Advertisement

Gases and Vapors and Their Use in Vacuum Tubes

Chapter
  • 95 Downloads

Abstract

In addition to their application in processing vacuum materials (see e. g. sec. 9.2 and p. 397, footnote 1), gases are used to conduct current and produce light in discharge tubes, reduce the evaporation of filaments, and conduct heat from hot electrodes.

Keywords

Discharge Tube Vacuum Tube Versus Versus Versus Versus Versus Incandescent Lamp Positive Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Gases and Vapors References on General and Comparative Properties

  1. [1]
    Akkumulatoren-Fabrik A. G.: DRP 304347/15/19. (Oxide-cathode rectifier with inert gas filling.)Google Scholar
  2. [2]
    Alberti, E.: BraunscheKathodenstrahlröhren. Berlin 1932. (Gas-filled cathode-ray tubes.)Google Scholar
  3. [3]
    AEG (Allg. Elektr.-Gesellschaft): DRP 290932/13/16. (Gas-filled, coiled-filament incandescent lamp.)Google Scholar
  4. [4]
    AEG (Allg. Elektr.-Gesellschaft): Jb. Forschungsinstitut vol.3 (1931-32) p. 45. (Lightning arrester.)Google Scholar
  5. [5]
    AEG (Allg. Elektr.-Gesellschaft): DRP 289543/13/16. (Ar-N2 mixture for lamp filling.)Google Scholar
  6. [6]
    AEG (Allg. Elektr.-Gesellschaft): DRP 440044/14/17. (W-Ar rectifier tube.)Google Scholar
  7. [7]
    Almasy, F., and G. Kortüm: Über eine Wasserstofflampe mit quasi-punktförmigem Leuchtraum. Z. Elektrochem. vol.42 (1936) p. 607, No. 8. (H2-lamp.)Google Scholar
  8. [8]
    Alterthum, H., M. Reger and R. Seeliger: Z. techn. Phys. vol.9 (1928) p. 161. (Ignition voltage in W-Ar rectifiers.)Google Scholar
  9. [9]
    Alterthum, H.: Wolfram. Braunschweig 1925.Google Scholar
  10. [10]
    Alterthum, H.: Elektrotechn. Z. vol.50 (1929) p. 17271. (W incandescent lamps.)Google Scholar
  11. [11]
    Ardenne, M. v.: Die Kathodenstrahlröhre. Berlin 1933. (Gas filled CRT.)Google Scholar
  12. [12]
    Aschermann, G.: Glas u. Appar. vol.9 (1928) p. 223. (Luminous lamps.)Google Scholar
  13. [13]
    Bär, R.: Handbuch der Physik vol. 6. Berlin 1927. (Glow discharge.)Google Scholar
  14. [14]
    Barreiss, M.: Z. techn. Phys. vol.8 (1927) p. 449. (Gas-discharge rectifier.)Google Scholar
  15. [15]
    Becker, K., and F. Ebert: Metallröntgenröhren. Braunschweig 1925. (Demountable X-ray tubes.)Google Scholar
  16. [26]
    Belfawsky, A.: Glimmgleichrichter. Techn. Phys. USSR vol. 4 (1937) pp. 493–502, No. 6.Google Scholar
  17. [17]
    Benda, H.: Siemens-Z. vol.12 (1932) p. 394. (Lightning arrester.)Google Scholar
  18. [18]
    Busch, H.: Ann. Phys. vol.64 (1921) p. 404. (Theory of Fe-H2 resistors.)Google Scholar
  19. [19]
    Brody, L, and F. Körösy: Convection and Conduction of Heat in Gases. J. Appl. Phys. vol.10 (1939) p. 591, No. 8.Google Scholar
  20. [20]
    Claude, A.: Bull. Soc. Franc. Electr. vol.3 (1933) p. 1145 — C. R. Acad. Sci., Paris vol. 194 (1932) p. 2253. (Different gas discharge lamps.)Google Scholar
  21. [21]
    Cobine, J. D.: Gaseous Conductors. New York 1941.Google Scholar
  22. [22]
    Dobke, F.: Elektrotechn. Z. vol.53 (1932) p. 449. (Oxide cathode, partly coated.)Google Scholar
  23. [23]
    Druyvesteyn, M. J., and J. G. W. Mulder: Physical Principles of Gas-Filled Hot-Cathode Rectifiers. Philips Tech. Rev. vol. 2 (1937) pp. 122–123.Google Scholar
  24. [24]
    Druyvesteyn, M. J., and F. M. Penning: The Mechanism of Electrical Discharges in Gases. Rev. Mod. Phys. vol. 12 (April 1940) p. 87. (Survey paper.)Google Scholar
  25. [25]
    Edwards, W. L., and L. R. Maxwell: An Adjustable Leak Valve. Rev. Sci. Instr. vol.9 (1938) p. 201. (Needle type with bellows.)Google Scholar
  26. [26]
    Ehrenkranz, F.: Spark Breakdown Potentials as a Function of the Product of the Pressure and the Plate Separation in Ar, N 2, and H 2 for Pt and Na Cathodes, Phys. Rev. vol.55 (1938) p. 219–227, No. 2.Google Scholar
  27. [27]
    Elenbaas, W.: Der Einfluß des Zündgases auf die Quecksilber-Hochdruckentladung. Physica vol. 3 (1936) pp. 219–236, No. 4. (Hg high-pressure discharge.)Google Scholar
  28. [28]
    Ende, W.: Elektrotechn. Z. vol.55 (1934) p. 853. (High-pressure Hg lamp.)Google Scholar
  29. [29]
    Ende, W.: Z. techn. Phys. vol.15 (1934) p. 313. (UV-transparent glass.)Google Scholar
  30. [30]
    Engel, A. V., and W. Steenbeck: Elektrische Gasentladungen. Vol. 1: Grundgesetze. Berlin 1932; Vol.2: Technische Anwendungen. Berlin 1934.Google Scholar
  31. [31]
    Ewest, H.: Fernsehen u. Tonfilm vol.3 (1932) p. 9. (Sodium lamp.)Google Scholar
  32. [32]
    Fedoritenko and M. Ruhemann: Equilibrium Diagrams of Helium-Nitrogen Mixtures. Techn. Phys. USSR vol. 4 (1937) pp. 36–43, No. 1.Google Scholar
  33. [33]
    Fleischer, R., and H. Teichmann: Die lichtelektrischen Zellen und ihre Herstellung. Dresden u. Leipzig 1932.Google Scholar
  34. [34]
    Fonda, G. R., and A.H. Young: Gen.Electr.Rev. vol.37 (1934) p. 331. (Sodium lamps.)Google Scholar
  35. [35]
    Freedman, P.: Low-Voltage Neon Tubes. Electr. Rev. vol. 118 (1936) p.487, No. 1.Google Scholar
  36. [36]
    Gehrts, A.: Siemens-Z. vol.7 (1927) p. 559. (Thoriated Mo-cathode.)Google Scholar
  37. [37]
    Geiss, W.: Improvements in the Efficiency of El. Incandescent Lamps. Philips Technical Review vol. 6 (1941) pp. 334–342, No. 11. (Heat losses as a function of wire diameter and gas filling.)Google Scholar
  38. [38]
    Germershausen, W.: Elektrotechn. Z. vol.51 (1930) p. 1257. (Oxide-cathode rectifier with gas filling.)Google Scholar
  39. [39]
    Gordon, N. W.: Operating Characteristics of Na-vapour Lamps. Gen. Electr. Rev. vol.37 (1934) p. 338.Google Scholar
  40. [40]
    Gottschalk, A., and W. Kluge: AEG-Mitt (1934) p. 67. (High-tension oxide-cathode rectifier with gas filling.)Google Scholar
  41. [41]
    Gregory, H. S.: The Effect of Temperature on the Thermal Conductivity and the Accommodation Coefficient of Hydrogen. Proc. Roy. Soc., Lond. vol. 149 (1935) pp.51–56.Google Scholar
  42. [42]
    Güntherschulze, A.: Handbuch der Physik, vol. 17. Berlin 1926. Elektrische Gleichrichter und Ventile. Berlin 1929.Google Scholar
  43. [43]
    Hellmuth, F. H.: Der Argonalgleichrichter. Leipzig 1933.Google Scholar
  44. [44]
    Holst, G.: DRP. 497 793/21/30. (Ne filling with small additions of Ar.)Google Scholar
  45. [45]
    Hund, A.: Electronics vol. 6 (1933) p.6. (Glass-porcelain sealing; gas-discharge amplifier.)Google Scholar
  46. [46]
    Ingram, S. B.: The 313 A Vacuum Tube. Bell. Lab. Rec. vol. 15 (1936) pp. 114–116, No. 4. (three-electrode, cold-cathode glow-discharge tube.)Google Scholar
  47. [47]
    Kausch, O.: Die Herstellung, Verwendung und Aufbewahrung von flüssiger Luft. 2. Aufl. Weimar: Carl Steinert 1938.Google Scholar
  48. [48]
    Keinath, G.: Elektrische Temperatur-Meßgeräte. München 1923.Google Scholar
  49. [49]
    Klemenc, A.: Die Behandlung und Reindarstellung von Gasen. Leipzig 1948.Google Scholar
  50. [50]
    Klemperer: Zündspannungskurven von Edelgasen bei niedrigen Drucken. Z. techn. Phys. (1938) p. 27, No. 9.Google Scholar
  51. [51]
    Knepper, E.: Die Fabrikation und Berechnung der modernen Metalldraht-Glühlampen. Leipzig 1926.Google Scholar
  52. [52]
    Kniepkamp, H., and M. Steenbeck: Siemens-Z. vol.15 (1935) p. 193. (Hg-vapor thyratrons.)Google Scholar
  53. [53]
    Knoll, M., F. Ollendorff and E. Rompe: Gasentladungstabellen. Berlin 1935.Google Scholar
  54. [54]
    Knoll, M.: Arch. Techn. Messen (ATM) vol. 1 (1931) p. J 834–1. (References on cathode ray tubes up to 1931.)Google Scholar
  55. [55]
    Köhler, W., and R. Rompe: Die elektrischen Leuchtröhren. Braunschweig 1933.Google Scholar
  56. [56]
    Korolew, B. L: Lampen mit Krypton-Xenon-Füllung. Lichttechn. (1937) pp. 37-40.Google Scholar
  57. [57]
    Körös, L.: Elektrotechn. Z. vol.50 (1929) p. 786, DRP. 600128/28/34. (Glow-discharge voltage divider.)Google Scholar
  58. [58]
    Krefft, H., and E. Summerer: Licht vol.4 (1934) p. 1. (Hg high pressure-lamps.)Google Scholar
  59. [59]
    Krieg, O.: Ein einfaches Hochvakuumnadelventil. Z. techn. Phys. vol.23 (1942) p. 314–315, No. 12. (Needle valve with bellows and glass seals.)Google Scholar
  60. [60]
    Landolt-Boernstein Tables: Atome und Ionen, in vol. 1: Atom-und Molekularphysik. Berlin 1950.Google Scholar
  61. [61]
    Langmuir, I.: Convection and Conduction of Heat in Gases. Phys.Rev. vol.34 (1912) p.401.Google Scholar
  62. [62]
    Lax, E., M. Pirani and R. Rompe: Physikalische Vorgänge bei der Lichterzeugung. Wiss. Abh. Osram-Konzern vol. 4 (1936). Springer.Google Scholar
  63. [63]
    Lax, E., M. Pirani and R. Rompe: Naturwiss. vol.23 (1935) p. 26. (Gas-discharge lamps.)Google Scholar
  64. [64]
    Lax, E., and M. Pirani: Wolfram, in G. Gehlhoff: Lehrbuch der technischen Physik vol. III. Leipzig 1929.Google Scholar
  65. [65]
    Lax, E., and M. Pirani in Geiger-Scheel: Handbuch der Physik vol.19 (1928) p. 379. (Luminous Tubes.)Google Scholar
  66. [66]
    Lax, E., and M. Pirani in Geiger-Scheel: Handbuch der Physik vol.19 (1929) p. 351. (Techniques of illumination.)Google Scholar
  67. [67]
    Liempt, J. A. M. van: Die Verdampfungsgeschwindigkeit der Metalle in einer Gasatmosphäre. Rec. Trav. chim. Pays-Bas vol. 55 (1936) pp. 1–6.Google Scholar
  68. [68]
    Liempt, J. A. M. van: Die Dampf drucke der Metalle und ihre Verdampfungsgeschwindigkeit im Vakuum. Rev. Trav. chim. Pays-Bas vol. 54 (1935) pp. 847–852.Google Scholar
  69. [69]
    Livingston, U. W., and W.J. Walker: Gas-Filled Electron Tubes. Gen. Elect. Rev. vol. 41 (1938) pp. 354–360, No. 8. (Glow tube, grid glow tube, pool tube, grid pool tube, ignitron.)Google Scholar
  70. [70]
    Loeb, L. B.: Fundamental Processes of El. Discharges in Gases. New York 1939.Google Scholar
  71. [71]
    Lübcke, E., and W. Schottky: Wiss. Veröff. Siemens-Konz. (1) vol.9 (1930) p. 390. (Hg-vapor discharge amplifier.)Google Scholar
  72. [72]
    Mathews, E. C. S.: The Blended Light Lamp. Philips Tech. Rev. vol. 5 (Dec. 1940) pp. 341–347. (Mercury lamp in combination with incandescent lamp.)Google Scholar
  73. [73]
    Mierdel, G., and R. Seeligen: Die Physik vol.2 (1934) p. 67; vol. 6 (1938) p. 19. (Literature on gas discharges 1930-1937.)Google Scholar
  74. [74]
    Möbius, P.: Die Neon-Leuchtröhren. Leipzig 1932.Google Scholar
  75. [75]
    Müller-Lübeck, K. E.: Der Quecksilbergleichrichter, vol. I and II. Berlin 1925 and 1929.Google Scholar
  76. [76]
    Nienhold, J.: DRP. 319806/16/20, DRP. 342609/18/21, DRP. 348995/18/22. (Hgvapor discharge amplifier.)Google Scholar
  77. [77]
    Nomoto, H.: The Influence of Anode Material on a Stepped Discharge. Electrotechnical J., Tokyo vol. 4 (May 1940) pp. 116–119.Google Scholar
  78. [78]
    Oranje, P. I.: Technical Photometry of Gas-Discharge Lamps. Philips Tech. Rev. vol.5 (June 1940) pp. 166–170. (Short time, accuracy 3%.)Google Scholar
  79. [79]
    Penning, F. M.: Z. Phys. vol.46 (1928) p. 335. (Ignition potential of gas mixtures.)Google Scholar
  80. [80]
    Pirani, M.: Wiss. Abh. Osram-Konzern vol.2 (1931) p. 40. (High-pressure Hg lamps with pot cathodes.)Google Scholar
  81. [81]
    Pirani, M.: Physik. Z. vol.2 (1934) p. 133. (Gas-discharge lamps.)Google Scholar
  82. [82]
    Pirani, M., and A. Rüttenauer: Licht vol.5 (1935) p. 93. (Luminescent materials in gas-discharge lamps.)Google Scholar
  83. [83]
    Prince, D. C., and F. B. Vogdes: Principles of Mercury Arc Rectifiers. London 1927.Google Scholar
  84. [84]
    Rentschler, H. C.: Trans. Ilium. Engng. Soc. vol.29 (1934) p. 437. (Spectra of luminous lamps.)Google Scholar
  85. [85]
    Rompe, R., and W. Steenbeck: The Plasma State of Gases. Naturwiss. vol.18 (1939) p. 257. Translated from German by G. C. Akerlof, Mellon Inst. of Ind. Research.Google Scholar
  86. [86]
    Rothe, H., and W. Kleen: Telefunkenztg. vol.16 (1935) p. 44, No. 71. (Gas containing amplifier tubes.)Google Scholar
  87. [87]
    Rother, F., and H. Bomke: Physik. Z. vol.35 (1934) p. 703. (Gas-filled photocells.)Google Scholar
  88. [88]
    Schröter, F.: Handbuch der Bildtelegraphie und des Fernsehens. Berlin 1932.Google Scholar
  89. [89]
    Schröter, F.: Z. techn. Phys. vol.4 (1923) p. 208. (Rare gas lightning arrester with alkali electrodes.)Google Scholar
  90. [90]
    Schröter, F.: Die Glimmlampe und ihre Schaltungen, 3. Aufl. Leipzig 1932. (Glowlamp.)Google Scholar
  91. [91]
    Schröter, F.: Elektrotechn. Z. vol. 36 (1915) pp. 677, 689. (Glow-discharge potentiometers.)Google Scholar
  92. [92]
    Seeliger, R.: Einführung in die Physik der Gasentladungen, 2. Aufl. Leipzig 1934.Google Scholar
  93. [93]
    Siegbahn, W.: Spektroskopie der Röntgenstrahlen. Berlin 1931.Google Scholar
  94. [94]
    SSW. (Siemens-Schuckert-Werke): Siemens-Z. (Stromrichter-Sonderheft I vol.13 (1933) p. 253. (Grid-controlled rectifiers.)Google Scholar
  95. [95]
    Ssousstin, W. F.: Verdampfung von Wolfram von der Oberfläche erhitzter Fäden in inerten Gasen. Lichttechn. (1937) pp. 27-32.Google Scholar
  96. [96]
    Teago, F. J., and J.E. Gill: Mercury Arcs. London 1936.Google Scholar
  97. [97]
    Tellmann, W.: Glas u. App. vol.16 (1935) p. 17. (Lumophor-Glasses.)Google Scholar
  98. [98]
    Trautz, M., and A. Zündel: Messung der Wärmeleitung in Gasen. Ann. Phys. vol.17 (1933) p. 345.Google Scholar
  99. [99]
    Trost, A.: Die Anwendung des Zählrohrs in der zerstörungsfreien Werkstoffprüfung. Z. VDI vol. 85 (1941) pp. 819–846, No. 41-42. (X-ray counter.)Google Scholar
  100. [100]
    Ulsamer, J.: Die Wärmeleitfähigkeit der Luft und anderer technisch wichtiger Gase. Z. VDI vol. 80 (1936) pp. 537–543, No. 18. (Heat conductivity of gases.)Google Scholar
  101. [101]
    Unterhoeven, W.: El. Gasentladungen. Berlin 1938.Google Scholar
  102. [102]
    Wang, I. S.: Die Diffusion von Gasen durch Metalle. Proc. Cambridge philos. Soc. vol. 32 (1936) pp. 657–662.Google Scholar
  103. [103]
    Wegener, A.: Die Herstellung der Osramlampen. Berlin 1927.Google Scholar
  104. [104]
    Westinghouse Lamp Co. (Bloomfield, N. J.): The Westinghouse Sterilamp, Type WL-782. Electron Tubes, Inf. Bull., Aug. 1936, No. 56. (Mixture of Hg-vapor and other inert gases.)Google Scholar
  105. [105]
    Wolfke, M.: Elektrotechn. Z. vol.33 (1912) p. 917. (Cadmium-amalgam lamp.)Google Scholar
  106. [106]
    Zeiller, O.: Über ein für Dauerbetrieb geeignetes Zählrohr. Z. Instrumentenkde. vol. 58 (1938) pp. 207–209, No. 5. (Counter.)Google Scholar
  107. [107]
    Anon.: Dtsch. opt. Wschr. vol.55 (1934) p. 409. (Glow-discharge lamps to be modulated.)Google Scholar

References on Noble Gases

  1. [108]
    Alterthum, H., A. Lompe and R. Seeliger: Die Aufzehrung von Edelgasen in der elektrischen Entladung. Z. techn. Phys. vol. 17 (1936) pp. 407–412, No. 11 — Phys. vol. 27 (1936) pp. 833-838.Google Scholar
  2. [109]
    Baxter, G. P., and H. W. Sharkweather: The Density and Atomic Weight of He. Proc. Amer. Nat. Acad. Sci. vol. 11 (1925) pp. 231–234.Google Scholar
  3. [110]
    Born, F.: Ann. Phys. vol.69 (1922) p. 473. (Calcium are for purification of noble gases.)Google Scholar
  4. [111]
    Colli, L., and V. Facchini: Discharge Mechanism in Ar Counters. Phys. Rev. vol. 88 (Dec. 1, 1952) p. 987.Google Scholar
  5. [112]
    Espe, W., and P. Fritsch: DRP. 554516/27/32. (Electrically-controlled gas valve with Hg.)Google Scholar
  6. [113]
    Gmelins Handbuch der anorganischen Chemie, vol. 5, Abt. III. 1915. (Platinum.)Google Scholar
  7. [114]
    Hollemann, H. C. A.: The Manufacture of Rare Gases. Philips Tech. Rev. vol. 4 (1939) pp. 128–135, No. 5. (Ar, Ne, He, Kr, Xe, D 2 and N2 obtained from air. Apparatus for liquefaction of air, and for rectification of the gas mixtures.)Google Scholar
  8. [115]
    Hollemann, H. C. A.: Measurements in the Philips Rare Gas Plant. Philips Techn. Rev. vol. 5 (1940) pp. 88–91, No. 3. (Analysis of Ar-N mixtures by determination of spec. weight and vapor pressure.)Google Scholar
  9. [116]
    Iurriaanse, T.: The Influence of Gas Density and Temperature on the Normal Cathode Fall of a Gas Discharge in Rare Gases. Philips Res. Rep. vol. 1 (1945/46) p. 407.Google Scholar
  10. [117]
    Iurriaanse, T., F. M. Penning and J. A. H. Moubis: The Normal Cathode Fall for Mo and 2r in the Rare Gases. Philips Res. Rep. vol. 1 (1945/46) p. 225.Google Scholar
  11. [118]
    Johnson, E. O.: Controllable Gas Diode. Electronics vol. 4 (May 1951) p. 107. (He-filling.)Google Scholar
  12. [119]
    Johnson, E. O, and W. M. Webster: The Plasmatron, a Continuously Controllable Gas Discharge Developmental Tube. Proc. IRE. vol. 40 (June 1952) p. 645.Google Scholar
  13. [120]
    Johnson, F.M. G., and P. Larose: J. Amer. Chem. Soc. vol.49 (1927) p. 312. (Diffusion of O2 by Ag; no diffusion of noble gases.)Google Scholar
  14. [121]
    Karlik, B.: Die Grenzen der Nachweisbarkeit der schweren Edelgase in Helium. Wiener Anzeiger (1936) pp. 4–5, No. 1.Google Scholar
  15. [122]
    Klockmann, F.: Lehrbuch der Mineralogie, p. 623. Stuttgart: Chabazite 1922.Google Scholar
  16. [123]
    Köhler, W., and R. Rompe: Die elektrischen Leuchtröhren. Braunschweig 1933.Google Scholar
  17. [124]
    Kroll, W.: Argon-Gewinnung, Reinigung. Metallwirtsch. vol. 17 (1938) pp. 463–465, No. 17.Google Scholar
  18. [125]
    Künzel, V., and I. B. Slavik: Ventil für feine Regulierung der Drucke von Gasen. Z. techn. Phys. vol.16 (1935) p. 272. (Hg valve reduces discharge tube voltage changes to ±1%.)Google Scholar
  19. [126]
    Liempt, J. A. M. v.: Die Mikrogasanalyse von Argon-Stickstoff-Mischungen. Rec. Trav. chim. Pays-Bas vol. 56 (1937) pp. 310–314.Google Scholar
  20. [127]
    Long, E. and L. Meyer: A Note on the Adsorption of He on Glass. Phil. Mag. vol.44 (1953) p. 788.Google Scholar
  21. [128]
    Mathias, E., C. A. Crommelin and J. J. Meihiuzen: Krypton. Physica vol.4 (1937) p. 1200. (Critical density, heat of evaporation.)Google Scholar
  22. [129]
    Moran, R. P.: Purifying Argon for Filling Incandescent Lamps. J. Franklin Inst. vol.221 (1936) p. 575, No. 4. (Abstract from Industrial Gas, vol. 14, No. 6.)Google Scholar
  23. [130]
    Moser, H.: Phys. Z. vol.36 (1935) p. 154. (Ar filling of Hg Thermometers.)Google Scholar
  24. [131]
    Pécheaux, H.: Krypton lamps. Electrician vol. 119 (Aug. 1937) p. 180, No. 3089. (Abstract of the paper in Gen. Elect. Rev. below.)Google Scholar
  25. [132]
    Pécheux, H.: Versuche an elektrischen Glühlampen mit Kryptonfüllung. Rev. gén. Électr. vol. 42 (1937) pp. 131–136.Google Scholar
  26. [133]
    Penning, F. M., and J. H. A. Moubis: On the Normal Cathode Fall in Neon. Physica vol.15 (1949) p. 721.Google Scholar
  27. [134]
    Rabinowitsch, E.: Edelgase, in Abegg: Handbuch der anorganischen Chemie, vol. IV 3, p. 1. Leipzig 1928.Google Scholar
  28. [135]
    Lord Rayleigh: Studies on the Passage of Helium at Ordinary Temperature Through Gasses, Crystals, and Organic Materials. Proc. Roy. Soc., Lond. (A) vol. 156 (1936) pp. 350–357, No. 888.Google Scholar
  29. [136]
    Robinson, N. W.: Electronic Flash Tubes. Philips Tech. Rev. vol.16 (July 1954) p. 13. (Mullard flash tube, filled with Xe.)Google Scholar
  30. [137]
    Schröter, F.: Handbuch der Bildtelegraphie und des Fernsehens. Berlin 1932.Google Scholar
  31. [138]
    Seiler, K., and W. Berger: Die Bedeutung der schweren Edelgase für die Beleuchtungstechnik. Z. kompr. flüss. Gase vol. 34 (1939) pp. 13–16, No. 2/3, pp. 32-35.Google Scholar
  32. [139]
    Siedler, Ph.: Die Gewinnung und Verwendung der Edelgase. Angew. Chem. vol. 51 (1938) pp. 799–818, No. 46.Google Scholar
  33. [140]
    Tellmann, W.: Glas u. App. vol.13 (1932) p. 58. (Spectral examination of inert-gas luminous lamps.)Google Scholar
  34. [141]
    Van Voorhis, C. C., A. G. Shenstone and E. W. Pike: Purification of Inert Gas with Mischmetal. Rev. Sci. Instr. vol.5 (1934) p. 367. (Ne, He; purification of He by chabazite.)Google Scholar

References on Non-Noble Gases

  1. [142]
    Archer, C. T.: The Thermal Conductivity and the Accomodation Coefficient of CO2. Phil. Mag. vol.19 (1935) p. 914.Google Scholar
  2. [143]
    Berger, H.: Gefahrenverhütung beim Umgang mit verdichtetem Sauerstoff. VDI-Z. vol.85 (1941) p. 419, No. 18.Google Scholar
  3. [144]
    Brüche, E.: Z. techn. Phys. vol.8 (1927) p. 12. (Pressure-reduction valve.)Google Scholar
  4. [145]
    Elzin, J. A.: Das Nachleuchten des Stickstoffs als Methode zur Kontrolle der Reinheit des zur Füllung der Glühlampen verwandten Gases. Z. Phys. vol.82 (1933) p. 620. (N2 Afterglow used for purity test of filling gas for incandescent lamps.)Google Scholar
  5. [146]
    Fehse, W.: Elektrische Öfen und Heizkörper aus Wolfram. Braunschweig 1928.Google Scholar
  6. [147]
    Gaede, W.: Ann. Phys. (4) vol.41 (1913) p. 302. (Electrolytic production of H2.)Google Scholar
  7. [148]
    Johnson, F. M. G., and P. Larose: J. Amer. Chem. Soc. vol.49 (1927) p. 312. (Diffusion of O 2 through Ag.)Google Scholar
  8. [149]
    Köhler, W., and R. Rompe: Die elektrischen Leuchtröhren. Braunschweig 1933.Google Scholar
  9. [150]
    Lax, E., and M. Pirani: in Geiger-Scheel: Handbuch der Physik, vol. 19, p. 351. 1929. (Illumination Techniques.)Google Scholar
  10. [151]
    Leybolds Nachf., E.: DRP. 417,275/23/25. (Needle-gas valve.)Google Scholar
  11. [152]
    Moser, L.: Reindarstellung von Gasen. Stuttgart 1920.Google Scholar
  12. [153]
    Pagel, H. A., and E. E. Frank: Purification of N 2 from O 2 by Cobalt Oxide. J. Amer. chem. Soc. vol. 63 (1941) pp. 1468–1469. Ref. Brauer: Chem. Zbl. vol. 112 (1941) II S. 2591, No. 21.Google Scholar
  13. [154]
    Pat.-Treuhand-Ges.: DRP. 486,515/28/29. (H 2 Gas Valve Made from Pd for Ne Tubes.)Google Scholar
  14. [155]
    Rast, W. L., and W. R. Ham: Diffusion of H 2 through Fe at temperatures between 780 and 90° C. Phys. Rev. (2) vol.51 (1937) p. 1015, No. 11. (Abstract.)Google Scholar
  15. [156]
    Shepherd, M., E. R. Weaver and S. F. Pickering: Preparation of Oxygen of High Purity. J. Res. Nat. Bur. Stand, vol. 22 (1939) pp. 301–306.Google Scholar
  16. [157]
    Skaupy, F., and others: DRP. 440,353/26/ 7. (N2 Generation from Azide in LuminousTubes.)Google Scholar
  17. [158]
    Smithells, C. J.: Permeability of Metals to H2 (Abstract). Nature (London) vol.139 (1937) p. 1113. (Rates of diffusion for Fe, Ni, Mo, Pt, Cu, A at 0°, 500° and 1000° C.)Google Scholar
  18. [159]
    Taylor, J. B.: A Convenient Method for Introducing O2 into Evacuated Systems. (Abstract.) Rev. Sci. Instr. vol.6 (1935) p. 243. (Tube filling of O 2 by a heated Ag tube.)Google Scholar
  19. [160]
    Whipple, G. A.: A High-Vacuum Leak Device. Proc. Phys. Soc. (2) vol.46 (1934) p. 281. (“Diffusion leak” with Hg.)Google Scholar

References on Vapors

  1. [161]
    Budgen, M. F.: Cadmium. London 1924.Google Scholar
  2. [162]
    Duffendack, O. S., R. A. Wolfe and F. Lederer: The Clean-up of Hg Vapour in Discharges Through H 2, He and N 2. J. Opt. Soc. Amer. vcl. 31 (1941) pp. 174–176, No.Google Scholar
  3. [163]
    Eddy, G. A.: Sodium Lamps for Highway Lighting. Electr. Wld. vol. 107 (March 1937) pp. 1054–1057. (Fig. 5, p. 1056 View of lamp.)Google Scholar
  4. [164]
    Egerton, A. G.: Phil. Mag. vol.33 (1917) p. 33. (Cadmium vapor pressure.)Google Scholar
  5. [165]
    Ende, W.: Elektrotechn. Z. vol.55 (1934) p. 853. (High-pressure quartz lamp with Hg-Ar filling and oxide cathode.)Google Scholar
  6. [166]
    Endler, H.: Starterlose Leuchtstofflampensysteme. ETZ. vol. 6 (April 1954) p. 119. (Survey.)Google Scholar
  7. [167]
    Ewest, H.: Fernsehen u. Tonfilm vol.3 (1932) p. 9. (Na lamp.)Google Scholar
  8. [168]
    Fonda, G. R., and A. H. Young: The A. C. Sodium-Vapour Lamp. Gen. Electr. Rev. vol.37 (1934) p. 331.Google Scholar
  9. [169]
    Gábor, D.: Die Quarzkadmiumlampe. Strahlentherapie vol.40 (1931) p. 717.Google Scholar
  10. [170]
    Gordon, N. T.: Operating Characteristics of Na-Vapour Lamps. Gen. Electr. Rev. vol.37 (1934) p. 338.Google Scholar
  11. [171]
    Heller, G.: The Mercury-Vapor Lamp HP 300. Philips Tech. Rev. vol.1 (1936) p. 129, No. 5. (20 atm. pressure.)Google Scholar
  12. [171a]
    Iwanow, A. P.: Elektrische Lichtquellen. Gasentladungslampen. Berlin: Akademie-Verlag 1955.Google Scholar
  13. [172]
    Kenty, C., and J. R. Cooper: A Study of the Effects of Gas Impurities in Fluorescent Lamps. Electrochem. Soc. vol. 87 (1945) pp. 397–411. (Small impurities of O 2, H 2 CO 2, CO, N 2 acetylene, ethylene, H 2 O vapor, and their reactions to the Hg filling.)Google Scholar
  14. [173]
    Kornfeld, G., and F. Müller-Skjold: Eine Quecksilberlampe mit sehr intensiver Resonanzstrahlung. Z. phys. Chem. Abt. B vol. 31 (1936) pp. 223–226, No. 3.Google Scholar
  15. [174]
    Krefft, H., and E. Summerer: Licht vol.4 (1934) p. 1. (Hg high-pressure lamps.)Google Scholar
  16. [175]
    Krefft, H.: Strahlungseigenschaften der Entladung in Quecksilberdampf. Techn. wiss. Abhandlungen aus dem Osram-Konzern vol. 4 (1936).Google Scholar
  17. [176]
    Larché, K., and M. Reger: Techn. Stand der Metalldampflampen für Allgemeinbeleuchtung. ETZ vol.58 (1937) p. 792, No. 29.Google Scholar
  18. [177]
    Lehmann, J.: Neue Natriumdampflampen. Helios vol. 43 (1937) pp. 3–4.Google Scholar
  19. [178]
    Liebig, R. G. M.: Zink und Cadmium. Leipzig 1913.Google Scholar
  20. [179]
    Linder, E.G., J. H. Coleman and E. G. Apgar: A High-Voltage, Cold-Cathode Rectifier. (Hg vapor, up to 30 KV inverse voltage,.4 mA, electron-trapping by combined electric and magnetic fields.)Google Scholar
  21. [180]
    Linder, J. A.: The Starting of Fluorescent Lamps. Electrochem. Soc. vol. 87 (1945) pp. 379–388. (Discussion of characteristics, incl. sterilamps.)Google Scholar
  22. [181]
    Marden, J. W., N. C. Beese and G. Meister: Cadmium-and Zinc-Vapor Lamps. Trans. Ilium. Engng. Soc. vol. 32 (1937) pp. 84–94.Google Scholar
  23. [182]
    Mulder, J. G. W., and H. L. van der Horst: A Controllable Rectifier Unit for 20,000 volts/18 amps. Philips Tech. Rev. vol. 1 (1936) pp. 161–165, No. 6. (Relay valves DCG5/30 with hot cathode and Hg-vapor filling.)Google Scholar
  24. [183]
    Philips: Schweiz. Pat. 171,167/32/32. (Protective layer on glass against Na vapour contamination.)Google Scholar
  25. [184]
    Schad, Dr.: Die Verfärbung von Leuchtröhren nach längerer Betriebszeit. Helios vol.43 (1937) p. 114, No. 5.Google Scholar
  26. [185]
    Schouwstra, P., and G. Zecher: Tubular Luminescence Lamps. Philips Tech. Rev. vol.4 (1939) p. 337, No. 12. (Low-pressure Hg discharge with luminescent coating.)Google Scholar
  27. [186]
    Sewig, R.: Handbuch der Lichttechnik, 2. Teil (Beleuchtungstechnik). Berlin: Springer 1938.Google Scholar
  28. [187]
    S. &H. (Siemens & Halske): DRP. angem. 1934. (Cracking of Hg ampules by R. F.)Google Scholar
  29. [188]
    Slauer, R. G.: Fluorescent Lamp Problems Challenge the Electrochemist. Electrochem. Soc. vol. 87 (1945) pp. 389–396. (Table of commonly-used phosphors and their radiation peak.)Google Scholar
  30. [189]
    Thayer, R. N.: Some Physical Properties of Fluorescent Lamp Coatings. Electrochem. Soc. vol. 87 (1945) pp. 413–428. (Optical and fluorescing properties.)Google Scholar
  31. [190]
    Wijk, A. van: The Use of UV Radiation in Industrial Luminescence Research. Philips Tech. Rev. vol.3 (1938) p. 5, No. 1. (Hg high-pressure lamp; UV-transmission data for NiO filters.)Google Scholar
  32. [191]
    Wolfke, M.: Elektrotechn. Z. vol.33 (1912) p. 917. (Cadmium-amalgam lamp.)Google Scholar
  33. [192]
    Zwikker, E.: Fluoreszenzbeleuchtung. Eindhoven (Philips 1951).Google Scholar
  34. [193]
    Anon.: Filling process of Na lamps. Gen. Electr. Rev. vol.42 (1939) p. 224, No. 5.Google Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations