Advertisement

Mineralstoffe und Spurenelemente

  • H. Langendorf
Part of the Handbuch der Lebensmittelchemie book series (LEBENSMITTEL, volume 1)

Zusammenfassung

Mineralstoffe sind Substanzen, die für den Vollzug des Lebens unbedingt notwendig sind. Als Elektrolyte kleiner Dimension sind sie an der Wahrung der elektrochemischen und osmotischen Gleichgewichte in den Organismen beteiligt. Sie verleihen dem Lösungsmittel Wasser die für die Suspension kolloid-disperser Stoffe notwendigen Eigenschaften und sie beeinflussen die Stoffwechselprozesse durch Förderung oder Hemmung von Fermentreaktionen. Bei der Aktivität von Nerven und Muskeln haben sie wichtige Funktionen zu erfüllen. Endlich sind sie Bausteine der Stütz- und Gerüstsubstanzen. Da sie wie alle biologische Substrate einem ständigen Umsatz unterworfen sind, gehört die Wahrung ihres Bestandes im Organismus durch kontrollierte Aufnahme und/oder Ausfuhr zu den lebenswichtigen biologischen Funktionen. Der biologischen — nicht immer nützlichen — Aktivität der Mineralstoffe, speziell der Metalle, muß bei der Auswahl der Materialien, die während der Herstellung und Zubereitung mit Nahrungsmitteln in Berührung kommen, Rechnung getragen werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. Bourne, G. H.: The Biochemistry of Bone. New York: Academic Press 1956.Google Scholar
  2. Boyer, P. D., H. Lardy, and K. Myrback (Hrsg): The Enzymes. New York: Academic Press. Band 1: 1959, Band 3: 1960.Google Scholar
  3. Davies, W. L.: The Chemistry of Milk London: Chapman and Hall 1936.Google Scholar
  4. Dixon, M., and E. C. Webb: Enzymes. London: Longmans 1958.Google Scholar
  5. Elmer, A. W.: Iodine Metabolism and Thyroid Function. London: Oxford University Press 1938.Google Scholar
  6. Fourman, P.: Calciumstoffwechsel und Knochenkrankheiten (Dtsch. Übersetzung von N. Zöllner). Stuttgart: Thieme 1963.Google Scholar
  7. Ftfiner, H.: Medizinische Toxikologie. Leipzig: Thieme 1943.Google Scholar
  8. Gamble, J. L.: Chemical Anatomy, Physiology and Pathology of Extracellular Fluid. Cambridge (Mass.): Harvard Univ. Press 1954.Google Scholar
  9. Genderen, H. Van: Die Pharmakologie der kondensierten Phosphate im Zusammenhang mit der Anwendung dieser Stoffe als Lebensmittelzusätze. In: Kondensierte Phosphate in Lebensmitteln. S. 147–157. Berlin-Göttingen-Heidelberg: Springer 1958.CrossRefGoogle Scholar
  10. Heilmeyer, L., u. K. Plötner: Das Serumeisen und die Eisenmangelkrankheit. Jena: G. Fischer 1937.Google Scholar
  11. Heinz, E.: Grundmechanismen der Magensäureproduktion und deren Regulation. In: Klinische Physiologie. Aktuelle Probleme in Übersichten. Band 1, Lfg. 2, S. 184–203. Stuttgart: Thieme 1960.Google Scholar
  12. Höfer, P.: Über die Verwendung von Polyphosphaten in der Wasseraufbereitung und über die Bekömmlichkeit und Genußfähigkeit phosphatbehandelten Wassers. In: Kondensierte Phosphate in Lebensmitteln. S. 122–134. Berlin-Göttingen-Heidelberg: Springer 1958CrossRefGoogle Scholar
  13. Irving, J. T.: Calcium Metabolism. London: Methuen 1957.Google Scholar
  14. Johnson, L. A., and M. J. Seven (Hrsg.): Biological Aspects of Metal-Binding. Federat. Proc. 20, Suppl. 10 (1961).Google Scholar
  15. Keiderling, W. (Hrsg.): Eisenstoffwechsel. Stuttgart: Thieme 1959.Google Scholar
  16. Kruhoffer, P.: Handling of Alkali Metal Ions by the Kidney. In: Handbuch der experimentellen Pharmakologie. Ergänzungswerk. Band 13, Teil II, S. 233–423. Berlin-GöttingenHeidelberg: Springer 1960.Google Scholar
  17. Kuprianoff, J., K. Lang: Strahlenkonservierung und Kontamination von Lebensmitteln. Darmstadt: Steinkopff 1960.Google Scholar
  18. Lang, K.: Biochemie der Ernährung. Darmstadt: Steinkopff 1957.Google Scholar
  19. Lang, K.: Verhalten der kondensierten Phosphate im Stoffwechsel. In: Kondensierte Phosphate in Lebensmitteln. S. 135–146. Berlin-Göttingen-Heidelberg: Springer 1958.CrossRefGoogle Scholar
  20. Langenbeck, W.: Zur Biochemie der Spurenelemente. Ber. Verh. sächs. Akad. Wiss. Leipzig, Math.-naturwiss. Kl. 103, Heft 5 (1959).Google Scholar
  21. Lohmann, K.: Über das Verhalten kondensierter Phosphate in Lebewesen. In: Kondensierte Phosphate in Lebensmitteln. S. 29–43. Berlin-Göttingen-Heidelberg: Springer 1958.CrossRefGoogle Scholar
  22. Mair-Waldburg, H.: Anwendung und Wirkung kondensierter Phosphate in Milcherzeugnissen. In: Kondensierte Phosphate in Lebensmitteln. S. 104–121. Berlin-Göttingen-Heidelberg: Springer 1958.CrossRefGoogle Scholar
  23. Mertz, D. P.: Die extracelluläre Flüssigkeit. Stuttgart: Thieme 1962.Google Scholar
  24. Moeschlin, S.: Klinik und Therapie der Vergiftungen. 4. Aufl. Stuttgart: Thieme 1964.Google Scholar
  25. Monier-Williams, G. W.: Trace Elements in Foods. New York: Wiley and Sons 1950.Google Scholar
  26. Moore, C. V., and R. Dubach: Physiology of Iron Metabolism: Resorption, Conservation, Elimination, and Physiological Iron Losses. In: Eisenstoffwechsel. Hrsg. von W. KEIDER-LING. S. 112–127. Stuttgart: Thieme 1959.Google Scholar
  27. Pitts, R. F.: Mechanisms for Stabilizing the Alkaline Reserves of the Body. Harvey Lectures 1952/53. New York: Academic Press 1954.Google Scholar
  28. Polson, C. J., and R. N. Tattersall: Clinical Toxicology. London: English Universities Press 1959.Google Scholar
  29. Reissmann, K. R.: Acute peroral Iron Intoxication. In: Eisenstoffwechsel. Hrsg. von W. Keiderling. S. 281–292. Stuttgart: Thieme 1959.Google Scholar
  30. Scharrer, K.: Biochemie der Spurenelemente. Berlin: Parey 1955.Google Scholar
  31. Schütte, K.: Stoffwechsel des Knochengewebes. In: Chemie und Stoffwechsel von Bindeund Knochengewebe. S. 77–102. Berlin-Göttingen-Heidelberg: Springer 1956.CrossRefGoogle Scholar
  32. Schwab, M., K. Kühns: Die Störungen des Wasser-und Elektrolytstoffwechsels. Stuttgart: Thieme 1960.Google Scholar
  33. Schwietzer, C. H.: Die Beeinflussung des Mineralhaushaltes durch kondensierte Phosphate. In: Kondensierte Phosphate in Lebensmitteln. S. 158–165. Berlin-Göttingen-Heidelberg: Springer 1958.CrossRefGoogle Scholar
  34. Siegenthaler, W.: Klinische Physiologie und Pathologie des Wasser-und Salzhaushaltes. Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  35. Souci, S. W., W. Fachmann H. Kraut (Hrsg.): Die Zusammensetzung der Lebensmittel. Nährwert-Tabellen. Stuttgart: Wissenschaftl. Verlagsgesellschaft 1962.Google Scholar
  36. Tepper, L. B., H. L. Hardy, and R. L. Chamberlin: Toxicity of Beryllium Compounds. Amsterdam und London: Elsevier Publ. Corp. 1961.Google Scholar
  37. Thilo, E.: Chemie und Nomenklatur der kondensierten Phosphate. In: Kondensierte Phosphate in Lebensmitteln. S. 5–27. Berlin-Göttingen-Heidelberg: 1958.Google Scholar
  38. Underwood, E. J.: Trace Elements in Human and Animal Nutrition. 2. Aufl. New York: Academic Press 1962.Google Scholar
  39. Ussing, H. H.: The Alkali Metal Ions in isolated Systems and Tissues. In: Handbuch der experimentellen Pharmakologie. Ergänzungswerk. Band 13, Teil I, S. 1–195. BerlinGöttingen-Heidelberg: Springer 1960.Google Scholar
  40. Vallee, B. L.: Zinc and Metalloenzymes. In: Advances Protein Chem. 10, 317–384 (1955).Google Scholar
  41. Williams, R. J. P.: Coordination, Chelation and Catalysis. In: The Enzymes. Hrsg. von P. D. Boyer, H. Lardy and K. Myrback. Band 1, S. 391–441. New York: Academic Press 1959.Google Scholar
  42. Young, L., and G. A. Maw: The Metabolism of Sulphur Compounds. London: Methuen 1958.Google Scholar

Zeitschriftenliteratur

  1. Adelstein, S. J., and B. L. Vallee: Zinc in beef liver glutamic dehydrogenase. J. biol. Chem. 233, 589–593 (1958).Google Scholar
  2. Ahmed, S., and H. J. Evans: Effect of cobalt on the growth of soybeans in the absence of supplied nitrogen. Biochim. biophys. Res. Comm. 1, 271–275 (1959).Google Scholar
  3. Aikawa, J. K., J. Z. Reardon, and D. R. Harms: Effect of a magnesium-deficient diet on magnesium metabolism in rabbits: a study with Mg“. J. Nutr. 76, 90–93 (1962).Google Scholar
  4. Amberson, W. R., T. P. Nash, A. G. Mulder, and D. Bilans: The relationship between tissue chloride and plasma chloride. Amer. J. Physiol. 122, 224–235 (1938).Google Scholar
  5. Astwood, E. B., M. A. Greer, and M. G. Ettlinger: l-5-Vinyl-2-thiooxazolidone, an anti-thyroid compound from yellow turnip and from brassica seeds. J. biol. Chem. 181, 121–130 (1949).Google Scholar
  6. Azarnoff, D. L., F. E. Brock, and G. L. Curran: A specific site of vanadium inhibition of cholesterol biosynthesis. Biochim. biophys. Acta 51, 397–398 (1961).Google Scholar
  7. Bässler, K. H., V. Unbehaln: Zur Frage der Aluminium-Wirkung auf Stoffwechselvorgänge. Arzneimittel-Forsch. 12, 124–127 (1962).Google Scholar
  8. Barnes, B. A., and J. Mendelson: The measurement of exchangeable magnesium in dogs. Metabolism 12, 184–195 (1963).Google Scholar
  9. Beechey, R. B., N. Alcock, S. Hanna, and I. Macintyre: Magnesium deficiency and oxidative phosphorylation. Biochem. J. 71, 18P (1959).Google Scholar
  10. Beechey, R. B., N. Alcock, S. Hanna, and I. Macintyre: Oxidative phosphorylation in magnesium and potassium deficiency in the rat. Amer. J. Physiol. 201, 1120–1122 (1961).Google Scholar
  11. Bergeim, O.: Intestinal chemistry. V. Carbohydrates and calcium and phosphorous absorption. J. biol. Chem. 70, 35–45 (1926).Google Scholar
  12. Bergstrom, W. H.: The skeleton as an electrolyte reservoir. Metabolism 5, 433–437 (1956).Google Scholar
  13. Beutler, E.: Iron enzymes in iron deficiency. I. Cytochrome c. Amer. J. med. Sci. 234, 517–527 (1957).CrossRefGoogle Scholar
  14. Beutler, E.: Iron enzymes in iron deficiency. IV. Cytochrome oxidase in rat kidney and heart. Acta Haematol. 21, 371–377 (1959).CrossRefGoogle Scholar
  15. Beutler, E.: Iron enzymes in iron deficiency. VI. Aconitase activity and citrate metabolism. J. clin. Invest. 38, 1605–1616 (1959).CrossRefGoogle Scholar
  16. Beutler, E. and R. K. Blaisdell: Iron enzymes in iron deficiency. II. Catalase in human erythrocytes. J. clin. Invest. 37, 833–835 (1958).CrossRefGoogle Scholar
  17. Beutler, E. and R. K. Blaisdell: Iron enzymes in iron deficiency. III. Catalase in rat red cells and liver with some further observations on cytochrome c. J. Lab. clin. Med. 52, 694–699 (1958).Google Scholar
  18. Beutler, E. and R. K. Blaisdell: Iron enzymes in iron deficiency. V. Succinic dehydrogenase in rat liver, kidney and heart. Blood 15, 30–35 (1960).Google Scholar
  19. Black, D. A. K., and J. F. Powell: Absorption of haemoglobin iron. Biochem. J. 36, 110–112 (1942).Google Scholar
  20. Blau, M., H. Spencer, J. Swernov, J. Greenberg, and D. Laszlo: Effect of intake level on the utilization and intestinal excretion of calcium in man. J. Nutr. 61, 507–521 (1957).Google Scholar
  21. Bond, G., and E. J. Hewitt: Cobalt and the fixation of nitrogen by root nodules of Alnus and Casuarina. Nature (Lond.) 195, 94–95 (1962).CrossRefGoogle Scholar
  22. Borg, D. C., and G. C. Cotzias: Manganese metabolism in man. Rapid exchange of MnJ6 with tissue as demonstrated by blood clearance and liver uptake. J. clin. Invest. 37, 1269–1278 (1958).CrossRefGoogle Scholar
  23. Boyer, P. D., J. H. Shaw, and P. H. Phillips: Studies of manganese deficiency in the rat. J. biol. Chem. 143, 417–425 (1942).Google Scholar
  24. Brenstedt, J. N.: Einige Bemerkungen über den Begriff der Säuren und Basen. Recueil Tray. chim. Pays-Bas 42, 718–728 (1923).CrossRefGoogle Scholar
  25. Bronner, F., R. S. Harris, C J Maletskos, and C. E. Benda: Studies in calcium metabolism. Effect of food phytates on calcium45 uptake in children on low calcium breakfasts J. Nutr. 54, 523–542 (1954).Google Scholar
  26. Bronner, F., R. S. Harris, C J Maletskos, and C. E. Benda: Studies in calcium metabolism. Effect of food phytates on calcium45 uptake in boys on a moderate calcium breakfast. J. Nutr. 59, 393–406 (1956a).Google Scholar
  27. Bronner, F., R. S. Harris, C J Maletskos, and C. E. Benda: Studies in calcium metabolism. The fate of intravenously injected radiocalcium in human beings. J. clin. Invest. 35, 78–88 (1956b).CrossRefGoogle Scholar
  28. Burns, C. H., W. W. Cravens, and P. H. Phillips’ The sodium and potassium requirements of the chick and their interrelationship. J. Nutr. 50, 317–329 (1953).Google Scholar
  29. Callender, S. T., B. J. Mallett, and M. D. Smith: Absorption of haemoglobin iron. Brit. J. Haematol. 3, 186–192 (1957).CrossRefGoogle Scholar
  30. Campbell, I. R., I. S. Cass, J. Cholak, and R. A. Kehoe: Aluminium in the environment of man. A.M.A. Arch. Industr. Health 15, 359–448 (1957).Google Scholar
  31. Carttar, M. S., F. C. Mclean, and M. R. Urist: The effect of the calcium and phosphorus content of the diet upon the formation and structure of bone. Amer. J. Path. 26, 307–331 (1950).Google Scholar
  32. Chou, T. P., and W. H. Adolph: Copper metabolism in man. Biochem. J. 29, 476–479 (1935).Google Scholar
  33. Comar, C. L., G. K. Davis, and L. Singer: The fate of radioactive copper administered to the bovine. J. biol. Chem. 174, 905–914 (1948).Google Scholar
  34. Consolazio, C. F., L. O. Matoush, R. A. Nelson, L. R. Hackler, and E. E. Preston: Relationship between calcium in sweat, calcium balance, and calcium requirements J. Nutr. 78, 78–88 (1962).Google Scholar
  35. Cotzias, G. C.: Manganese in health and disease. Physiol. Rev. 38, 503–532 (1958).Google Scholar
  36. Cotzias, G. C.: Metabolic relations of manganese to other minerals. Federat. Proc. 19, 655–658 (1960).Google Scholar
  37. Cotzias, G. C. and J. J. Greenough: The high specificity of the manganese pathway trough the body. J. clin. Invest. 37, 1298–1305 (1958).CrossRefGoogle Scholar
  38. Curran, G. L.: Effect of certain transition group elements on hepatic synthesis of cholesterol in the rat. J. biol. Chem. 210, 765–770 (1954).Google Scholar
  39. Dahl, L. K.: Effects of chronic excess salt feeding. Elevation of plasma cholesterol in rats and dogs. J. exp. Med. 112, 635–651 (1960).CrossRefGoogle Scholar
  40. Darrow, D. C., and S. Hellerstein: Interpretation of certain changes in body water and electrolytes. Physiol. Rev. 38, 114–137 (1958).Google Scholar
  41. Davis, G. K.: Effects of high calcium intakes on the absorption of other nutrients. (Symposium). Federat. Proc. 18, 1119–1123 (1959).Google Scholar
  42. Diemair, W., K. Pfeifer: Zur Kenntnis der freien Phosphorsäure in Fruchtsäften. Z. Lebensmittel-Untersuch. u. -Forsch. 117, 209–215 (1962).CrossRefGoogle Scholar
  43. Dowdle, E. B., D. Schachter, and H. Schenker: Requirement for vitamin D for the active transport of calcium by the intestine. Amer. J. Physiol. 198, 269–274 (1960).Google Scholar
  44. Duckworth, J., and W. Godden: The lability of skeletal magnesium reserves. The influence of rates of bone growth. Biochem. J. 35, 816–823 (1945).Google Scholar
  45. Edelman, I. S., and J. Leibman: Anatomy of body water and electrolytes. Amer. J. Med. 27, 256–277 (1959).CrossRefGoogle Scholar
  46. Engström, A.: The structure of bone; an excursion into molecular biology. Clin. Orthop. 17, 34–37 (1960).Google Scholar
  47. Eriksen, L., N. Eriksen, and S. Haavaldsen: The effect of cobalt ions on the biosynthesis of hemoglobin by rabbit reticulocytes in vitro. Acta physiol. scand. 53, 300–307 (1961).CrossRefGoogle Scholar
  48. Feaster, J. P., S. L. Hansard, J. T. Mccall, and G. K. Davis: Absorption, deposition and placental transfer of zincs’ in the rat. Amer. J. Physiol. 181, 287–290 (1955).Google Scholar
  49. Featherston, W. R., M. L. Morris Jr., and P. H. Phillips: Influence of lactose and dried skim milk upon the magnesium deficiency syndrom in the dog. I. Growth and biochemical data. J. Nutr. 79, 431–436 (1963).Google Scholar
  50. Fincke, M. L., and H. C. Shernian: The availability of calcium from some typical foods. J. biol. Chem. 110, 421–428 (1935).Google Scholar
  51. Fitzgerald, M. G., and P. Fourman: An experimental study of magnesium deficiency in man. Clin. Sci. 15, 635–647 (1956).Google Scholar
  52. Flink, E. B.: Magnesiummangelzustände beim Menschen. Fortschr. Med. 81, 743–745 (1963).Google Scholar
  53. Forbes, G. B.: Metabolic role of sodium in bone. Helv. paediat. Acta 14, 506–510 (1960).Google Scholar
  54. Forbes, R. M., A. R. Cooper, and H. H. Mitchell: The composition of the adult human body as determined by chemical analysis. J. biol. Chem. 203, 359–366 (1953).Google Scholar
  55. Forbes, R. M., H. H. Mitchell, and A. R. Cooper: Further studies on the gross composition and mineral elements of the adult human body. J. biol. Chem. 223, 969–975 (1956).Google Scholar
  56. Foster, G. L., R. Schoenheimer, and D. Rittenberg: Studies in protein metabolism. V. The utilization of ammonia for amino acid and creatinine formation in animals. J. biol. Chem. 127, 319–327 (1939).Google Scholar
  57. Fournier, P., H. Susbielle Y. Duyuis: Propriétés biologiques du lactose et fermentations intestinales. C.s de l’ablation du caecum. C. R. Acad. Sci. (Paris) 250, 1111–1113 (1960).Google Scholar
  58. Furchner, J. E., and C. R. Richmond: Effect of dietary zinc on the absorption of orally administered ZnB5. Hlth. Phys. 8, 35–40 (1962).CrossRefGoogle Scholar
  59. Genderen, H. Van: Phosphatbedarf und Grenzen der Phosphatzufuhr. In: Aktuelle Probleme des Mineralstoffwechsels. Z. Ernährungswiss. Suppl. 1, S. 32–43. Darmstadt: Steinkopff 1961.Google Scholar
  60. Gershoff, S. N., M. A. Legg, and D. M. Hegstedt: Adaption to different calcium intakes in dogs. J. Nutr. 64, 303–312 (1958).Google Scholar
  61. Graham, L A, J J Caesar, and A. S. V. Burgen: Gastrointestinal absorption and excretion of Mg28 in man. Metabolism 9, 646–659 (1960).Google Scholar
  62. Granick, S.: Structure and physiological functions of ferritin. Physiol. Rev. 31, 489–511(1951).Google Scholar
  63. Grant, W. C., and W. S. Root: Fundamental stimulus for erythropoiesis. Physiol. Rev. 32, 449–498 (1952).Google Scholar
  64. Greenwald, E., J. Samachson, and H. Spencer: Effect of lactose on calcium metabolism in man. J. Nutr. 79, 531–538 (1963).Google Scholar
  65. Hadjimarkos, D. M.: Selenium content of millet and dental caries in the rat. Nature (Lond.) 193, 178 (1962).CrossRefGoogle Scholar
  66. Hahn, F.: Toxikologie der Polyphosphate. In: Aktuelle Probleme des Mineralstoffwechsels. Z. Ernährungswiss. Suppl. 1, S. 55–64. Darmstadt: Steinkopff 1961.Google Scholar
  67. Hallsworti, E. G., S. B. Wilson, and E. A. N. Greenwood: Copper and cobalt in nitrogen fixation. Nature (Lond.) 187, 79–80 (1960).CrossRefGoogle Scholar
  68. Harp, M. J., and F. I. Scoular: Cobalt metabolism of young college women on self-selected diets. J. Nutr. 47, 67–72 (1952).Google Scholar
  69. Harris, R. S.: Phytic acid and its importance in human nutrition. Nutr. Rev. 13, 257–259 (1955).CrossRefGoogle Scholar
  70. Hegstedt, D. M., C. A. Finch, and T. D. Kinney: The influence of diet on iron absorption. III. Comparative studies with rats, mice, guinea pigs, and chickens. J. exp. Med. 96, 115–119 (1952a).CrossRefGoogle Scholar
  71. Hegstedt, D. M., I. Moscoso, and C. Collazos: A study of the minimum calcium requirements of adult men. J. Nutr. 46, 181–201 (1952b).Google Scholar
  72. Hevesy, G., L. Hahn U. O. Rebbe: Kgl. Danske Videnskab. Selskab. Biol. Meddel. 24, Nr. 3 (1939); zit. bei K. LANG (1957).Google Scholar
  73. Hiatt, E. P.: Extreme hypochloremia in dogs induced by nitrate administration. Amer. J. Physiol. 129, 597–609 (1940).Google Scholar
  74. Higgins, E. S., D. A. Richert, and W. W. Westerfeld: Molybdenum deficiency and tungstate inhibition studies. J. Nutr. 59, 539–559 (1956).Google Scholar
  75. Hornykiewicz, O.: Caeruloplasmin. In: Aktuelle Probleme des Mineralstoffwechsels. Z. Ernährungswiss. Suppl. 1, 124–130 (1961).Google Scholar
  76. Hunt, J. N.: The influence of dietary sulphur on the urinary output of acid in man Clin. Sei. 15, 119–134 (1956).Google Scholar
  77. Jesserer, H.: Zur Pathologie des Calciumstoffwechsels. In: Aktuelle Probleme des Mineralstoffwechsels. Z. Ernährungswiss. Suppl. 1, 81–88 (1961).Google Scholar
  78. Johnston, F. A., and R. A. Folsom: Calcium and phosphorus retention on low-calcium diets. J. amer. diet. Ass. 39, 220–224 (1961).Google Scholar
  79. Johnston, F. A., T. J. Mcmillan, and E. R. Evans: Perspiration as a factor influencing the requirement for calcium and iron. J. Nutr. 42, 285–296 (1950).Google Scholar
  80. Kägi, J. H. R., and B. L. Vallee: Metallothionein: a cadmium-and zinc-containing protein from equine renal cortex. J. biol. Chem. 235, 3460–3465 (1960).Google Scholar
  81. Kehoe, R. A., J. Cholak, and R. V. Story: A spectrochemical study of the normal ranges of concentration of certain trace metals in biological materials. J. Nutr. 19, 579–592 (1940).Google Scholar
  82. Keiderling, W.: Pathologie des Kupferstoffwechsels. In: Aktuelle Probleme des Mineralstoffwechsels. Z. Ernährungswiss. Suppl. 1, 131–144 (1961).Google Scholar
  83. Keiderling, W., F. Wohler: Zur Physiologie und Pathologie des Speichereisens. Arch. exp. Pathol. Pharmakol. 221, 418–434 (1954).Google Scholar
  84. Keilin, D., and T. Mann: Carbonic anhydrase. Purification and nature of the enzyme. Biochem. J. 34, 1163–1176 (1940).Google Scholar
  85. Keresztesi, K.: Mineralhaushalt und Zähne. In: Aktuelle Probleme des Mineralstoffwechsels. Z. Ernährungswiss. Suppl. 1, 102–107 (1961).Google Scholar
  86. Kimberg, D., D. Schachter, and H. Schenker: Active transport of calcium by intestine: effects of dietary calcium. Amer. J. Physiol. 200, 1256–1262 (1961).Google Scholar
  87. Kirchgessner, M., W. Oelschläger: Der Einfluß verschiedener Zinksulfat-Zulagen auf die Retention von Mengen-und Spurenelementen bei wachsenden Schweinen. Arch. Tierernährg 11, 310–320 (1962).CrossRefGoogle Scholar
  88. Kraut, H., H. Wecker: Kalkbilanz und Kalkbedarf. I. Mitt. Biochem. Z. 315, 329–344 (1943); II. Mitt. Biochem. Z. 318, 495–506 (1948).Google Scholar
  89. Lampitt, L. H., and N. Goldenberg: Potato as food — composition. Chem. and Industr. 59, 748–761 (1940).CrossRefGoogle Scholar
  90. Lang, K.: Phosphatbedarf und Schäden durch hohe Phosphatzufuhr. Z. Lebensmittel-Untersuch. u. -Forsch. 110, 450–456 (1959).CrossRefGoogle Scholar
  91. Lang, K., A. Eberwe1n: Das Verhalten des Phytins bei der Sauerteigführung von Roggenbrot. Z. Lebensmittel-Untersuch. u. -Forsch. 88, 153–154 (1948).CrossRefGoogle Scholar
  92. Langendorf, H.: Zur Physiologie des Säure-Basen-Haushalts. In: Aktuelle Probleme des Mineralstoffwechsels. Z. Ernährungswiss. Suppl. 1, 1–13 (1961).Google Scholar
  93. Langendorf, H.: Säure-Basen-Gleichgewicht und chronische acidogene und alkalogene Ernährung. Z. Ernährungswiss. Suppl. 2 (1963).Google Scholar
  94. Langendorf, H. K. Lang: Vorkommen freier Phosphorsäure in Lebensmitteln. Z. Lebensmittel-Untersuch. Forsch. 115, 400–402 (1961).Google Scholar
  95. Leichsenring, J. M., L. M. Norris, and S. A. Laeison: Magnesium metabolism in college women: observations on the effect of calcium and phosphorus intake levels. J. Nutr. 45, 477–485 (1951).Google Scholar
  96. LemannJR., J., and A. S. Relman: The relation of sulfur metabolism to acid-base balance and electrolyte excretion: The effects of DL-Methionine in normal man J clin. Invest. 38, 2215–2223 (1959).CrossRefGoogle Scholar
  97. Lengemann, F. W.: The site of action of lactose in the enhancement of calcium utilization. J. Nutr. 69, 23–27 (1959).Google Scholar
  98. Leverton, R. M., and E. S. Brinkley: The copper metabolism and requirement of young women. J. Nutr. 27, 43–53 (1944).Google Scholar
  99. Leverton, R. M., J. M. Leichsenring, H. Linkswiler, and F. Meyer: Magnesium requirement of young women receiving controlled intakes. J. Nutr. 74, 33–38 (1961).Google Scholar
  100. Macallum, A. B.: The paleochemistry of the body fluids and tissues. Physiol. Rev. 6, 316–357 (1926).Google Scholar
  101. Macintyre, I., and D. Davidsson: The production of secondary potassium depletion, hypercalcaemia and nephrocalcinosis by magnesium deficiency. Biochem. J. 69, 6 P (1958).Google Scholar
  102. Malm, O. J.: Calcium requirement and adaption in adult man. Scand. J. clin. Lab. Invest. 10, Suppl. 36 (1958).Google Scholar
  103. Matrone, G.: Interrelationships of iron and copper in the nutrition and metabolism of animals. Federat. Proc. 19, 659–665 (1960).Google Scholar
  104. Mccance, R. A., and E. M. Widdowsox: The absorption and excretion of iron following oral and intravenous administration. J. Physiol. (Lond.) 94, 148–154 (1938).Google Scholar
  105. Mccance, R. A., and E. M. Widdowsox: Mineral metabolism of healthy adults on white and brown bread dietaries. J. Physiol. (Lond.) 101, 44–85 (1942).Google Scholar
  106. Mccance, R. A., and E. M. Widdowsox: Mineral metabolism on dephytinized bread. J. Physiol. (Lond.) 101, 304 313 (1942).Google Scholar
  107. Mccance, R. A., E. M. Widdowsox and H. Lehmann: Effect of protein intake on the absorption of calcium and magnesium. Biochem. J. 36, 686–691 (1942).Google Scholar
  108. Mcclure, F. J.: Mineral metabolism. (Fluorine and other trace elements). Ann. Rev. Biochem. 18, 335–354 (1949).CrossRefGoogle Scholar
  109. Mcconnell, K. P., and R. D. Dallai: Time-distribution examination of the in vivo incorporation of selenium into cytochtrome c of the rat and its turnover. Nature (Lond.) 193, 746–748 (1962).CrossRefGoogle Scholar
  110. Mcconnell, D. M. Roth, and R. D. Dallam: Partition of selenium-75 in the intracellular particulate matter of rat liver. Nature (Lond.) 183, 183–184 (1959).CrossRefGoogle Scholar
  111. Miller, R. F., and R. W. Engel: Interrelations of copper, molybdenum and sulfate sulfur in nutrition. Federat. Proc. 19, 666–671 (1960).Google Scholar
  112. Mitchell, H. H., and T. S. Hamilton: The dermal excretion under controlled environmental conditions of nitrogen and minerals in human subjects, with particular reference to calcium and iron. J. biol. Chem. 178, 345–361 (1949).Google Scholar
  113. Moore, C. V.: The importance of nutritional factors in the pathogenesis of iron-deficiency anemia. Scand. J. Clin. Lab. Invest. 9, 292–304 (1957).CrossRefGoogle Scholar
  114. Moore, C. V. and R. Dubach: Metabolism and requirements of iron in the human. J. amer. med. Ass. 162, 197–204 (1956).CrossRefGoogle Scholar
  115. Moore, C. V., V. Minnicn, and H. K. Roberts: Absorption of ferrous and ferric radioactive iron by human subjects and by dogs. J. clin. Invest. 23, 755–767 (1944).CrossRefGoogle Scholar
  116. Mueller, J H: A new sulfur containing amino-acid isolated from the hydrolytic products of protein. II. Sulfur excretion after ingestion. J. biol. Chem. 58, 373–375 (1923).Google Scholar
  117. Myers, V. C., and J. M. Mull: The influence of the administration of aluminium upon the aluminium content of the tissue, and upon the growth and reproduction of rats. J. biol. Chem. 78, 605–613 (1928).Google Scholar
  118. Nesheim, M. C., and M. L. Scott: Studies on the nutritive effects of selenium for chicken. J. Nutr. 65, 601–618 (1958).Google Scholar
  119. Nichols Jr., G., and N. Nichols: The role of bone in sodium metabolism. Metabolism 5, 438–446 (1956).Google Scholar
  120. Nicolaysen, R.: The Calcium Requirement of Man at all Ages. In: Aktuelle Probleme des Mineralstoffwechsels. Z. Ernährungswiss. Suppl. 1, 71–79 (1961).Google Scholar
  121. Nicolaysen, R., N. Eeg-Larsen, and O. J. Malm: Physiology of calcium metabolism. Physiol. Rev. 33, 424–444 (1953).Google Scholar
  122. Perry Jr., H. M., I. H. Tirton, H. A. Schroeder, and M. J. Cook: Variability in the metal content of human organs. J. Lab. clin. Med., 60 245–253 (1962).Google Scholar
  123. Prokop, L.: Mineral-, insbesondere Phosphatstoffwechsel und Leistungsfähigkeit. In: Aktuelle Probleme des Mineralstoffwechsels. Z. Ernährungswiss. Suppl. 1, 44–16 (1961).Google Scholar
  124. Reisenauer, H. M.: Cobalt in nitrogen fixation by a legume. Nature (Lond.) 186, 375–376 (1960).CrossRefGoogle Scholar
  125. Renzo, E. C. De, E. Kaleita, P. Heytler, J. J. Oleson, B. L. Hutcuings, and J. H. Williams: The nature of the xanthine oxidase factor. J. amer. chem. Soc. 75, 753 (1953).CrossRefGoogle Scholar
  126. Richert, D. A., and W. W. Westerfeld: Isolation and identification of the xanthine oxidase factor as molybdenum. J. biol. Chem. 203, 915–923 (1953).Google Scholar
  127. Rickes, E. L., N. G. Brink, F. R. Konruszy, T. R. Wood, and K. Folkers: Vitamin a cobalt complex. Science (Washington) 108, 134 (1948).CrossRefGoogle Scholar
  128. Riggs, D. S.: Quantitative aspects of iodine metabolism in man. Pharmacol. Rev. 4, 284–370 (1952).Google Scholar
  129. Rittenberg, D., R. Schoenheimer, and A. Keston: Studies in protein metabolism. IX. The utilization of ammonia by normal rats on a stock diet. J. biol. Chem. 128, 603–608 (1939).Google Scholar
  130. Roberts, A. H., and J. Yudkin: Dietary phytate as a possible cause of magnesium deficiency. Nature (Lond.) 185, 823–825 (1960).CrossRefGoogle Scholar
  131. Robinson, C. S., C. F. Huffman, and M. F. Mason: The results of the ingestion of certain calcium salts and of lactose. J. biol. Chem. 84, 257–267 (1929).Google Scholar
  132. Roth, H.: Cher Manganmangelkrankheiten bei Pflanze und Tier. Biochem. Z. 333, 361–369 (1960).Google Scholar
  133. Rozeik, F.: Für und wider die Trinkwasserfluoridierung. Fortschr. Med. 81, 571–574 (1963).Google Scholar
  134. Rurland, W., u. K. Wetzel: Zur Physiologie der organischen Säuren in grünen Pflanzen. I. Mitt. Wechselbeziehungen im Stickstoff-und Säurestoffwechsel von Begonia semperflorens. Planta (Berlin) 1, 558–564 (1926).Google Scholar
  135. Schachter, D., E. B. Dowdle, and H. Schenker: Active transport of calcium by the small intestine of the rat. Amer. J. Physiol. 198, 263–268 (1960a).Google Scholar
  136. Schachter, D., E. B. Dowdle, and H. Schenker: Accumulation of Ca“ by slices of the small intestine. Amer. J. Physiol. 198, 275–279 (1960 b).Google Scholar
  137. Schachter, D., D. V. Kimberg, and H. Schenker: Active transport of calcium by intestine: action and bio-assay of vitamin D. Amer. J. Physiol. 200, 1263–1271 (1961).Google Scholar
  138. Schachter, D., D. V. Kimberg and S. M. Rosen: Active transport of Car’ by the small intestine and its dependence on vitamin D. Amer. J. Physiol. 196, 357–362 (1959).Google Scholar
  139. Scheinberg, H.: Copper Metabolism. In: Federat. Proc. 20, Suppl. 10, S. 179–185 (1961).Google Scholar
  140. Schreier, K., u. E. Schnepf: Studien zum Calciumstoffwechsel mit “Ca. I. Über den Einfluß der Citronensäure und Weinsäure auf den Calciumumsatz. Z. exp. Med. 127, 508–516 (1956).Google Scholar
  141. Schroeder, H. A., W. H. Vinton JR., and J. J. Balassa: Effect of chromium, cadmium and other trace metals on the growth and survival of mice. J. Nutr. 80, 39–47 (1963a).Google Scholar
  142. Schroeder, H. A.: Effects of chromium, cadmium and lead on the growth and survival of rats. J. Nutr. 80, 48–54 (1963b).Google Scholar
  143. Schubert, G., W. Riezler: Indicator-Untersuchungen mit Radiokupfer beim Menschen Klin. Wschr. 24/25, 304–306 (1947).Google Scholar
  144. Schubert, J.: Einige Betrachtungen zur Chemie und Biochemie des Berylliums. Chimia (Aarau) 13, 321–328 (1959).Google Scholar
  145. Schwarz, K.: A hitherto unrecognized factor against dietary necrotic liver degeneration in american yeast (Factor 3). Proc. Soc. exp. Biol. 78, 852–856 (1951).CrossRefGoogle Scholar
  146. Schwarz, K.: Development and status of experimental work on factor 3-selenium. Federat. Proc. 20, 666–673 (1961).Google Scholar
  147. Schwarz, K. and C. M. Foltz: Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J. amer. chem. Soc. 79, 3292–3293 (1957).CrossRefGoogle Scholar
  148. Schwarz, K. and W. Mertz: Chromium (III) and the glucose tolerance factor. Arch. biochim. biophys. 85, 292–295 (1959).CrossRefGoogle Scholar
  149. Schwarz, K.: A physiological Role of Chromium (III) in Glucose Utilization (Glucose Tolerance Factor). In: Federat. Proc. 20, Suppl. 10, 111–114 (1961).Google Scholar
  150. J. A. Stesney, and C. M. Foltz: Relation between selenium traces in L-cystine and protection against dietary liver necrosis. Metabolism 8, 88–90 (1959).Google Scholar
  151. Schwietzer, C.: Die Beeinflussung der Eisenresorption durch Polyphosphate. Biochem. Z. 328, 35–38 (1956).Google Scholar
  152. Schwietzer, C.: Der eisenreiche Spinat… ? Med. u. Ernährung 1, 130–131 (1960).Google Scholar
  153. Seibold, M.: Die Bestimmung von Aluminium im Blutserum mit Ionenaustauschern und Eriochromeyanin-R. Klin. Wschr. 38, 117–119 (1960).CrossRefGoogle Scholar
  154. Sharpe, L. M., W. C. Peacock, R. Cooke, and R. S. Harris: The effect of phytate and other food factors on iron absorption. J. Nutr. 41, 433–446 (1950).Google Scholar
  155. Shils, M. E., and E. V. Mccollum: Further studies on the symptoms of manganese deficiency in the rat and mouse. J. Nutr. 26, 1–19 (1943).Google Scholar
  156. Smith, E. L.: Presence of cobalt in the anti-pernicious anaemia factor. Nature (Lond.) 162, 144–145 (1948).CrossRefGoogle Scholar
  157. Smith, S. E., and G. H. Ecus: Studies of the manganese requirement of rabbits. J. Nutr. 34, 33–41 (1947).Google Scholar
  158. Spray, C. M., and E. M. Widdowson: The effect of growth and development on the composition of mammals. Brit. J. Nutr. 4, 332–353 (1950).CrossRefGoogle Scholar
  159. Squires, R. D., and E. Huth: Experimental potassium depletion in normal human subjects. I. Relation of ionic intakes to the renal conservation of potassium. J. clin. Invest. 38, 1134–1148 (1959).Google Scholar
  160. Suzuki, M.: Plasma cholesterol levels in rats fed “infarct-producing diets”. Proc. Soc. exp. Biol. 102, 544–547 (1959).CrossRefGoogle Scholar
  161. Thorangrul, D., F. A. Johnston, N. S. Kidle, and S. J. Clark: Adaption to a low-calcium intake. J. amer. diet. Ass. 35, 23–30 (1959).Google Scholar
  162. Tompsett, S. L.: The excretion of copper in urine and faeces and its relation to the copper content of the diet. Biochem. J. 28, 2088–2091 (1934).Google Scholar
  163. Tsuno, K.: Effects of various amino acids on calcium absorption from isolated surviving small intestine of rats. Tokushima J. exp. Med. 8, 45–48 (1961); zit. nach Ber. Physiol. 239, 125 (1962).Google Scholar
  164. Underwood, E. J.: Mineral metabolism. Ann Rev. Biochem. 28, 499–526 (1959).CrossRefGoogle Scholar
  165. Vallee, B. L., and J. G. Gibson: The zinc content of normal human whole blood, plasma, leucocytes and erythrocytes. J. biol. Chem. 176, 445–457 (1958).Google Scholar
  166. Virtanen, A. I.: Ernährungsprobleme der Menschheit. Die Bedeutung der Ernährung für die Gesundheit. Naturwiss. Rdsch. 7, 311 (1954).Google Scholar
  167. Wacker, W. E. C., and B. L. Vallee: Chromium ribonucleoprotein from bovine liver. Nature (Lond.) Suppl. 18, 184, 1399 (1959).CrossRefGoogle Scholar
  168. Walser, M.: Ion association. VI. Interactions between calcium, magnesium, inorganic phosphate, citrate and protein in normal human plasma. J. clin. Invest. 40, 723–730 (1961).CrossRefGoogle Scholar
  169. Warburton, S., W. Udler, E. M. Ewert, and W. S. Haynes: Outbreak of foodborne illness attributed to tin. Publ. Hlth. Rep. 77, 798–800 (1962).CrossRefGoogle Scholar
  170. Wasserman, R. H., C. L. Comar, and M. M. Nold: The influence of amino acids and other organic compounds on the gastrointestinal absorption of calcium45 and strontium89 in the rat. J. Nutr. 59, 371–383 (1956).Google Scholar
  171. Wasserman, R. H. and F. W. Lengemann: Further observations on lactose stimulation of calcium and strontium in the rat. J. Nutr. 70, 377–384 (1960).Google Scholar
  172. Weinig, E., B. Börner: Über den normalen Bleigehalt der menschlichen Knochen. Arch. Toxikol. 19, 34–48 (1961).CrossRefGoogle Scholar
  173. Weis, W.: Spurenelemente in Diätetik und Therapie. In: Aktuelle Probleme des Mineral. stoffwechsels. Z. Ernährungswiss. Suppl. 1, 110–122 (1961).Google Scholar
  174. Weitzel, G.: Chemie und Physiologie biogener Zink-Verbindungen. Angew. Chem. 68, 566–573 (1956).CrossRefGoogle Scholar
  175. Westerfeld, W. W., and D. A. Richert: Distribution of the xanthine oxidase factor (molybdenum) in foods. J. Nutr. 51, 85–95 (1953).Google Scholar
  176. Widdowson, E. M., R. A. Mccance, and C. M. Spray: The chemical composition of the human body. Clin. Sci. 10, 113–125 (1951).Google Scholar
  177. Wilgus Jr., H. S., L. C. Norris, and G. F. Heuser: The role of certain inorganic elements in the cause and prevention of perosis. Science (Washington) 84, 252–253 (1936).CrossRefGoogle Scholar
  178. Wöhler, F., L. Heilmeyer, D. Emrich S. H. Kano: Zur Funktion des Ferritins bei der Eisenresorption. Arch. exp. Pathol. Pharmakol. 230, 107–124 (1957).Google Scholar
  179. Yamada, H., and K. T. Yasunobu: Monoamine oxidase. II. Copper, one of the prostethic groups of plasma monoamine oxidase. J. biol. Chem. 237, 3077–3082 (1962).Google Scholar
  180. Zalkin, H., A. L. Tappel, and J. P. Jordan: Studies of the mechanism of vitamin E action. V. Selenite and tocopherol inhibition of lipid peroxidation in the chick. Arch. biochem. biophys. 91, 117–122 (1960).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1965

Authors and Affiliations

  • H. Langendorf
    • 1
  1. 1.MainzDeutschland

Personalised recommendations