabaci. J. biol. Chem. 215, 485–493 (1955).Google Scholar
  468. Work, E.: A new naturally occurring amino-acid. Nature (Lond.) 165, 74–75 (1950).CrossRefGoogle Scholar
  469. Wovdlick, J. H., J. A. Boundy and R. J. Dimler: Amino acid composition of proteins in wheat gluten. J. Agric. Food. Chem. 9, 307–310 (1961).CrossRefGoogle Scholar
  470. Work, E.: Ultraviolet spectra of proteins and amino acids. Advanc. Protein Chem. 17, 304–390 (1962).Google Scholar
  471. Yang, J. Tsi: The viscosity of macromolecules in relation to molecular conformation. Advanc. Protein Chem. 16, 323–401 (1961).CrossRefGoogle Scholar
  472. Zacharius, R. M., J. F. Thompson and F. C. Steward: The detection, isolation and identification of L-(—)pipecolic acid in the non-protein fraction of beans (Phaseolus vulgaris). J. amer. them. Soc. 76, 2908–2912 (1954).CrossRefGoogle Scholar
  473. Zahn, H., H. Zuher, W. Ditscher, D. Wegerle u. J. Meienhofer: Reaktion von p,p’-Difluor-m,m’-dinitro-diphenylsulfon mit Seidenfibroin. Chem. Ber. 89, 407–414 (1956).CrossRefGoogle Scholar
  474. Zentner, H.: The continuous electrophoresis of wheat gluten. Chem. and Ind. 1960, 317–318.Google Scholar
  475. Ziegler, K., u. N. H. La France: Beitrag zur Kenntnis der Chemie des Seidenfibroins II. Hoppe-Seylers Z. physiol. Chem. 322, 21–27 (1960).CrossRefGoogle Scholar
  476. Zuber, H.: Die Verwendung enzymatischer Reaktionen für die Reinheitsprüfung und Strukturaufklärung von Peptiden und Proteinen. Chimia (Zürich) 14, 405–418 (1960).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1965

Authors and Affiliations

  • H.-D. Belitz
    • 1
  • J. Schormüller
    • 1
  1. 1.BerlinDeutschland

Personalised recommendations