Semiconductors and Organic Materials



A survey of some typical physical properties of inorganic semiconducting elements and compounds (mainly intermetallics) is given in table 7/1.


Barrier Layer Petroleum Coke Graphite Anode Germanium Crystal Junction Diode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Semiconductors in General General

  1. [1]
    Barrer, R. M.: Diffusion in and through Solids. New York: Cambridge University Press 1950.Google Scholar
  2. [2]
    Buckley, H. E.: Crystal Growth. New York: John Wiley and Sons 1951.Google Scholar
  3. [3]
    Fuller, C. S., and J. A. Ditzenberger: Diffusion of Lithium into Germanium and Silicon. Phys. Rev. vol.91 (1953) p. 193.Google Scholar
  4. [3a]
    van Geel, W. Ch.: Sperrschichtgleichrichter. Philips’ techn. Rdsch. No. 4 (1939) pp. 104–110.Google Scholar
  5. [4]
    Gremmelmaier, R., and O. Madelung: Preparation of Single Crystals of Semiconductor Compounds of Type AIII and BVII. Z. Naturf. (May 1953) p. 333, 304A.Google Scholar
  6. [5]
    Henisch, H. K.: Rectifying Semi-Conductor Contacts. Oxford Clarendon Press 1957.Google Scholar
  7. [6]
    Hunter, Lloyd P.: Handbook of Semiconductor Electronics. New York: McGraw-Hill 1956.Google Scholar
  8. [7]
    Keck, P. H., S. B. Levin, J. Broder and R. Lieberman: Crystal Growth by the Tip Fusion Method. Rev. Sci. Instr. vol. 25 (1954) pp. 298–299.Google Scholar
  9. [8]
    Lehovec, K., J. Soled, R.Koch, A. Macdonald and C. Stearns: Apparatus for Crystal Pulling in Vacuum Using a Graphite Resistance Furnace. Rev. Sci. Instr. (Aug. 1953) pp. 652-655.Google Scholar
  10. [9]
    Malsch, J., and F. W. Dehmelt: Apparatus for Drawing Single Crystals. Telefunkenztg. (Mar. 1953) pp. 121-122.Google Scholar
  11. [10]
    Moss, T. S.: Photoconductivity in the Elements. New York and London 1952.Google Scholar
  12. [11]
    RCA Lab Transistors I. Princeton N. J. 1956.Google Scholar
  13. [12]
    Seitz, F., and D. Turnbull: Solid-State Physics, vol. 1–4 (and following) New York (Academic Press) 1955.Google Scholar
  14. [13]
    Schottky, W.: Halbleiterprobleme vol. 1–3 (and following). Braunschweig: Vieweg 1954.Google Scholar
  15. [14]
    Shockley, W.: Imperfections in Nearly Perfect Crystals. Symposium held at Pocono Manor, Oct. 12–14, 1950 (1952).Google Scholar
  16. [15]
    Shockley, W.: Electrons and Holes in Semiconductors. New York: v. Nostrand 1950.Google Scholar
  17. [16]
    Shockley, W., M. Sparks and G. K. Teal: P-N Junction Transistors. Phys. Rev. vol. 83 (1951) pp. 151–162.Google Scholar
  18. [17]
    Spenke, E.: Elektronische Halbleiter. Berlin/Göttingen/Heidelberg: Springer 1956.Google Scholar
  19. [18]
    Torrey, H. C., and C. A. Whitmer: Crystal Rectifiers. New York 1948.Google Scholar


  1. [19]
    Bridgers, H. E., and others. Transistor Technology vol. I (1957).Google Scholar
  2. [20]
    Busch, G., and M. Schneider: Heat Conduction in Semiconductors. Physica vol. 20 (Nov. 1954) pp. 1084–1086.Google Scholar
  3. [21]
    Coblenz, A.: Semiconductor Compounds Open New Horizons. Courtesy Electronics, (Nov. 1957) pp. 146-148.Google Scholar
  4. [22]
    Conwell, E. M.: Properties of Silicon and Germanium. Proc. IRE vol. 40 (Nov. 1952) p. 1327, No. 11.Google Scholar
  5. [23]
    Debye, P. P., and E. M. Conwell: Electrical Properties of n-Type Germanium. Phys. Rev. vol. 93 (1954) pp. 693–706.Google Scholar
  6. [24]
    Goodman, C. H. L.: Semiconducting Compounds and the Scale of Electronegatives. Proc. Phys. Soc., Lond. B vol. 67 (1954) pp. 258–259.Google Scholar
  7. [25]
    Guggenheim, E. A.: Electron Spin in Semiconductors. Proc. Phys. Soc. (London) A, vol. 66 (1953) pp. 121–122.Google Scholar
  8. [26]
    Heywang, W., and M. Zerbst: Eigenschaften von hochreinem Silizium. (Properties of pure silicon). Siemens-Zeitschrift vol. 31, No.2 (1957) p. 85.Google Scholar
  9. [27]
    Johnson, J. B., and K. G. McKay: Secondary Electron Emission from Germanium. Phys. Rev. vol.85 (1952) p. 390.Google Scholar
  10. [28]
    Kanai, Y.: On the Electrical Properties of Silicon Single Crystals. J. Phys. Soc., Japan vol. 9 (1954) pp. 123–132.Google Scholar
  11. [29]
    Kingery, W. D., and M. Humenik, Jr.: Surface Tension at Elevated Temperatures. I. Furnace and Method for Use of Sessile-drop Method; Surface Tension of Silicon, Iron, and Nickel. J. Phys. Chem, vol. 57 (1953) pp. 350–363.Google Scholar
  12. [29a]
    Kingston, R.H.: Semiconductor Surface Physics. Philadelphia 1957.Google Scholar
  13. [30]
    Levitas, A., C.C. Wang and B.H. Alexander: Energy Gap of Germanium-Silicon Alloys. Phys. Rev. vol.95 (1954) p. 846.Google Scholar
  14. [31]
    Pincherle, L.: Change of Activation Energy with Impurity Concentration in Semiconductors. Proc. Phys. Soc., Lond. (July 1951) pp. 663-664.Google Scholar
  15. [32]
    Prince, M. B.: Drift Mobility in Semiconductors. Phys. Rev. vol 93 (1954) pp. 1204 to 1206.Google Scholar
  16. [33]
    Rappaport, P.: Minority Carrier Lifetime in Semiconductors as a Sensitive Indicator of Radiation Damage. Phys. Rev. vol.94 (1954) p. 1409.Google Scholar
  17. [34]
    Shive, J. N.:The Properties of Ge Phototransistors. J. Opt. Soc. Amer. vol.43 (1953) p. 239.Google Scholar
  18. [35]
    Teal, G. K., J. R. Fisher and A.W. Treptow: Photoconductivity. J. Appl. Phys. vol.17 (1946) p. 879.Google Scholar
  19. [36]
    Ziel, A. van der: Simpler Explanation of the Observed Shot Effect in Ge Filaments. J. Appl. Phys. vol. 24 No.8 (1953) p. 1063.Google Scholar

References on Selenium and Other Semiconductors

  1. [37]
    Aikman, O. S.: Protective Coatings Minimize Effects of Corrosion on Selenium Rectifiers. Ind. Labs. vol. 4 No. 10 (1953) pp. 114–117.Google Scholar
  2. [38]
    van Amstel, J. J. A. Ploos: Kleine Selenventile. Philips’ techn. Rdsch. No. 9 (1947/48) p. 267 (Eindhoven).Google Scholar
  3. [39]
    Brady, E. L.: Preparation and Properties of Lead Telluride. J. Electrochem. Soc. vol. 101 (1954) pp. 466–473.Google Scholar
  4. [40]
    Brunke, F.: Eigenschaften und Herstellung von Selen und Kupferoxydulgleichrichtern (Properties and manufacturing of selenium and copper-oxide rectifiers.) Schottky, Halbleiterprobleme vol. 1 (Braunschweig 1954) p. 135Google Scholar
  5. [41]
    Caldwell, R. S., and H. Y. Fan: Infrared Properties of Selenium. Am. Phys. Soc., Meeting, Chicago, Ill. Nov. 23-25, 1955.Google Scholar
  6. [42]
    Cataldo, J. T.: Selenium Rectifiers. Instr. Mfg. vol.21 (1953) pp 170–171 and pp. 184-185.Google Scholar
  7. [43]
    Christian, S. M., and E.R.Johnson: Energy Gap and Mobility Measurements on Ge-Si Alloys. Session IV-A, Conference on semiconductor device research, Minneapolis, Minn. (June 1954).Google Scholar
  8. [44]
    Cohen, J.: Semiconducting Films of Antimony. J. Appl. Phys. vol. 25 (1954) pp. 798 to 801.Google Scholar
  9. [45]
    Eckart, F., and A. Schmidt: Properties of Selenium Rectifiers with Various Impurity Materials. Ann. Physik, vol. 16 (1955) pp. 134–152.Google Scholar
  10. [46]
    Frerichs, R.: Conductivity Produced in CdS Crystals by Irradiation with γ-Rays. Phys. Rev. vol. 76, No. 76 (1956) pp. 1869–1875.Google Scholar
  11. [47]
    Goldman, Z. A.: Rectifying Action and Photoelectromotive Force of Selenium Photocells and the Nonadditivity of Their Photoconductivity. Doklady Akad. Nauk. S.S.S.R. vol. 97 (1954) pp. 415–416.Google Scholar
  12. [48]
    Gilleo, M. A.: Optical Absorption and Photoconductivity of Amorphous and Hexagonal Selenium. Technol. Rep. vol. XXXV (Feb. 1951), Lab. for Insulation Res., M.I.T.Google Scholar
  13. [49]
    Hausner, H. H.: Semiconducting Ceramic Materials. J. Amer. Ceram. Soc. vol. 30 (1947) pp. 290–296, No. 9.Google Scholar
  14. [50]
    Hahn, E. E.: Some Electrical Properties of Zinc Oxide Semiconductor. J. Appl. Phys. vol. 22 (July 1951) pp. 855–863.Google Scholar
  15. [51]
    Halverson, G: Electrical Properties of Microcrystalline Selenium. Commun. and Electronics (1954) pp. 38-45.Google Scholar
  16. [52]
    Henkels, H. W., and J. Maczuk: Electrical Properties of Selenium: Part 3-Microcrystalline Selenium Metal-Doped. J. Appl. Phys. vol. 25 (1945) pp. 1–11.Google Scholar
  17. [53]
    Henkels, H. W., and J. Maczuk: Anisotropic Resistivities of Selenium Crystals at High Frequencies. Phys. Rev. (Sept. 1953) pp. 511-532.Google Scholar
  18. [54]
    Henkels, H. W.: Correlation of Electrical Properties of Selenium Rectifiers with Fundamental Bulk Properties. Electrochemical Society Meeting, Cincinnati, Ohio, May 1–5, 1955.Google Scholar
  19. [55]
    Henkels, H. W.: Donor-Acceptor Balance in Selenium Rectifiers. Electrochem. Soc. Meeting, Cincinnati, Ohio, May 1–5, 1955.Google Scholar
  20. [56]
    Henkels, H. W., and J. Maczuk: Electrical Properties of Selenium. III. Microcrystalline Selenium Metal-Doped. J. Appl. Phys. vol. 25 (Jan. 1953) pp. 1–12.Google Scholar
  21. [57]
    Hoffmann, A., and F. Ross: The Mode of Action of the CdSe Intermediate Layers in Selenium Rectifiers. Z. Phys. vol. 136, No. 2 (1953) pp. 152–165.Google Scholar
  22. [58]
    Kallmann, H., and B. Kramer: Induced Conductivity and Light Emission in Different Luminescent Type Powders. Phys. Rev. vol. 87, No. 1 (1952) pp. 91–107.Google Scholar
  23. [59]
    Klein, O.: Progress in the Development of Selenium Rectifiers. Z. Electrotechn. vol. 74 (May 1, 1953) pp. 258–262.Google Scholar
  24. [60]
    Krebs, H.: Semiconducting Materials. London 1951.Google Scholar
  25. [61]
    Kröger, F. A., H. J. Vink and J. van den Boomgaard: Controlled Conductivity in CdS Single Crystals. Z. phys. Chemie vol. 203, Nr. 1/2 (1954) pp. 1–72.Google Scholar
  26. [62]
    Mitchell, E. J. W.: Impurity Scattering in Oxide Semiconductors. Proc. Phys. Soc., Lond. (Feb. 1952) pp. 154-161.Google Scholar
  27. [63]
    Moss, T. S.: Photoconductivity in the Elements. New York and London 1952.Google Scholar
  28. [64]
    Nasledov, D. N., V. A. Dorin and I.M. Dikina: X-Ray Study of Selenium Films Obtained by Evaporation in Vacuum. Zhur. Tekh. Fiz. vol. 25 (1955) pp. 29–38.Google Scholar
  29. [65]
    Nijland, L. M.: Some Investigations on the Electrical Properties of Hexagonal Selenium. Philips Research Repts. vol. 9 (1954) pp. 259–294.Google Scholar
  30. [66]
    Piper, W. W.: Some Electrical and Optical Properties of Single Crystals of ZnS. Phys. Rev. vol. 92, No. 1 (1953) pp. 23–28.Google Scholar
  31. [67]
    Piper, W. W.: Growth of ZnS Single Crystals. J. Chem. Phys. vol. 20, No.8 (1952) p. 1343.Google Scholar
  32. [68]
    Poganski, S.: Low-Capacitance Se Rectifiers. A.E.G. Mitt. vol. 45 (1955) pp. 257–260.Google Scholar
  33. [69]
    Richter, H., W. Kulcke and H. Specht: The Structure of Amorphous Selenium. Z. Naturf. (Aug. 1932) pp. 511-532.Google Scholar
  34. [70]
    Rose, A.: Photoconductivity in Insulators. R. C. A. Rev. (Sept. 1951).Google Scholar
  35. [71]
    Rust, H. H.: Dielectric Behavior of Selenium Barrier Layers at High Temperature in the Blocking Range (German). Archiv der Elektrischen Übertragung, vol. 7, No. 11 (Nov. 1953) pp. 549–553.Google Scholar
  36. [72]
    Saker, E. W., and F. A. Cunnell: Intermetallic Semiconductors. Research (London) vol. 7 (1954) pp. 114–120.Google Scholar
  37. [73]
    Scanlon, W. W.: Interpretation of Hall Effect and Resistivity Data in PbS and Similar Binary Compound Semiconductors. Phys. Rev. (Dec. 1953) pp. 1573-1575.Google Scholar
  38. [74]
    Selenyi, P.: A Simple Experiment on the Origin and Prevention of Rectification by the Selenium Rectifier. Acta Phys. Hungar. vol. 3, No. 1 (1953) pp. 11–14.Google Scholar
  39. [75]
    Shidlovskii, M. K.: Electrical Conductivity of Amorphous Selenium in Strong Electric Fields. Zhur. Tekh. Fiz. vol. 24 (1954) pp. 837–844.Google Scholar
  40. [76]
    Straumaris, M. E.: Z. Krystallogr. vol.102 (1940) p. 432.Google Scholar
  41. [77]
    Veszi, G. A.: The Modern Single-Layer Selenium Photoelectric Cell. J. Brit. Inst. Radio Engr. vol. 13 (April 1953) pp. 183–189.Google Scholar
  42. [78]
    Weimer, P. K., and A. D. Cope: Photoconductivity in Amorphous Selenium. R. C. A. Rev. (Sept. 1951).Google Scholar
  43. [79]
    Weschlowski, J.: Bull. Int. Acad. Cracovie (Acad. pol. Sci.) vol. 6-7 A (1938) p. 290.Google Scholar
  44. [80]
    Zworykin, V. K., and E. G. Ramberg: Photoelectricity and its Applications. New York 1949.Google Scholar

References on Germanium

  1. [81]
    Anonymus: Germanium Furnace. C. and E. News (Febr. 23, 1953) p. 821.Google Scholar
  2. [82]
    Battey, J. F., and R. M. Baum: Energy of the High-Lying Acceptor Level in Copper-Doped Germanium. Phys. Rev. vol.94 (1954) p. 1393.Google Scholar
  3. [83]
    Becker, M.: Growth of Long Lifetime Germanium Crystall. Phys. Rev. vol.94 (1954) p. 1420.Google Scholar
  4. [84]
    Bennett, D. C., and B. Sawyer: Single Crystal of Exceptional Perfection and Uniformity by Zone Leveling. Bell Syst. Techn. Jour. vol. XXXV, No. 3 (1956), p. 637.Google Scholar
  5. [85]
    Birman, J. L.: On Zone Refining. J. Appl. Phys. vol.26 (1955) p. 1195.Google Scholar
  6. [86]
    Bösenberg, W.: Diffusion of Antimony, Arsenic and Indium in Solid Germanium. Z. Naturforsch. vol. 10a (1955) pp. 285–291.Google Scholar
  7. [87]
    Bradley, W. E.: The Surface-Barrier Transistor, Parts I, II, III, IV, V. Proc. IRE, vol. 41(12) (Dec. 1953) pp. 1702–1714.Google Scholar
  8. [88]
    Bradshaw, S. E.: Phenomena Observed in the Melting and Solidification of Germanium. J. Electrochem. Soc. vol. 101 (1954) pp. 293–297.Google Scholar
  9. [89]
    Brit. Pat. 703606: Purifying Germanium (Feb. 3, 1954).Google Scholar
  10. [90]
    Burton, J. A.: Impurity Centers in Ge and Si. Physica vol. 20, pp. 834–854.Google Scholar
  11. [91]
    Camp, P. R.: Resistivity Striations in Germanium-Crystals. J. Appl. Phys. vol. 25 (1954) pp. 459–463.Google Scholar
  12. [93]
    Chirnside, R. C., and H. J. Cluley: Germanium from Coal. G. E. C. Journal (April 1952) pp. 94-100.Google Scholar
  13. [94]
    Cornelison, B., and W. A. Adcock: Transistors by Grown-Diffused Technique. Wescon Meeting Aug. 21, 1957.Google Scholar
  14. [95]
    Czochralski, I.: Z. f. phys. Chem. 92 (1918) p. 219.Google Scholar
  15. [96]
    Dale, E. G., and W. L. Mefferd: Segregation Coefficient of some Group III and Group V Elements in Gold. Electrochemical Soc., Meeting, Cincinnati, Ohio (May 1–5, 1955).Google Scholar
  16. [97]
    Dorsndorf, H.: Neue Beobachtungen an Versetzungen in Germanium. (New observations on dislocations in Ge). Z. angew. Physik einschl. Nukleonik vol. 9 (1957) pp.531 bis 519.Google Scholar
  17. [98]
    Durr, W., J. Jaumann and K. Seiler: Solubility and Ionizability of Impurities in Germanium Single Crystals. Z. Naturf. vol. 8 a (1953) pp. 39–46.Google Scholar
  18. [99]
    Dunlap, W. C., Jr.: Diffusion of Impurities in Germanium. Phys. Rev. vol.94 (1954) pp. 1531–1540.Google Scholar
  19. [100]
    Dunlap, W. C., Jr.: Electrical Properties of Gold-Germanium Alloys. Phys. Rev. vol.91 (1953) p. 1281.Google Scholar
  20. [101]
    Dunlap, W. C., Jr.: Properties of Zinc-, Copper-and Platinum-Doped Germanium. Phys. Rev. vol. 96 (1954) pp. 40–45.Google Scholar
  21. [102]
    Early, J. M.: Design Theory of Junction Transistors. Bell System Techn, J., vol. 32 (1953) pp. 1271–1312.Google Scholar
  22. [103]
    Emeis, R.: Tiegelfreies Ziehen von Silizium-Einkristallen. (Drawing of Si-monocrystals without crucibles.) Z. Naturforsch. vol. 9a, No. 67 (1954).Google Scholar
  23. [104]
    Fahnestock, J. D.: Production Techniques in Transistor Manufacture. Electronics vol. 26 (Oct. 1953) pp. 130–134.Google Scholar
  24. [105]
    Fan, G.: Evaporation of Copper from Germanium. Phys. Rev. (Aug. 1953) pp. 745 to 755.Google Scholar
  25. [106]
    Fan, H. Y., W. Kaiser, E. E. Klontz, K. Lark-Horovitz and R. R. Pepper: Energy Levels of Photoconductivity in Electron-Bombarded Germanium. Phys. Rev. vol. 95 (1954) pp. 1087–1088.Google Scholar
  26. [107]
    Fuller, C. S.: Diffusion of Donor and Acceptor Elements into Germanium. Phys. Rev. (April 1952) pp. 136-137.Google Scholar
  27. [108]
    Fuller, C. S., and J. A. Ditzenberger: Diffusion of Lithium into Germanium and Silicon. Phys. Rev. vol.91 (1953) p. 193.Google Scholar
  28. [109]
    Fuller, C. S., and J. D. Struthers: Copper as an Acceptor Element in Germanium. Phys. Rev. (1952) p. 526.Google Scholar
  29. [110]
    Fuller, C. S., J. D. Struthers, J. A. Ditzenberger and K. B. Wolfstirn: Diffusion and Solubility of Copper in Germanium. Phys. Rev. vol. 93 (1954) pp. 1182–1189.Google Scholar
  30. [111]
    Fuller, C. S., H. C. Theuerer and W. van Roosbroeck: Temperature Effect on Acceptor Centers. Phys. Rev. vol.85 (1952) p. 678.Google Scholar
  31. [112]
    Geballe, T. H., and F. J Morin: Ionization Energies of Groups III and V. Elements in Germanium. Phys. Rev. vol. 95 (1954) pp 1085–1086.Google Scholar
  32. [113]
    Goldberg, C.: Acceptors Produced in Germanium by Quenching from High Temperatures. Phys. Rev. (Nov. 1952) pp. 920-924.Google Scholar
  33. [114]
    Goldstein, B.: The Dissolution of Germanium by Molten Indium. RCA Rev. vol. XVIII, No. 2 (June 1957) p. 213.Google Scholar
  34. [115]
    Green, M., and J. A. Kafalas: The Purification of Germanium, the Germanium-Tetrachloride-Arsenic Trichloride System. Electrochemical Society Meeting, Cincinnati, Ohio (May 1–5, 1955). Also J. Chem. Soc. (1955) pp. 1604-1607.Google Scholar
  35. [116]
    Hall, R. N.: Segregation of Impurities During the Growth of Germanium and Silicon Crystals. J. Phys. Chem., vol. 57 (Nov. 1953), pp. 836–839.Google Scholar
  36. [117]
    Hall, R. N.: P-N Junctions Produced by Rate Growth Variation. Phys. Rev. vol.88 (1952) p. 139.Google Scholar
  37. [118]
    Hall, R. N., and W. C. Dunlap, Jr.: P-N Junctions Prepared by Impurity Diffusion. Phys. Rev. vol. 80 (1950) pp. 467–468.Google Scholar
  38. [119]
    Herold, E. W.: New Advances in the Junction Transistor. Brit. J. Appl. Phys. vol. 5 (1954) pp. 115–126.Google Scholar
  39. [120]
    Holden, A. N.: Preparation of Metal Single Crystals (Abstract). Trans. Am. Soc. Metals vol.42 (1950) p. 319.Google Scholar
  40. [121]
    Keck, P. H., and M. G. E. Golay: Crystallization of Silicon from a Floating Liquid Zone. Phys. Rev. 89 (1953) p. 1297.Google Scholar
  41. [122]
    Lark-Horowitz, K.: Impurities. Electr. Engng., N. Y. vol.68 (1949) p. 1047.Google Scholar
  42. [123]
    Lataiv, H., Jr., L. M. Slifkin and W. M. Portnoy: Self-Diffusion in Germanium. Phys. Rev. (Feb. 1954) pp. 892-893.Google Scholar
  43. [124]
    Lee, C.A.: A High-Frequency Diffused-Base Germanium Transistor. Bell System Tech. J. vol.35 (1956) p. 23.Google Scholar
  44. [125]
    Lehmann, G., and C. Meuleau: Temperature Regulator for Germanium Metallurgy. Onde electr. vol. 33 (1953) pp. 678–683.Google Scholar
  45. [126]
    Logan, R. A.: Thermally Induced Acceptors in Single Crystal Germanium. Phys. Rev. (Aug. 1953) pp. 757-758.Google Scholar
  46. [127]
    Lehovec, K., and E. Belmont: Preparation of P-N Junctions by Surface Melting. J. Appl. Phys. vol. 24 (Dec. 1953) pp. 1482–1484.Google Scholar
  47. [128]
    Mayburg, S.: Lattice Defects in Germanium and Silicon. Sylvania Technologist vol. 7 (1954) pp. 109–112.Google Scholar
  48. [129]
    Moore, A. R.: The Preparation of Single and Multiple P-N Junctions in Single Crystals of Germanium. Transistors I. RCA Lab. Princeton, N. J. (1956).Google Scholar
  49. [130]
    Moore, A. R., and J. I. Pankove: The Effect of Junction Shape and Surface Recombination on Transistor Current Gain. Proc. I. R. E. vol. 42 (1954) pp. 907–913.Google Scholar
  50. [131]
    Morin, F. J., and J. P. Maita: Comparison of Copper-Doped Germanium with Heattreated Germanium. Phys. Rev. vol.90 (1953) p. 337.Google Scholar
  51. [132]
    Moss, T. S., L. Pincherle and A. M. Woodward: Photoelectromagnetic and Photodiffusion Effects in Germanium. Proc. Phys. Soc., Lond. vol. 66B (1953) pp. 743–752.Google Scholar
  52. [133]
    Müller, C. W.: Alloying Properties of Germanium Free of Edge Dislocation. RCA Rev. vol. XVIII, No. 2 (June 1957) p. 205.Google Scholar
  53. [134]
    Olsen, K.M.: Single Crystals of Germanium. U.S. Pat. 2679080 (May 1954).Google Scholar
  54. [135]
    Ozarow, V.: Some Electrical Properties of Germanium Crystals Containing Compen sated Impurities. Phys. Rev. (Feb. 1954) pp. 371-372.Google Scholar
  55. [136]
    Pankove, J. I.: Recrystallization of Germanium from Indium Solution. R. C. A. Rev. (Mar. 1954) p. 75.Google Scholar
  56. [137]
    PB 111120: Germanium Crystal Rectifiers (Febr. 1953).Google Scholar
  57. [138]
    Pearson, G. L., J. D. Struthers and H. C. Theuerer: Impurities. Phys. Rev. vol.77 (1950) p. 809.Google Scholar
  58. [139]
    Pfann, W. G.: Techniques of Zone Melting and Crystal Growing. Seitz, Solid State Physics 4 (1957) p. 423.Google Scholar
  59. [140]
    Pfann, W. G.: Temperature-Gradient Zone Melting. AIME Trans., vol.203 (1955) pp. 961–965.Google Scholar
  60. [141]
    Pfann, W. G., and K.M. Olsen: Purification and Prevention of Segregation in Single Crystals of Germanium. Letter, Phys. Rev. vol. 89., No. 1 (Jan. 1, 1953) pp. 322–323.Google Scholar
  61. [142]
    Pfann, W. G.: Separation of Two Solutes with Particular Reference to Semiconductors. J. Met. vol. 194 (1952) pp. 861–865.Google Scholar
  62. [144]
    Pfann, W. G.: Redistribution of Solutes by Formation and Solidification of a Molten Zone. J. Metals vol.6 (1954) p. 294.Google Scholar
  63. [145]
    Pohl, R. G.: Cross Section of Pulled Crystals. Amer. J. Appl. Phys. (May 1954) pp. 668-669.Google Scholar
  64. [146]
    R. C. A. Lab Series No. LB 860: The Preparation of Single and Multiple P-N Junctions of Single Crystals of Germanium.Google Scholar
  65. [147]
    R. C. A. Lab Series No. LB 890: Purification of Germanium by Gradient Freezing.Google Scholar
  66. [148]
    R. C. A. Lab Series No. LB 891: Laboratory Equipment for Germanium Purification.Google Scholar
  67. [149]
    R. C. A. Lab Series No. LB 892: Preparation of Single Crystals of Germanium and Silicon.Google Scholar
  68. [150]
    R. C. A. Lab Series No. LB 922: Continuous Apparatus for Growing Single Crystal Germanium.Google Scholar
  69. [151]
    R. C. A. Lab Series No. LB 926: Recrystallization of Germanium from Indium SolutionGoogle Scholar
  70. [152]
    R. C. A. Lab Series No. LB 947: A Study of the Etching Rate of Germanium.Google Scholar
  71. [153]
    Reck, P. H., and W. van Horn: The Surface Tension of Liquid Silicon and Germanium. Phys. Rev. (Aug. 1953) pp. 512-513.Google Scholar
  72. [154]
    Reiss, H.: Ionization of Hydrogen in Germanium and Silicon. Am. Phys. Soc., Meeting, Univ. of Southern Calif. (Dez. 28-30, 1955).Google Scholar
  73. [155]
    Roth, L., and W. E. Taylor: Preparation of Germanium Single Crystals. Proc. IRE (Nov. 1952) pp. 1338-1341.Google Scholar
  74. [156]
    Rost, R.: Kristalloden-Technik (1956).Google Scholar
  75. [157]
    Saby, J. S., and W. C. Dunlap, Jr.: Impurity Diffusion and Space-Charge Layers in ‘Fused-Impurity’ P-N Junctions. Phys. Rev. vol. 90, No. 4 (May 15, 1953) pp. 630 to 632.Google Scholar
  76. [158]
    Seiler, K., K. Keller and K. Blank: The Question of Thermally Produced Lattice Defects in Germanium. Naturwiss. (Jan. 1953) p. 56.Google Scholar
  77. [159]
    Slichter, W. P., and E. D. Kolb: Solute Redistribution in Germanium crystals. Phys. Rev. (June 1953) pp. 978-988.Google Scholar
  78. [160]
    Stripp, K. F., and A.R. Moore: The Effects of Junction Shape and Surface Recombination on Transistor Current Gain. Part. 2. Proc. IRE. vol. 43 (1955) pp. 856 to 866.Google Scholar
  79. [161]
    Teal, G. K., M. Sparks, and E. Buehler: Growth of Germanium Single Crystal Containing P-N Junctions. Phys. Rev. vol.81 (1951) p. 637.Google Scholar
  80. [162]
    Teal, G. K.: Reprint of a paper entitled: Some Recent Development in Silicon and Germanium Materials and Devices. Presented at National Conference on Airborne Electronics (May 10, 1954).Google Scholar
  81. [163]
    Teal, G. K., M. Sparks and E. Buehler: Single Crystal Germanium. Proc. IRE (Aug. 1952) p. 906.Google Scholar
  82. [164]
    Tyler, W. W., R. Newman and H. H. Woodbuyr: Properties of Germanium Doped with Nickel. Phys. Rev. vol. 98 (1955) pp. 461–468.Google Scholar
  83. [165]
    Tyler, W. W., H. H. Woodbury and R. Newman: Some Properties of Germanium Doped with Iron or Cobalt. Phys. Rev. vol.94 (1954) p. 1419.Google Scholar
  84. [166]
    Tyler, W. W., R. Newman and H. H. Woodbury: Properties of Germanium Doped with Cobalt. Phys. Rev. vol. 97 (1955) pp. 669–672.Google Scholar
  85. [167]
    Tyler, W. W., and H. H. Woodbury: Properties of Germanium Doped with Iron. I. Electrical Conductivity. Phys. Rev. vol. 96 (1954) pp. 874–882.Google Scholar
  86. [168]
    van der Maesen, F., and J. A. Brenkman: The Solid Solubility and the Diffusion of Nickel in Germanium. Phil. Res. Rep. vol. 9 (1954) pp. 225–230.Google Scholar
  87. [169]
    Verma, A. R.: Crystal Growth and Dislocation. London, Butterworth, Scientific Publications (1953).Google Scholar
  88. [170]
    Visvanathan, S., and J. F. Battery: Some Problems in the Diffusion of Minority Carriers in a Semiconductor. J. Appl. Phys. (Jan. 1954) pp. 99-102.Google Scholar
  89. [171]
    Woodbury, H. H., and W. W. Tyler: Some Properties of Germanium Doped with Manganese. Bull. Amer. Phys. Soc. vol. 30 (1955) pp. 11–12, No. 2.Google Scholar

Contacts, etching, diode and transistor design

  1. [172]
    Adam, G.: Der Einfluß der Gasatmosphäre auf die Oberflächenkombination bei Germanium (The influence of gas atmosphere on surface recombination on germanium). Z. Naturf. vol 12a (1957) p. 574.Google Scholar
  2. [173]
    Armstrong, L. D.: P-N Junctions by Impurity Introduction Through an Intermediate Metal Layer. Proc. IRE. vol. 40 (1952) pp. 1341–1342.Google Scholar
  3. [174]
    Arrons, M. W., M. Pobereskin, J. E. Gates, and E. B. Dale: Distribution of the Mass Transported from a Collector into a Germanium Crystal by the Forming Process. Phys. Rev. vol.95 (1954) p. 1345.Google Scholar
  4. [175]
    Bardeen, J.: Surface States and Rectification at a Metal-Semiconductor Contact. Phys. Rev. vol. 71 (May 1947) pp. 717–727.Google Scholar
  5. [176]
    Batterman, B. W.: Hillocks, Pits, and Etch Rate in Germanium Crystals. J. Appl. Phys. vol.28 (1957) p. 1236.Google Scholar
  6. [177]
    Bocciarelle, C. G.: Properties of Metal to Germanium Contacts. Physica vol.20 (1954) pp. 1020–1025.Google Scholar
  7. [178]
    Borneman, E. H., R.F. Schwarz and J. J. Stickler: Rectification Properties of Metal-Semiconductor Contacts. J. Appl. Phys. vol. 26 (1955) pp. 1021–1029.Google Scholar
  8. [179]
    Bradley, W. E.: Principle of the Surface-Barrier Transistor. Proc. IRE. vol.41 (1953) p. 1702.Google Scholar
  9. [180]
    Brattain, W. H., and J. Bardeen: Surface Properties of Germanium. Bell Syst. Techn. J. (Jan. 1953) pp. 1-41.Google Scholar
  10. [181]
    Brattain, W. H., and C. G. B. Garrett: Surface Properties of Semiconductors. Physica vol. 20 (1954) pp. 885–892.Google Scholar
  11. [182]
    Brouillet, P., F. Epeldoin and W. A. Wooster: Electrolytic Polishing of Germanium and Platinum in the Presence of F-or Cl-ions. C. R. Acad. Sci., Paris (Oct. 1953) pp. 895-897.Google Scholar
  12. [183]
    Buck, T. M., and F. S. McKim: Depth of Surface Damage Due to Abrasion on Germanium. J. Electrochemical Soc. vol.103 (1956) p. 593.Google Scholar
  13. [184]
    Camp, P. R.: A Study of the Etching Rate of Single-Crystal Germanium. J. Electrochem. Soc. vol. 102 (1955) pp. 586–593.Google Scholar
  14. [185]
    Chans, Roger: Etching Behavior of Pile-Irradiated Germanium and Silicon Single Crystals. J. Appl. Phys. vol.28 (1957) p. 385.Google Scholar
  15. [186]
    Clarke, E. N.: Oxygen-Induced Surface Conductivity on Germanium. Phys. Rev. (Aug. 1953) pp. 756-757.Google Scholar
  16. [187]
    Dawson, J. W.: Germanium Diodes Sealed in Glass. Sylvania Tech., vol. 6 (Jan. 1953) pp. 1–4.Google Scholar
  17. [188]
    Dillon, J. A. Jr., and H. E. Farnsworth: Work-Function Studies of Germanium Crystals Cleaned by Ion Bombardment. J. Appl. Phys. vol.28 (1957) p. 174.Google Scholar
  18. [189]
    Dunlap, W. C., Jr.: Germanium Diode from Special Pellets. J. Appl. Phys. vol. 25 (1954) pp. 448–451.Google Scholar
  19. [190]
    Ellis, R. C., Jr., and S. P. Wolsky: New Etches for Germanium. J. Appl. Phys. vol. 24 (Nov. 1953) pp. 1411–1412.Google Scholar
  20. [191]
    Ellis, W. G.: Surface Studies on Single-Crystal Germanium. J. Appl. Phys. (1957) p. 1262.Google Scholar
  21. [192]
    Eriksen, W. T., H. Statz, and G. G. De Mars: Excess Surface Currents on Germanium and Silicon Diodes. J. Appl. Phys. vol.28 (1957) p. 133.Google Scholar
  22. [193]
    Geist, D., and E. Preuss. Ätzen und Polieren von Germaniumoberflächen. Mit 19 Textabbildungen. (Etching and polishing of germanium surfaces.) Z. Angew. Phys. vol. 9, No.10 (1957) p. 526.Google Scholar
  23. [194]
    Hall, R. N.: Power Rectifiers and Transistors. Proc. IRE. vol. 40 (Nov. 1952) p. 1512.Google Scholar
  24. [195]
    Harten, H. U.: Blocking Contacts Between Germanium and Evaporated Metal Films. Naturwissensch. vol.41 (1954) p. 162.Google Scholar
  25. [196]
    Henisch, H. K., and F. D. Morten: Forward Characteristic of Injecting Area Contact on Germanium. Proc. Phys. Soc. (Section B) vol. 66, Part 10/(4068) (Oct. 1953) pp. 841–844.Google Scholar
  26. [197]
    John, H. F., and R. L. Longini: Effects of Electrolytic Etching on the Electrical Properties of Germanium. Electrochem. Soc. Meeting, Pittsburgh, Penn. (Oct. 13, 1955).Google Scholar
  27. [198]
    Kestenbaum, A. L., and N. H. Ditrick: Design, Construction and High-Frequency Performance of Drift Transistors. RCA Rev. vol.18 (1957) p. 12.Google Scholar
  28. [199]
    Kingston, R. H.: Water-Vapor-Induced N-Type Surface Conductivity on P-Type Germanium. Phys. Rev. vol. 98 (1955) pp. 1766–1775.Google Scholar
  29. [200]
    Lin, L. A.: Study of Injecting and Extracting Contacts on Germanium Single Crystals. Rev. of Sci. Instr. vol.28 (1957) p. 187.Google Scholar
  30. [201]
    Longini, R. L.: Electric Forming of n-Germanium Transistors Using Donor-Alloy Contacts. Phys. Rev. (Dec. 1951) p. 1254.Google Scholar
  31. [202]
    McKelvey, J. P., and R. L. Longini: Volume and Surface Recombination Rates for Injected Carriers in Germanium. J. Appl. Phys. vol. 25 (1954) pp. 634–641.Google Scholar
  32. [203]
    Mitchell, W. M.: Some Techniques for Making Stable Nonrectifying Contacts to Germanium and Other Semiconductors. J. Sci. Instr. vol. 31 (1954) pp. 147–148.Google Scholar
  33. [204]
    Muss, D.H.: Capacitance Measurements on Alloyed Indium-Germanium Junction Diodes. J. Appl. Phys. No.26 (1955) p. 1514.Google Scholar
  34. [205]
    Nimi, R.: On the Changes in Contact Potential Difference of a Germanium Rectifier During the Electrical Forming. J. Phys. Soc., Japan, vol. 8 (May–June 1953) pp. 324 to 330.Google Scholar
  35. [206]
    Oberly, J. J.: Etch Pits and Dislocations in Germanium and Silicon. J. Metals vol. 6 (1954) pp. 1025–1026.Google Scholar
  36. [207]
    Pankove, J. I.: Transistor Fabrication by the Melt-Quench Process. Proc. IRE. vol. 44 (Febr. 1956) p. 185. (Two closely-spaced p-n junctions produced in small cylindrical doped germanium crystal by partial melting followed by rapid freezing.)Google Scholar
  37. [208]
    Pankove, J. I.: Methods for Revealing P-N Junctions and Inhomogeneities in Germanium Crystals. RCA-Review vol. 26 (Sept. 1955) p. 398 (Emersion etch, color contrast technique).Google Scholar
  38. [209]
    Peters, C., and H. Strong: The Manufacturing and Testing of Germanium Rectifiers. G. E. C. Telecommun. (1953) pp. 34-39.Google Scholar
  39. [210]
    Pietenpol, W. J.: P-N Junction Rectifier and Photo-Cell. Phys. Rev. vol. 82 (April 1951) p. 120.Google Scholar
  40. [211]
    Pudvin, J. F.: Plating Techniques in the Fabrication of Semiconductors. Electrochem. Soc. Meeting, Pittsburgh, Penn. (Oct. 13, 1955).Google Scholar
  41. [212]
    Roka, E. G., C.H. Jackson, and R.P. Ulrich: Evaporated Point Contact Rectifiers. Letter, J. Appl. Phys. vol. 24, No. 2 (Febr. 1953) pp. 228–229.Google Scholar
  42. [213]
    Ronalt, C. L., and G. N. Hall: A High-Voltage, Medium Power Rectifier. Proc. IRE. vol. 40 (Nov. 1952) p. 1519.Google Scholar
  43. [214]
    Rösner, O.: Etching Agents for Germanium. I. Chemical Materials. Z. Metallkunde vol. 46, (1955) pp. 225–229.Google Scholar
  44. [215]
    Schell, H. A.: Ätzversuche an Germanium-Einkristallen. (Etching experiments with Ge-monocrystals.) Z. Metallkde. vol.47 (1956) p. 614.Google Scholar
  45. [216]
    Shulman, R. G., and D. M. van Winkle: Pressure-Welded P-N Junctions in Germanium. Letter, J. Appl. Phys. vol. 24, No. 2 (Febr. 1953) p. 224.Google Scholar
  46. [217]
    Sim, A.C.: A Quantitative Theory of the Electro-Formation of Metal-Germanium Point Contacts, J. Contacts and Electronics vol.3 (1957) p. 139.Google Scholar
  47. [218]
    Stelinak, J. P.: Electric Forming in n-Germanium Transistors Using Phosphorous Alloy Contact. Phys. Rev. (July 1951) p. 165.Google Scholar
  48. [219]
    Thedieck, R.: On the Forming of Germanium Surfaces. Z. Angew. Phys. vol. 5 No. 5 (1953) pp. 163–165.Google Scholar
  49. [220]
    Thedieck, R.: The Mechanism of Point Contact Rectifiers. Z. Angew. Phys. vol. 5 No. 5 (May 1953) pp. 165–166.Google Scholar
  50. [221]
    Tiley, J. W., and R.A. William: Electrochemical Techniques for Fabrication of Surface Barrier Transistors. Proc. IRE. vol.41 (1953) p. 1706.Google Scholar
  51. [222]
    Trousil, Z.: Formation of Electrons and Electron Holes by Chemical Reaction on the Surface of Germanium. Czechoslov. J. Phys. vol.4 (1954) p. 239.Google Scholar
  52. [223]
    Tyler, W.W., and W. C. Dash: Dislocation Arrays in Germanium. J. Appl. Phys. vol. 28 (1957) 9. 1221.Google Scholar
  53. [224]
    Waltz, M. C.: Electrical Contacts for Transistors and Diodes. Bell Lab. Record vol. 33 (1955) pp. 260–263.Google Scholar
  54. [225]
    Wallmark, U. T.: Influence of Surface Oxidation on Alpha of Germanium PNP Transistors. RCA Rev. vol. XVIII, No. 2 (June 1957) p. 255.Google Scholar
  55. [226]
    Wurst, E. C. Jr., and E. H. Bornemann: Rectification Properties of Metal-Silicon Contacts. J. Appl. Phys. vol.28 (1957) p. 235.Google Scholar
  56. [227]
    Zielasek, G.: Etching Agents for Germanium. II. Physical Observations. Z. Metallkunde vol. 46 (1955) pp. 229–233.Google Scholar

Methods of measurement

  1. [228]
    Bardeen, J., and S.R. Morrison: Surface Barriers and Surface Conductance. Physica vol. 20 (1954) pp. 873–884.Google Scholar
  2. [229]
    Billig, E., and J. J. Dowd: P-N Junction Revealed by Electrolytic Etching. Letter, Nature (4368) (July 1953) p. 115.Google Scholar
  3. [230]
    Brattain, W. H., and C. G. B. Garrett: Analyzing Surface Properties of Germanium by Photoexcitation and Electric Field. Bell System Techn. J. vol. 35 (Sept. 1956) p. 1019.Google Scholar
  4. [231]
    Buck, T. M., and W. H. Brattain: Investigations of Surface Recombination Velocities on Germanium by the Photoelectromagnetic Method. J. Electrochem. Soc. vol. 102 (1955) pp. 636–640.Google Scholar
  5. [232]
    Burstein, E., E. E. Bell, J. W. Davisson and M. Lax: Optical Levels in Silicon. J. phys. Chem. vol. 57 (1953) pp. 849–852.Google Scholar
  6. [233]
    Cummerow, R. L.: Photovoltaic Effect in P-N Junctions. Phys. Rev. vol. 95 (1954) pp. 16–21.Google Scholar
  7. [234]
    Dunlap, W. C., Jr., and R. L. Watters: Direct Measurement of the Dielectric Constants of Silicon and Germanium. Phys. Rev. (Dec. 1953) pp. 1396-1397.Google Scholar
  8. [235]
    Ewels, J.: The Measurement of Transistor Characteristics. Electronic Engng. (July 1954) pp. 313-314.Google Scholar
  9. [236]
    Geballe, T. H., and F. J. Morin: Ionization Energies of Groups III and V Elements in Germanium. Phys. Rev. vol. 95 (1954) pp. 1085–1096.Google Scholar
  10. [237]
    Goucher, F. S.: Measurement of Hole-Diffusion in N-Type Germanium. Phys. Rev. (Feb. 1951) p. 475.Google Scholar
  11. [238]
    Gunn, J. B.: Measurement of the Surface Properties of Germanium. Proc. Phys. Soc. Lond. B vol. 67 (1954) pp. 409–421.Google Scholar
  12. [239]
    Henisch, H. K., and J. Ewels: Apparatus for Electrical Measurements on Semiconductors. Research (May 1952) pp. 235-237.Google Scholar
  13. [240]
    Johnson, V. A., and F. M. Shipley: Adiabatic Hall Effect in Semiconductors. Phys. Rev. vol. 90, No. 4 (1953) pp. 523–529.zbMATHGoogle Scholar
  14. [241]
    Kelen, A.: A Micromanipulator for Electrical Investigation of Semiconducting Materials. Appl. Sci. Res. B (1953) pp. 125-128.Google Scholar
  15. [242]
    Lawrance, R., and A. F. Gibson: The Measurement of Drift Mobility in Semiconductors. Proc. Phys. Soc., Lond. (Dec. 1952) pp. 994-995.Google Scholar
  16. [243]
    Lomer, W. M.: The Direct Conversion of Beta-Irradiation Energy into Low-Voltage Electrical Energy. Atomic Energy Res. Establ. (Harwell) Mem. T/M 108 vol.11 (1954) p. 3.Google Scholar
  17. [244]
    McAfee, K. B., W. Shockley and M. Sparks: Measurement of Diffusion in Semiconductors by a Capacitance Method. Phys. Rev. (April 1952) pp. 137-138.Google Scholar
  18. [245]
    MacDonald, A. G., J. Soled and C. A. Stearns: Four-Probe Instrument for Resistivity Measurements of Germanium and Silicon. Letter, Rev. Sci. Ins. vol. 24 (Sept. 1953) pp. 884–885.Google Scholar
  19. [246]
    Miller, S. L.: Avalanche Breakdown in Germanium. Phys. Rev. vol. 99 (1955) pp. 1234–1241.Google Scholar
  20. [247]
    Muss, D. R.: Capacitance Measurements on Alloyed Indium-Germanium Junction Diodes. J. Appl. Phys. vol. 26, 1514 (1955).Google Scholar
  21. [248]
    O’Neill, B. J., and A. Gutterman: Methods of and Equipment for Transistor Testing. Electronics (July 1933) pp. 172-175.Google Scholar
  22. [249]
    Pfann, W. G,. and W. van Roosbroeck: Radioactive and Photoelectric P-N Junction Power Sources. Phys. Rev. vol.95 (1954) p. 597.Google Scholar
  23. [250]
    Prince, M. B.: Drift Mobilities in Semiconductors, I. Germanium. Phys. Rev. vol. 92, No. 3 (Nov. 1, 1953) pp. 681–687.Google Scholar
  24. [251]
    R. C. A. Lab Series No. LB-881: Determination of Orientation and Deformation of Germanium Crystals.Google Scholar
  25. [252]
    R. C. A. Lab Series No. LB 900: Equipment for Measurement of Junction Transistor Small-Signal Parameters for a Wide Range of Frequencies.Google Scholar
  26. [253]
    Rose, F. W. G., and E. W. Timmins: A Method of Estimating Impurity Concentrations in Germanium. Proc. Phys. Soc., Lond. (Nov. 1953) pp. 984-986.Google Scholar
  27. [254]
    Spitzer, W. G., T. E. Firle, M. Cutler, R. G. Shulman and M. Becker: Measurement of the Lifetime of Minority Carriers in Germanium. J. Appl. Phys. vol. 26 (1955) pp. 414–417.Google Scholar
  28. [255]
    Steele, E. L.: Charge Storage in Junction Diodes. J. Appl. Phys. vol.25 (1954) pp. 916–918.Google Scholar
  29. [256]
    Stevenson, D. T., and R. J. Keyes: Measurement of Lifetimes and Diffusion Constants in Germanium. Phys. Rev. vol.94 (1954) p. 1416.Google Scholar
  30. [257]
    Stevenson, D. T., and R. J. Keyes: Measurement of Minority Carrier Lifetimes in Germanium and Silicon. J. Appl. Phys. vol.26 (1955) p. 190.Google Scholar
  31. [258]
    Valdes, L. B.: Measurement of Minority Carrier Lifetime in Germanium. Proc. IRE. vol.40 (1952) p. 1420.Google Scholar
  32. [259]
    Valdes, L. B.: Hall Effect Measurements. Proc. IRE., vol.40 (1952) p. 1414.Google Scholar
  33. [260]
    Valdes, L. B.: Resistivity Measurements. Proc. IRE. vol.40 (1952) p. 420.Google Scholar
  34. [261]
    Valdes, L. B.: Resistivity Measurements on Germanium for Transistors. Proc. IRE. vol. 42 (1954) pp. 420–427.Google Scholar

References on Silicon

  1. [262]
    Bradley, W. E.: Silicon Surface Barrier Transistors. IRE., vol.42 (1954) p. 486.Google Scholar
  2. [263]
    Carman, J. N., P. E. Stello and C. A. Bittmann: Regrowth of Silicon Through Low-Melting-Zone Silicon-Gold Eutectic. J. Appl. Phys. vol.25 (1954) p. 543.Google Scholar
  3. [264]
    Chapin, D. M., C. S. Fuller and G.L. Pearson: A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. vol. 25 (1954) pp. 676–677.Google Scholar
  4. [265]
    Chapin, D. M., C. G. Fuller and G. L. Pearson: The Bell Solar Battery. Bell Lab. Record vol. 33 (1955) pp. 241–246.Google Scholar
  5. [266]
    Dunlap, W. C., Jr., H. P. Mahon, Jr., and H. D. Böhm: Diffusion of Impurities in Silicon. Phys. Rev. vol.96 (1954) p. 822.Google Scholar
  6. [267]
    Emeis, R.: Crucible-Free Drawing of Silicon Single Crystals. Z. Naturf. vol. 9 a (1954) p. 67.Google Scholar
  7. [268]
    Esaki, L.: Thermal Treatment of Silicon Rectifiers. Phys. Rev. vol. 89, No. 2 (Jan. 15, 1953) pp. 398–399.Google Scholar
  8. [269]
    Granvtlle, J. W.: A Method of Making Silicon Junction Diodes. Brit. Jour. Appl. Phys. vol.6 (1955) p. 109.Google Scholar
  9. [270]
    Gudmundsen, R. A., and J. Maserjian, Jr.: Semiconductor Properties of Recrystallized Silicon in Aluminum Alloy Junction Diodes. J. Appl. Phys. vol.28 (1957) p. 1308.Google Scholar
  10. [271]
    James, J. A., and D.H. Richards: Radiochemical Analysis of Silicon. J. of Electronics and Control vol.3 (1957) p. 500.Google Scholar
  11. [272]
    Johnson, E. R., and J. A. Amick: Formation of Single-Crystal Silicon-Fibres. J. Appl. Phys. vol.25 (1954) p. 1204.Google Scholar
  12. [273]
    Hino, J., and H. E. Stauss: Melting of Undoped Silicon Ingots. J. Metals vol. 656 (June 1952) N. R. L. Report 357.Google Scholar
  13. [274]
    Keck, P. H., W. van Horn, J. Soled and A. MacDonald: Floating Zone Recrystallization of Silicon. Rev. Sci. Instr. vol. 24 (1954) pp. 331–334.Google Scholar
  14. [275]
    Keck, P. H.: Floating Zone Crystallization of Silicon. Physica vol. 20 (1954) pp. 1059 to 1065.Google Scholar
  15. [276]
    Keck, P. H., and M. J. E. Golay: Crystallization of Silicon from a Floating Liquid Zone. Phys. Rev. vol. 29, No. 6 (March 15, 1953) p. 1297.Google Scholar
  16. [277]
    Kleinknecht, H.: Silicon Single-Crystal Rods. Naturwiss. vol.39, No. 17 (1952) pp. 400–401.Google Scholar
  17. [278]
    Litten, F. B., and H. C. Anderson: High-Purity Silicon. J. Electrochem. Soc. vol.101 (1954) pp. 287–292.Google Scholar
  18. [279]
    McAfee, K. B., and G. L. Pearson: The Electrical Properties of Silicon P-N Junctions Grown from the Melt. Phys. Rev. vol. 87 (July 1952) p. 190.Google Scholar
  19. [280]
    Miller, R. C., and A. Savage: Diffusion of Aluminum in Single Crystal Silicon. J. Appl. Phys. vol.27 (1956) p. 1430.Google Scholar
  20. [281]
    Morin, F. J., and J. P. Maita: Electrical Properties of Silicon Containing Arsenic and Boron. Phys. Rev. vol. 96 (1954) pp. 28–35.Google Scholar
  21. [282]
    Müller, S.: Inversionsrandschichten auf p-Silizium. (Inversion edge layers on p-Silicon.) Z. Naturforsch. vol. 12a (1957) p. 112.Google Scholar
  22. [283]
    Ono, K., and T. Matsushima: The Production of Pure Silicon. Science Repts. Research Inst., Tohoku Univ. Ser. A, vol. 6 (1954) pp. 477–496.Google Scholar
  23. [284]
    Pearson, G. L., and J. Bardeen: Photoeffects in P-N Junctions. Phys. Rev. vol.75 (1949) p. 865.Google Scholar
  24. [285]
    Pearson, G. L., and C. S. Fuller: Silicon P-N Junction Power Rectifiers and Lightning Protectors. Proc. IRE vol.42 (1954) p. 760.Google Scholar
  25. [286]
    Pharo, W. B., and W. R.Cherry: Silicon Pulling Furnace. Electrochem. Soc. Meeting,. Cincinnati, Ohio (May 1–5) 1955.Google Scholar
  26. [287]
    R. C. A. Lab Series No. LB 892: Preparation of Single Crystals of Germanium and Silicon.Google Scholar
  27. [288]
    Reck, P. H., and W. van Horn: The Surface Tension of Liquid Silicon and Germanium. Phys. Rev. (Aug. 1953) pp. 512-513.Google Scholar
  28. [289]
    Roth, L., and W.E. Taylor: Preparation of Germanium Single Crystals. Proc. IRE vol. 40 (1952) pp. 1338–1341.Google Scholar
  29. [290]
    Taft, E. A., and F. H. Horn: Gold as a Donor on Silicon. Phys. Rev. vol.95 (1954) p. 64.Google Scholar
  30. [291]
    Teal, G. K., and E. Buehler: Growth of Silicon Single Crystals and of Single Crystal Silicon P-N Junctions. Bull. Amer. Phys. Soc. vol.27 (1952) p. 14, No. 3.Google Scholar
  31. [292]
    Theuerer, H. C.: Removal of Boron from Silicon by Hydrogen Water Vapor Treatment. J. Metals vol. 8 (7-12) Oct. 1956 p. 1316.Google Scholar
  32. [293]
    Thornton, C.G., and L. D. Harnley: A New High-Temperature Silicon Diode. Proc. IRE vol. 43 (1955) pp. 186–188.Google Scholar
  33. [294]
    Silicon Rectifier Handbook. Bloomington: Sarkes Tarzan 1956.Google Scholar

Contacts, etching, diode and transistor design

  1. [295]
    Andres, B. J., and E. L. Steele: A Medium Power Silicon Rectifier. Wescon Conference, Aug. 1957.Google Scholar
  2. [296]
    Billig, E., and D. B. Gasson: Preparation of Large-Area p-n Junctions in Silicon by Surface Melting. J. Appl. Phys. vol.28 (1957) p. 1242.Google Scholar
  3. [297]
    Gudmundsen, R. A., and J. Maserjian, Jr.: Semiconductor Properties of Recrystallized Silicon in Aluminum Alloy Junction Diodes. J. Appl. Phys. vol.28 (1957) p. 1308.Google Scholar
  4. [298]
    Jacobs, H., F. A. Brand, W. Matthei, and A. P. Ramsa: Forming Point-Contact Silicon Transistors. J. Appl. Phys. vol. 25 (1954) pp. 1406–1412.Google Scholar
  5. [299]
    Jacobs, H., F.A. Brand, and W. Matthei: Forming Silicon Point-Contact Transistors. Letter, J. Appl. Phys. vol. 24 No. 10 (Oct. 1953) p. 1340.Google Scholar
  6. [300]
    Pearson, G. L., and B. Sawyer: Silicon P-N Junction Alloy Diodes. Proc. IRE vol. 40 (Nov. 1952) p. 1348.Google Scholar
  7. [301]
    Pearson, G. L., and P. W. Foy: Silicon P-N Junction Diodes Prepared by the Alloying Process. Phys. Rev. vol. 87 (July 1952) p. 190.Google Scholar
  8. [302]
    Scaff, J. H., and R. S. Ohl: Development of Silicon Crystal Rectifiers for Microwave Radar Receivers. Bell Syst. Tech. J. vol. 26 (Jan. 1947) p. 1.Google Scholar
  9. [303]
    Sullivan, M. V., and J. H. Eigler: A New Method for Making Ohmic Contacts to Silicon at Low Temperatures. Electrochem. Soc. Meeting, Pittsburgh, Penn. (Oct. 13, 1955).Google Scholar
  10. [304]
    Sullivan, M. V., and J. H. Eigler: Five Metal Hydrides as Alloying Agents on Silicon. Bell Telephone-Laboratories. J. Electrochem. Soc. vol. 103, No. 6 (April 1956).Google Scholar
  11. [305]
    Wannlund, A. J., and W. P. Waters: Silicon p-n-p Fused-Junction Transistor. Wescon Conference, Aug. 1957.Google Scholar
  12. [306]
    Wolff, E. A., Jr.: 50 Watt Silicon Diffused Power Transistor. Wescon Conference, Aug. 1957.Google Scholar
  13. [307]
    Wurst, E. C., Jr., and E. H. Bornemann: Rectification Properties of Metal-Silicon Contacts. J. Appl. Phys. vol. 28 (1957).Google Scholar

Methods of measurements

  1. [308]
    Debye, P. P., and T. Kohane: Hall Mobility of Electrons and Holes in Silicon. Phys. Rev. vol. 94 (1954) pp. 724–725.Google Scholar
  2. [309]
    Hannay, N. B., J. R. Haynes and R. G. Suhlman: The Interaction of Traps and Heat Treatments in silicon. Phys. Rev. vol.96 (1954) p. 833.Google Scholar
  3. [310]
    Herlet, A.: Bestimmung der Diffusionslänge L und der Inversionsdichte n i aus den Durchlaßkennlinien von legierten Silizium-Flächengleichrichtern (Determination of diffusion length and inversion density from the forward characteristic of alloyed Sijunction diodes). Z. angew. Phys. vol.9 (1957) p. 155.Google Scholar
  4. [311]
    Heywang, W., M. Zerbst and F. Bischoff: On the Conductivity of Silicon. Naturwiss. vol. 41 (1954) pp. 301–302.Google Scholar
  5. [312]
    McSkimin, H. J., W. L. Bond, E. Buehler and G. K. Teal: Measurements of the Elastic Constants of Silicon Single Crystals and their Thermal Coefficients. Phys. Rev. (Sept. 1951) p. 1080.Google Scholar
  6. [313]
    Watters, R. L., and G. W. Ludwig: Measurement of Carrier Lifetime in Silicon. J. Appl. Phys. vol.27 (1956) p. 489.Google Scholar

References on Electrographite

  1. [314]
    Arndt, K.: Die künstlichen Kohlen (The Artificial carbons). Berlin 1932.Google Scholar
  2. [315]
    Bakker, J.: Electrolytically Polished Graphite Anode. U.S. Pat. 2494425 (Jan. 10, 1950).Google Scholar
  3. [316]
    Barnes, B. T., W. E. Forsythe and E. Q. Adams: The Total Thermal Emissivity of Various Materials at 100–500° C. J. Opt. Soc. Amer. vol. 37 (1947) pp. 804–807.Google Scholar
  4. [317]
    Barnes, B. T.: Total Radiation from Polished and Soot-Covered Nickel. Phys. Rev. vol. 34 (1929) pp. 1026–1030.Google Scholar
  5. [318]
    Barnes, B. T., E.Q. Adams and E. W. Forsythe (General Electric Company): Total Emissivity of Various Materials. J. Opt. Soc. Amer. vol.30 (1940) p. 269 A. (Carbon, fused quartz Corex D and Nonex-glass from 100-500° C.)Google Scholar
  6. [319]
    Briggs, T. H.: Carbonized Nickel for Radio Tubes. Metals & Alloys vol. 9 (Nov. 1938) pp. 303–306.Google Scholar
  7. [320]
    Buerschaper, R. A.: Thermal and Electrical Conductivity of Graphite and Carbon at Low Temperatures. J. Appl. Phys. vol. 15 (1944) pp. 452–454.Google Scholar
  8. [321]
    Clark, G. L., A. C. Eckert, Jr., and R. L. Burton: Commercial Experimental Carbon Blacks. Industr. Engng. Chem. vol. 41 (1949) pp. 201–208.Google Scholar
  9. [322]
    Collier, L. J., W. S. Stiles and G. A. Taylor: The Variation with Temperature of the Electrical Resistance of Carbon and Graphite between 0 and 900° C. Proc. Phys. Soc., Lond. vol. 51 (1939) pp. 147–152.Google Scholar
  10. [323]
    Cox, J. H.: Improvements in Mercury Arc Rectifiers. Sonderbuch, 1933. (Vortrag im AIEE Juni 1933.)Google Scholar
  11. [324]
    Dällenbach, W.: Electrotechn. Z. vol.55 (1934) p. 89. (Gaskets for Hg-Fe tank rectifiers; microanalysis of gas from tank.)Google Scholar
  12. [325]
    Dällenbach, W., E. Gerecke and E. Stoll: Phys. Z. vol.26 (1925) p. 10. (Back-ignition in gas discharges.)Google Scholar
  13. [326]
    Dushman, S.: Scientific Foundations of Vacuum Technique, 496 pages. New York: John Wiley and Sons 1949.Google Scholar
  14. [327]
    Eltzin, J. A., and A. P. Jewlew: Degassing of Graphite at High Temperatures. Phys. J., USSR vol.5 (1934) p. 687. (In German.)Google Scholar
  15. [328]
    Gottschalk, A., and W. Kluge: AEG-Mitt. (1934) p. 67. (High-tension oxide-cathode rectifier with Hg-vapor filling.)Google Scholar
  16. [329]
    Güntherschulze, A.: Handbuch der Physik vol. 17. Berlin 1926. Elektrische Gleichrichter und Ventile, 2. Aufl. Berlin 1929.Google Scholar
  17. [330]
    Hidnert, P.: Thermal Expansion of Graphite. Bur. Stand. J. Res. vol.13 (1931) p. 37.Google Scholar
  18. [331]
    Hoerin, J., and J. Weigle: Structure of Graphite. Nature vol. 164 (Dec. 24, 1949) p. 1088.Google Scholar
  19. [332]
    Ivey, H. F.: Thermionic Electron Emission from Carbon. Phys. Rev. vol.76 (1950) p. 567.Google Scholar
  20. [333]
    Jacobi, W., and O. Karl: DRGM. 1243 631/32. (Support of graphite anodes in Cu caps.)Google Scholar
  21. [334]
    O.Karl: DRP 506 622/29/30. (Mica springs for electrode supports.)Google Scholar
  22. [335]
    Kirk, R. E., and D. F. Othmer: Encyclopedia of Chemical Technology vol. 3, pp. 1 to 34. New York: Interscience Encyclopedia, Inc., 1949. Abott, H. W.: Carbon.Google Scholar
  23. [336]
    Kluge, W.: Glühkathoden-Stromrichtergefäße. AEG-Mitt. (1939) p. 117–124, No. 2.Google Scholar
  24. [337]
    Kluge, W.: Hochspannungsglühkathodenröhren mit Quecksilberdampffüllung ohne und mit Gittersteuerung. Elektrotechn. Z. vol.57 (1936) p. 333, No. 12.Google Scholar
  25. [338]
    Kluge, W.: Glocken-Anode. VDE-Fachbericht vol.8 (1936) p. 105.Google Scholar
  26. [339]
    Kluge, W.: Graphite Anodes in Rectifiers. Elektrotechn. Z. vol.57 (1936) p. 303, No. 11.Google Scholar
  27. [340]
    Kohl, W. H.: A New Method for the Application of Luminescent Screens to Glass Surfaces. Can. J. Res. A (1935) pp. 126-132 — J. El. Chem. Soc. vol. 96 (1949) pp. 3, 123-131.Google Scholar
  28. [341]
    Kohl, W. H.: Materials Technology for Electron Tubes. New York 1951.Google Scholar
  29. [342]
    Kopelman, B.: Clean-up of Graphite Lubricant from Tungsten Wire. Sylvania Technologist vol. 2 (1949) pp. 13–16.Google Scholar
  30. [343]
    Kruh, O.: DRP 346111/17/21. (Fastening of electrode supports by Cu caps.)Google Scholar
  31. [344]
    Lange, N. A.: Handbook of Chemistry. Ohio: Handbook Publishers 1946.Google Scholar
  32. [345]
    Lipson, A., and A. R. Stokes: The Structure of Graphite. Proc. Roy. Soc., Lond. A vol. 181 (1942) pp. 101–105.Google Scholar
  33. [346]
    Malmstrom, C., R. Keen and L. Green, Jr.: Some Mechanical Properties of Graphite at Elevated Temperatures. J. appl. Phys. vol. 22 (1951) pp. 593–600.Google Scholar
  34. [347]
    Mantell, C. L.: Industrial Carbon, 2nd Ed. New York: Van Nostrand 1946.Google Scholar
  35. [348]
    Mellor, J. W.: Inorg. and Theor. Chemistry, vol. V and VI, pp. 710–977 and 1-134: Carbon.Google Scholar
  36. [349]
    Meyer, L.: The Surface Reaction of Graphite with Oxygen, Carbon Dioxide, and Water Vapour at Low Pressures. Trans. Faraday Soc., Lond. vol. 34 (1938) pp. 1056 to 1061, No. 208.Google Scholar
  37. [350]
    Moss, H.: Cathode-Ray Tube Progress in the Past Decade with Special Reference to Manufacture and Design. Advances in Electronics, vol. 2. New York: Academic Press 1950.Google Scholar
  38. [351]
    Müller-Lübeck, K. E.: Der Quecksilbergleichrichter, vol. I and II. Berlin 1925 and 1929.Google Scholar
  39. [352]
    Murphy, J. R.: Colloidal Graphite Treatment of Mold Surface. Glass Ind. vol.31 (1950) pp. 250–253.Google Scholar
  40. [353]
    Naesaenen, R.: Oxydation of Graphite in Glow Discharge. Suomen Kemstilethi (B) vol.10 (1937) p. 24.Google Scholar
  41. [354]
    Olbrich, W., O. Ruff and G. Schmidt: Die Umwandlung von amorphem Kohlenstoff in Graphit. Z. anorg. allg. Chem. vol. 148 (1925) pp. 321–323.Google Scholar
  42. [355]
    Paterson, Sir Clifford, and R. E. Leads: Diamond Dies for Wire Drawing. Research vol. 1 (1947) pp. 2–10.Google Scholar
  43. [356]
    Pauling, L., and W. S. Sheehan: Association Energies of Carbon Monoxide and Heat of Sublimation of Graphite. Proc. Nat. Acad. Sci., Wash. vol. 36 (1949) pp. 359–363.Google Scholar
  44. [357]
    Porter, B. H.: Impregnation Studies with Colloidal Graphite. J. Appl. Phys. vol. 8 (1937) pp. 479–482.Google Scholar
  45. [358]
    Porter, B. H.: Research Applications of Colloidal Graphite. Rev. Sci. Instr. vol. 7 (1936) pp. 101–106, No. 2. (Vacuum technique, vacuum tubes, ionization chambers, el. contacts.)Google Scholar
  46. [359]
    Powell, R. W.: Thermal and Electrical Conductivity of Acheson Graphite from O to 800° C. Phys. Soc. Proc. vol. 49 (1937) pp. 419–426.Google Scholar
  47. [360]
    Powell, R. W., and T. H. Schofield: Thermal Conductivity of Acheson Graphite. Proc. Phys. Soc., Lond. vol.51 (1939) p. 153.Google Scholar
  48. [361]
    Prescott, L. H., and W. B. Hincke: The True Temperature Scale of Carbon. Phys. Rev. vol. 31 (1928) pp. 130–134. (λ =.66μ 1250-2700° K.)Google Scholar
  49. [362]
    Reimann, A. L.: Thermionic Emission from Carbon. Proc. phys. Soc., Lond. vol. 50 (1938) pp. 496–500. (Filament between 1665 and 2191° K: A = 30 amp/cm2 degree2; ψ = 4.34 eV.)Google Scholar
  50. [363]
    Ryschkewitsch, E.: Physical Chemistry of Manufacturing and Application of Graphite. Z. Elektrochem. vol.42 (1936) p. 687, Nc. 9.Google Scholar
  51. [364]
    Savage, L. H.: Graphite Lubrication. J. Appl. Phys. vol. 19 (Jan. 1948) pp. 1–10. (Slipperiness depends upon adsorption films, esp. water vapor. High friction in vacuum is stopped by condensible vapors at low pressure: H2O; C6H6; NH3 etc Wear dust of unlubricated graphite shows adsorptive power for H2 5 orders of magnitude greater than that of activated charcoal.)Google Scholar
  52. [365]
    Schmude, H., and H. Schwenkhagen: A New Material for Potential Measurements in Water Tank. Telefunkenröhre (1942) pp. 47–48, No. 24-25. (Graphite coating reduces disturbing dielectrolytic effects.)Google Scholar
  53. [366]
    Siemens & Halske: DRGM 1243631/32. (Graphite anode support by Cu caps.)Google Scholar
  54. [367]
    Speer Carbon Co., St. Marys, Pa.: Graphite Anodes for Transmitting and Rectifying Tubes, 14 pages. 1937. (Manufacturing, different forms, exp. coeff.:.9−2.8 X 10-6 per degree C.)Google Scholar
  55. [368]
    Spitzer, E. E.: Application of Graphite as an Anode Material in High Vacuum Transmitting Tubes. Proc. IRE vol.21 (1933) p. 1075.Google Scholar
  56. [369]
    Spitzer, E. E.: Anode Materials for High Vacuum Tubes. Electr. Engng. vol. 54 (1935) pp. 1246–1251, No. 11. (Graphite, Molybdenum, Nickel.)Google Scholar
  57. [370]
    Stockmeyer, W.: Kunstkohle als Werkstoff im Gleichrichterbau. Rep. Schunk & Ebe (1938) pp. 28-29.Google Scholar
  58. [371]
    Strauss, R.: Manufacturing Properties and Applications of Graphite. Chemiker-Ztg. (Chem. Praxis) vol. 60 (1936) pp. 661–672, No. 65.Google Scholar
  59. [372]
    Szymanowitz, R.: Colloidal Graphite and its Uses in the Glass Industry. Glass Ind. vol. 26 (1945) pp. 125–127, 151.Google Scholar
  60. [373]
    Szymanowitz, R.: Colloidal Graphite Films — Properties and Applications. Electr. Ind. vol. 2 (Oct. 1943) pp. 96–98, 162, 164, 168.Google Scholar
  61. [374]
    Szymanowitz, R.: The Emissive Power of Typical Grid and Plate Surfaces. Electronics vol. 16 (1943) pp. 93, 178.Google Scholar
  62. [375]
    Szymanowitz, R.: Colloidal Graphite. Alexander’s Colloid Chemistry vol. 6, pp. 436 to 458. New York: Reinhold 1946.Google Scholar
  63. [376]
    Vennto, L. J.: Colloidal Carbons. Amer. Paint J. vol.31 (1947) pp. 68–72.Google Scholar
  64. [377]
    Vosburgh, F. I.: Electrodes — Carbon and Graphite. Electr. Engng. vol. 52 (1933) pp. 844–848, No. 12. (Manufacturing process, applications of carbon and graphite elctrodes for electrolytical work.)Google Scholar
  65. [378]
    Wallenfels, K.: Wärmeleitfähigkeitsmessung an Kunstkohle. Rep. Schunk & Ebe (1938) pp. 30–35, No. 8.Google Scholar
  66. [379]
    Wensel, H. T.: Temperature, Its Measurement and Control in Science and Industry, p. 1149. New York: Reinhold 1941.Google Scholar
  67. [380]
    Westinghouse Co. (Bloomfield, N. J.): Westinghouse Rectifier Tubes. Electronic Tubes (Information Bull.) No. 7 (Nov. 1936). (Graphite-anode, surrounding cathode-type, gas filled.)Google Scholar
  68. [381]
    Westinghouse Lamp Co. (Bloomfield, N.J.): Sputtered Carbon Resistor Type WL-756. Electron Tubes (Inf. Bull.) No. 15 (Dec. 1937). (Helical glass rod, covered with carbon film, in a gas filled glass bulb.)Google Scholar
  69. [382]
    White, A. H., and L. H. Germer: The Structure of Black Carbon. J. Chem. Phys. vol. 9 (1941) pp. 492–497.Google Scholar
  70. [383]
    Winter, L. L., and H. G. MacPherson: Effect of Surface Finish and Wall Thickness on the Operating Temperature of Graphite Radio-Tube Anodes. Proc. IRE vol. 33 (1945) pp. 834–837.Google Scholar
  71. [384]
    Winter, L. L., and F. L. Alexander: New Graphite Developments for Electronic Applications. El. Manuf. vol. 41 (Jan. 1948) pp. 86–91.Google Scholar
  72. [385]
    Zwicker, C.: Technische Physik der Werkstoffe. Berlin: Springer 1942.Google Scholar
  73. [386]
    Anon.: Third Symposium on Diamonds. Amer. Mineralogist vol. 31 (1946) pp. 135 to 167. (Drilling of diamond dies.)Google Scholar
  74. [387]
    Anon.: Powder-Tube Anode Materials. Electr. Markets vol. 14 (May 1945).Google Scholar
  75. [388]
    Anon.: Graphitanode für Verstärkerröhren. Helios vol. 13 (1937) pp. 732–734, No. 13Google Scholar

References on Rubber

  1. [389]
    Barnett, C. E.: Industr. Engng. Chem. vol.26 (1934) p. 303. (Thermal Conductivity of Rubber.)Google Scholar
  2. [390]
    Garner, T. L.: Synthetic Rubber Materials. Aircr. Engng. vol. 9 (1937) pp. 209–211, No. 102.Google Scholar
  3. [391]
    Grunmach: Phys. Z. vol.6 (1905) p. 795. (Diffusion of CO2 in Rubber.)Google Scholar
  4. [392]
    Guth, E.: The Physics of Rubber, Its Observed Elastic and Thermoelastic behavior. J. Appl. Phys. vol. 10 (1939) pp. 161–171, No. 3.Google Scholar
  5. [393]
    Hagen, H.: Die deutschen Kunstkautschuke. Die Umschau vol.43 (1939) pp. 483 to 486, No. 21.Google Scholar
  6. [394]
    Jaeckel, R., and E. Kammerer: Über die Brauchbarkeit von Bunagummi für Hochvakuumdichtungen. Z. techn. Phys. vol. 23 (1942) pp. 85–88, No. 4.Google Scholar
  7. [395]
    Knoll, M.: Z. techn. Phys. vol.10 (1929) p. 294. (Rubber high vacuum gaskets.)Google Scholar
  8. [396]
    Luff-Schmelkes: Chemie des Kautschuks. Berlin 1925.Google Scholar
  9. [397]
    Memmler, K.: Handbuch der Kautschukwissenschaft. Leipzig 1930.Google Scholar
  10. [398]
    Reichel, W.: DRP 412050/21/25. (Fe ring protection of rubber against Hg.)Google Scholar
  11. [399]
    Sager, P., and M. Sucher: J. Res. Nat. Bur. Stand, vol.22 (1939) p. 73, No. 1.Google Scholar
  12. [400]
    Schwarz, O.: Die technischen Werkstoffe. Leipzig 1932.Google Scholar
  13. [401]
    Scott, A. H.: Bur. Stand. J. Res., Wash. vol.14 (1935) p. 99.Google Scholar
  14. [402]
    Siemens, A.: Siemens-Z. vol.8 (1928) p. 316. (Rubber gaskets.)Google Scholar
  15. [403]
    Wäffler, H.: Über ein Kanalstrahlrohr für 3 x 106 Volt. Helv. phys. Acta vol. 12 (1939) pp. 288–289, No. 4.Google Scholar
  16. [404]
    Wilson, R. R.: A Vacuum-Tight Sliding Seal. Rev. Sci. Instr. vol. 12 (1941) pp. 91–93, No. 2.Google Scholar
  17. [405]
    Anon.: Physical Constants of Rubber. J. Franklin Inst. vol.226 (1938) p. 104, No. 1.Google Scholar

References on Vacuum Greases, Oils and Cements

  1. [406]
    Angerer, E.V.: Technische Kunstgriffe bei physikalischen Untersuchungen, 2. Aufl. Braunschweig 1928.Google Scholar
  2. [407]
    Bell, M. E., and J. U. Findlay: Molybdenite as a New Lubricant. Phys. Rev. vol.59 (1941) p. 922, No. 11.Google Scholar
  3. [408]
    Burch, C. R.: Nature, Lond. vol.122 (1928) p. 729. (High-vacuum oil and grease.)Google Scholar
  4. [409]
    Burch, C. R.: Proc. roy. Soc., Lond. (A) vol.123 (1929) p. 271. (Vacuum distillation of grease.)Google Scholar
  5. [410]
    Cockcroft, J. D., E. T. S. Walton: Nature, Lond. vol.123 (1929) p. 584; vo. 129 (1932) p. 620. (Oil diffusion pumps.)Google Scholar
  6. [411]
    Espe, W., and J. Kroczek: Z. techn. Phys. vol.13 (1932) p. 443. (Apiezon grease for vacuum gaskets.)Google Scholar
  7. [412]
    Geismann, H.: Hochvakuumventile mit freier und großer Öffnung. Phys. Z. vol. 44 (1943) pp. 768–770.Google Scholar
  8. [413]
    Gilliam, W. F., H. A. Liebhafsky and A. F. Winslow: Dimethyl Silicon Dichloride and Methyl Süicon Trichloride. J. Amer. Chem. Soc. vol.63 (1941) p. 801.Google Scholar
  9. [414]
    Gunji, Shinoda: Corrosion of Metals and Alloys in Apiezon Oil. Proc. Phys. math. Soc, Japan (3) vol. 17 (1935) pp. 367–368, No. 9.Google Scholar
  10. [415]
    Hickman, K. C. D., and C. R. Sandford: Rev. Sci. Instr. vol.1 (1930) p. 140. (Vapor pressure of vacuum oils.)Google Scholar
  11. [416]
    Hickman, K. C. D., and C. R. Sandford: J. Phys. Chem. vol.34 (1930) p. 637. (Vacuum distillation of vacuum grease and oil.)Google Scholar
  12. [417]
    Hickman, K.C.D.: J. Franklin Inst. vol.213 (1930) p. 637. (Vacuum oil and grease.)Google Scholar
  13. [418]
    Hickman, K. C. D.: Vacuum Pumps and Pump Oils. Part I: Some Fractionation Pumps. J. Franklin Inst. vol. 221 (1936) pp. 215–235, No. 2. Part II: A Comparison of Oils; pp. 383-402, No. 3.Google Scholar
  14. [419]
    Hickman, K. C. D.: Trends in Design of Fractionating Pumps. J. Appl. Phys. vol. 11 (1940) pp. 303–313.Google Scholar
  15. [420]
    Hogg, H. G., and H. E. Dockworth: Vacuum Properties of Synthetic Dielectrics. Rev. Sci. Instr. vol. 19 (May 1948) p. 331, No. 5.Google Scholar
  16. [421]
    Hulbert, E. O.: Science vol.56 (1923) p. 147. (AgCI as a vacuum cement.)Google Scholar
  17. [422]
    Jaeckel, R.: Moderne Hochvakuumpumpen. Chem. Apparatur vol.28 (1941) p. 129, No. 9.Google Scholar
  18. [423]
    Jaeckel, R.: Über die Eigenschaften von organischen Triebmitteln für Diffusionspumpen im technischen Betrieb und eine neue Form der Öldiffusionspumpe. Z. techn. Phys. vol. 23 (1942) pp. 177–186, No. 7.Google Scholar
  19. [424]
    Kerris, W.: Verbesserung des Endvakuums von Öldiffusionspumpen durch Absorption der Öldämpfe mittels großoberflächiger Körper. Z. techn. Phys. vol. 16 (1935) pp. 120–122, No. 4.Google Scholar
  20. [425]
    Klumb, H.: Naturwiss. vol.19 (1931) p. 612. (Oil diffusion pumps.)Google Scholar
  21. [426]
    König, H., F. Berens and Rautenfeld: “Spannungsfreies” Kitten von Glasfenstern. Z. techn. Phys. vol. 23 (1952) pp. 273–277, No. 11. (Cementing of Glass Windows.)Google Scholar
  22. [427]
    Meyer, H.: Z. Physik vol.67 (1931) p. 264. (Vapor Pressure of Ramsay Grease.)Google Scholar
  23. [428]
    Morse, R. S.: Baffles for Oil Diffusion Pumps. Rev. Sci. Instr. vol.11 (1940) pp. 277–281, No. 9.Google Scholar
  24. [429]
    Moses, G. L.: New Silicone Resins Boost Insulation Temperature Limits. Westinghouse Eng. vol. 4 (Sept. 1944) pp. 138–141.Google Scholar
  25. [430]
    Renninger, V.: Herstellung eines vielseitig verwendbaren Apiezon-Vakuumkittes durch Mischung von Apiezon-Hartwachs M mit Apiezon-Fett W. Z. Instrumentenkde. vol.58 (1938) p. 286. (Apiezon-cement.)Google Scholar
  26. [431]
    Rochow, E. G.: Polymeric Methyl Silicon Oxides. J. Amer. Chem. Soc. vol.63 (1941) p. 798.Google Scholar
  27. [432]
    Seydel, G.: Z. techn. Phys. vol.16 (1935) p. 107. (Vapor pressure of Apiezon grease.)Google Scholar
  28. [433]
    Stivala, S. S., and Denniger, V. L.: Epoxy Resin as Sealant for High Vacuum Systems. Industrial and Engeneering Chemistry (1955) p. 1106.Google Scholar
  29. [434]
    Walden, B.: Laboratory Cements and Waxes. J. Sci. Instr. vol. 13 (1936) pp. 345 to 352, No. 11.Google Scholar
  30. [435]
    Walter, B.: Ann. Phys. vol.18 (1905) p. 860. (Picein.)Google Scholar
  31. [436]
    Zabel, R. M.: Vapor Pressure of Vacuum Cements. Rev. Sci. Instr. vol.4 (1933) pp. 233–234. (Waxes, glyptal, stop cock grease, gum.)Google Scholar

References on Base Cements for Vacuum Tubes

  1. [437]
    Bartlett, W. C.: Ind. Engng. Chem. vol.21 (1929) p. 970. (Socket cement.)Google Scholar
  2. [438]
    Brandenburger, K.: Herstellung und Verarbeitung von Kunstharzpreßmassen. Pressen und Preßverfahren. München: J. F. Lehmanns Verlag 1935.Google Scholar
  3. [439]
    Dawihl, W.: Versuch zur Herstellung säurefester Kitte mit festem Wasserglas. Tonind.-Ztg. vol. 60 (1936) pp. 186–188.Google Scholar
  4. [440]
    Fischer, E. J.: Werkstoffe und ihre Eigenschaften. Kitten. Feinmech. u. Präz. vol. 45 (1937) pp. 129–132, No. 9.Google Scholar
  5. [441]
    Gildart, L.: An Infra-Red Absorption Cell for Volatile Liquids. Rev. Sci. Instr. vol.12 (1941) p. 204, No. 4.Google Scholar
  6. [442]
    Keiling, A.: Werksleiter 1933, No. 9, p. 191.Google Scholar
  7. [443]
    Knepper, E.: Die Fabrikation und Berechnung der modernen Metalldraht-Glühlampen. Leipzig 1926.Google Scholar
  8. [444]
    McBain, J. W., and D. G. Hopkins: J. Phys. Chem. vol.29 (1925) p. 198. (Sodium silicate cements.)Google Scholar
  9. [445]
    Richardson, H. K.: Glass Industry (N. Y.) vol. 16 (1935) pp. 233–238, No. 8.Google Scholar
  10. [446]
    Stäger, H.: Z. angew. Chem. vol.42 (1929) p. 370. (Lead-glycerine cement.)Google Scholar
  11. [447]
    Stäger, H.: Elektrotechnische Isoliermaterialien. Stuttgart 1931.Google Scholar
  12. [448]
    Walter, B.: Über Naturbernstein und Preßbernstein, insbesondere deren elektrische Isolationsvermögen in trockener und feuchter Luft. Hamburg: Physikalisches Staatsinstitut 1941.Google Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations