Advertisement

Glasses, Quartz and Ceramics, and Their Use in Tube Design

Chapter

Abstract

Glass is a supercooled liquid which does not form crystals upon solidification because of the rapid increase of the viscosity with decreasing temperature (amorphous and homogeneous solidification, see sec. 1.8 and Fig. 6/1).

Keywords

Dielectric Loss Quartz Glass Barium Titanate Fuse Quartz Incandescent Lamp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Manufacture, Composition and General Properties of Glass (Including Handbooks)

  1. [1]
    Bartsch, O.: Über die Schlagbiegefestigkeit von keramischen Massen und Gläsern und ihre Beziehungen zur Temperaturwechselbeständigkeit von Schamottemassen. Ber. dtsch. keram. Ges. vol. 18 (1937) pp. 465–489, No. 11.Google Scholar
  2. [2]
    Bauer, F.: Der Einfluß der Schmelzdauer auf den Eisenoxydgehalt der Gläser. Glashütte vol. 65 (1935) pp. 308–309.Google Scholar
  3. [3]
    Beeton, E. E.: Immersion Cell for Polariscope Use. Glass Ind. vol. 19 (1938) pp. 51 to 53.Google Scholar
  4. [4]
    Berger, E.: Glastechn. Ber. vol.12 (1934) p. 172. (Determination of transformation temperature.)Google Scholar
  5. [5]
    Büssem, W., and W. Weyl: Über die Konstitution des Glases. Naturwiss. vol.24 (1936) p. 324, H. 21.Google Scholar
  6. [6]
    Cohn, W. M.: Expansion Measurements of Several Glasses by Means of a Self-Registering Apparatus. J. Amer. Ceram. Soc. vol. 10 (1931) pp. 265–275.Google Scholar
  7. [7]
    Dale, A. E., and J. E. Stanworth: Sealing Glasses. J. Soc. Glass Tech. vol. 29 (1948) pp. 77–91.Google Scholar
  8. [8]
    Day, R. K.: Glass Research Methods. Chicago 1953.Google Scholar
  9. [9]
    Douglas, R. W.: The Use of Glass in High Vacuum Apparatus. J. Sci. Instr. vol. 22 (1945) pp. 81–87.Google Scholar
  10. [10]
    Dralle-Keppeler: Die Glasfabrikation. Munich 1926.Google Scholar
  11. [10a]
    Espe, W.: Werkstoffe d. Elektrotechnik in Tabellen und Diagrammen. Berlin 1954.Google Scholar
  12. [11]
    Espe, W., and J. Böhme: Glas als Werkstoff der Vakuumtechnik. Feinmechanik und Präzision vol. 45 (1937) pp. 57–60, No. 4; pp. 73-76, No. 5; pp. 101-104, No. 7; pp. 115-118, No. 8.Google Scholar
  13. [12]
    Fortey, J.: Projection Type of Strain Viewer. J. Soc. Glass Tech. vol.29 (1945) pp. 124–127.Google Scholar
  14. [13]
    Gehlhoff, G.: Lehrbuch der technischen Physik. Vol. III. Die Physik der Stoffe. Leipzig 1928.Google Scholar
  15. [14]
    Hodkin, F. W., and A. Cottsen: A Textbook of Glass Technology. London: Constable 1929.Google Scholar
  16. [15]
    Jenckel, E.: Die Vorgänge bei der Abkühlung von Gläsern und Kunstharzen. Z. angew. Chem. vol.50 (1937) p. 614, No. 31.Google Scholar
  17. [16]
    Kohl, W. H.: Materials Technology for Electron Tubes. New York: Reinhold 1951.Google Scholar
  18. [17]
    Lillie, H. R.: Viscosity of Glass Between Strain Point and Melting Temperature. J. Amer. Ceram. Soc. vol. 10 (1931) pp. 502–511; vol. 16 (1933) pp. 619-631.Google Scholar
  19. [18]
    Littleton, J. T., and G. W. Morey (Corning works and Carnegie Inst.): The Electric Properties of Glass. New York: Wiley (1933) p. 184. (Manufacture, composition and properties, el. conductivity, dielectric constant, diel, loss, diel, strength.)Google Scholar
  20. [19]
    Morey, G. W.: The Properties of Glass. New York: Reinhold 1938.Google Scholar
  21. [20]
    Partridge, J. H. (General Electric Co., Wembley): Resistant Glasses for Modern Electric Discharge Lamps. J. Soc. Glass Tech. vol.19 (1935) pp. 266–278. (Suitable for inner envelopes of high pressure mercury and sodium lamps; softening temperature 900° C.)Google Scholar
  22. [21]
    Phillips, C. I. (Corning): Glass. Its History, Technology and Applications, p. 424. New York: Pitman 1941.Google Scholar
  23. [22]
    Read, W. T.: Optical Meas. of Residual Stress in Glass Bulbs. Bell Lab. Record vol. 28 (1950) pp. 62–65.Google Scholar
  24. [23]
    Sawai, I., and I. Kubo (Nn. Kyoto): The Softening of Glasses at High Temperatures. J. Soc. Glass Tech. vol. 21 (1937) pp. 113–122.Google Scholar
  25. [24]
    Schmidt, R.: Neuere Entwicklung von Sondergläsern auf dem Gebiete der Lichttechnik. Glastechn. Ber. vol. 15 (1937) pp. 89–99, No. 3.Google Scholar
  26. [25]
    Scholes, S. R. (N. Y. State College of Ceramics): Modern glass practice, p. 289. Chicago: Ind. Publ. 1941.Google Scholar
  27. [26]
    Schulz, H.: Glas. Munich 1923.Google Scholar
  28. [27]
    Sharp, D. E., J. Bailley and I. Hyman: An Apparatus for Determining the Annealing Constants of Glass. J. Amer. Ceram. Soc. vol. 14 (1931) pp. 820–826, H. 10.Google Scholar
  29. [28]
    Späte, F.: Weiß-, Hohl-und Geräteglas. Leipzig 1931.Google Scholar
  30. [29]
    Späte, F., u. a.: Glastechn. Ber. vol.12 (1934) p. 34. (Temperature of transformation.)Google Scholar
  31. [30]
    Spencer, C. D., and S. Jones: Design and Construction of Polariscopes for Glass Factories. J. Amer. Ceram. Soc. (1931) p. 512.Google Scholar
  32. [31]
    Stanworth, J. E.: Physical Properties of Glass. Oxford: Clarendon Press 1950.Google Scholar
  33. [32]
    Steiner, H. C.: Glass in Electronic Tubes. Bull. Amer. Ceram. Soc. vol. 24 (February 1945) No. 2.Google Scholar
  34. [33]
    Thiene, H.: Glas. Jena 1931.Google Scholar
  35. [34]
    Thomas, M.: Glastechn. Ber. vol.4 (1926/27) p. 323. (Annealing.)Google Scholar
  36. [35]
    Ullmann, F.: Enzyklopädie der technischen Chemie, 5. Aufl. Wien 1930.Google Scholar
  37. [36]
    Wartenberg, H. V.: Z. techn. Phys. vol.12 (1932) p. 429. (Temperature of transformation.)Google Scholar
  38. [37]
    Zunick, M. J., and J. B. Gosling: Glass Selection and Production Techniques for X-ray and Other Tubes. Glass Ind. vol. 32 (1951) pp. 117–120.Google Scholar

References on Physical and Chemical Properties of Glass

  1. [37a]
    Alpert, D., and Buroitz, R. S.: J. Appl. Phys. vol.25 (1954) p. 202.Google Scholar
  2. [38]
    Anderson, S.: Investigation of Structure of Glasses by Their Infrared Reflection Spectra. J. Amer. Ceram. Soc. vol. 33 (1950) pp. 45–51.Google Scholar
  3. [39]
    Austin, A. E.: X-ray Diffraction for Compounds in Systems Li 2 O-SiO 2 and BaO-SiO 2. J. Amer, ceram. Soc. vol. 30 (July 1947) No. 7.Google Scholar
  4. [40]
    Bair, J. G.: The Constitution of Lead Oxide-Silica Glasses. J. Amer. Ceram. Soc. vol.19 (1936) p. 339.Google Scholar
  5. [41]
    Baker, T. C., and F. W. Preston: The Effect of Water on the Strength of Glass. J. Appl. Phys. vol. 17 (1946) pp. 179–188.Google Scholar
  6. [42]
    Baldwin, C. F.: A Quantitative Glass Strain Analyzer. Gen. Elect. Rev. vol. 40 (1937) pp. 319–320. (Film polarizers with quartz wedge combination.)Google Scholar
  7. [43]
    Bartsch, Otto: Über die Schlagbiegefestigkeit von keramischen Massen und Gläsern und ihre Beziehungen zur Temperaturwechselbeständigkeit von Schamottemassen. Ber. dtsch. keram. Ges. vol. 18 (1937) pp. 465–489, No. 11.Google Scholar
  8. [44]
    Bauer, F.: Der Einfluß der Schmelzdauer auf den Eisenoxydgehalt der Gläser. Glashütte vol. 65 (1935) pp. 309–319.Google Scholar
  9. [45]
    Barnes, B. T., E. Q. Adam and W. E. Forsythe (Gen. Elect. Co.): Total Emissivity of Various Materials. J. Opt. Soc. Amer. vol.30 (1940) p. 269 A. (Carbon, fused quartz, corex D, and nonex glass from 100–500° C.)Google Scholar
  10. [46]
    Barnes, B. T., W. E. Forsythe and E. Q. Adams: The Total Emissivity of Various Materials at 100 to 500° C. J. Opt. Soc. Amer. vol. 37 (1947) pp. 804–807.Google Scholar
  11. [47]
    Blau, H. H., and J. R. Johnson: Investigation of the Glass Structure Using Radioactive Tracers. Ohio State University Engineering Experiment Station News (December 1948); also: Glass Ind. vol.30 (1949) pp. 393-394.Google Scholar
  12. [48]
    Blodgett, K. B.: Surface Conductivity of Lead Silicate Glass after Hydrogen Treatment. J. Amer. Ceram. Soc. vol. 34 (1951) pp. 14–27.Google Scholar
  13. [49]
    Bogodoritzky, N., and V. Malishew: Dielectric Losses in Glass. Techn. Phys. Ussr vol. 2 (1935) pp. 324–332, No. 4. (B 2 O 3 + K 2 O glasses and B 2 O 3 + Na 3 O, PbO and BaO glasses, SiO 2 + PbO glass; losses in glass possessing high ohmic resistivity change little at high as well as at low temperatures; frequency = 2 · 106, 50° C)Google Scholar
  14. [50]
    Bogorodickiy, N., and I. Friedberg: Dielectric Losses in Inorganic Glasses at Radio Frequencies. Techn. Phys. Ussr vol. 4 (1937) pp. 707–716, No. 4. (Tables and curves of loss angles and spec. resistance as a function of temperature for 30 different glasses.)Google Scholar
  15. [51]
    Bosch, R.: DRP. 555295/26/32.Google Scholar
  16. [52]
    Bradley, C. A., Jr.: Measurement of Surface Tension of Viscous Liquids. J. Amer. Ceram. Soc., vol. 21 (October 1938) No. 10.Google Scholar
  17. [53]
    Burch, O. G.: Methods for Determining the Chemical Durability of Soda-Lime Glasses. J. Amer. Ceram. Soc. vol. 15 (1936) pp. 175–181.Google Scholar
  18. [54]
    Büssem, W., and W. Weyl: Über die Konstitution des Glases. Naturwiss. vol.24 (1936) p. 324, H. 21.Google Scholar
  19. [55]
    Chirnside, R. C. (General Electric, Wembley): The Analysis of Some Glasses for Modern Electric Discharge Lamps. Trans. Soc. Glass. Technol. v. 19 (1935) pp. 279–295. (Glasses containing abnormally high proportions of aluminum and phosphorus.)Google Scholar
  20. [56]
    Cohn, W. M.: Expansion Measurements of Several Glasses by Means of a Self-Registering Apparatus. J. Amer. Ceram. Soc. vol. 10 (1931) No. 4.Google Scholar
  21. [57]
    Condon, E. V.: Physics of the Glassy State; IV. Radiation-Sensitive Glasses. Amer. J. Phys. vol. 22 (May 1954) p. 310.Google Scholar
  22. [58]
    Corning Glass Works: Bulletin 844 — The Properties of Pyrex Resistant Glass No. 774.Google Scholar
  23. [59]
    Corning Glass Works: Properties of Selected Commercial Glasses.Google Scholar
  24. [60]
    Dale, A. E., and J. E. Stanworth: Sealing Glasses. J. Soc. Glass Tech. vol. 29 (1948) pp. 77–91.Google Scholar
  25. [61]
    Dalton, R. H.: Extraction and Analysis of Gases from Glass. J. Amer. Chem. Soc. vol.57 (1935) p. 2150.Google Scholar
  26. [62]
    Dalton, R. H.: Gases in Glass. J. Amer. Ceram. Soc. vol. 16 (September 1933) No. 9.Google Scholar
  27. [63]
    Douglas, R. W., and R. L. Breadner (GEC): A Strain Viewer for Glass Articles. J. Sci. Instr., Lond. vol. 17 (1940) pp. 187–188. (Fig. 1, 2: Polaroid disc — diffusion screen — object — polaroid spectacles.)Google Scholar
  28. [64]
    Ende, W.: Z. techn. Phys. vol.15 (1934) p. 313. (UV-transmitting glass.)Google Scholar
  29. [65]
    Escher-Desrivières, J.: Die Durchlässigkeit der farblosen Gläser für die verschiedenen Spektralfarben. Verre et Silic. vol. 6 (1935) pp. 370–371 and 381-383.Google Scholar
  30. [65a]
    Espe, W.: Werkstoffe der Elektrotechnik in Tabellen und Diagrammen. Berlin 1954.Google Scholar
  31. [66]
    Espe, W., and J. Böhme: Glastechnik / Vakuumtechnik. Feinmechanik u. Präz. vol. 45 (1937) pp. 57–60, No. 4; pp. 73-76, No. 5; pp. 101-104, No. 7; pp. 115 to 118, No. 8.Google Scholar
  32. [67]
    Florence, J. M., C. C. Allshouse, F. W. Glaze and C. H. Hahner: Absorption of Near-Infrared Energy by Certain Glasses. J. Res. Nat. Bur. Stand. vol. 45 (1950) pp. 121–128.Google Scholar
  33. [68]
    Florence, J. M., F. W. Glaze, G. H. Hahner und R. Stair: Transmittance of Near-Infrared Energy by Binary Glasses. J. Amer. Ceram. Soc. vol. 31 (1948) pp. 328 tGoogle Scholar
  34. [69]
    Frerichs, R.: New Optical Glasses Transparent in the Infrared up to 12µ. Bull. Amer. Phys. Soc. vol.25 (1950) p. 11 (E9).Google Scholar
  35. [70]
    Gage, H. P.: Thickness Control of Sharp Cut-Off Type of Glasses. J. Opt. Soc. Amer. vol. 35 (April 1945) pp. 276–282, No. 4.Google Scholar
  36. [71]
    Gallup, J.: Electrolysis Phenomena in Soft Glass Stems of Rectifier Tubes. J. Amer. Ceram. Soc. vol. 29 (1946) pp. 277–281.Google Scholar
  37. [72]
    Gehlhoff, G., and M. Thomas: The Physical Properties of Glasses and Their Dependence on Composition. (In German.) Z. techn. Phys. vol. 7 (1926) pp. 260–278.Google Scholar
  38. [73]
    Gehlhoff, G., and A. Thomas: J. Soc. Glass Tech. vol.11 (1927) p. 347. (Shock resistance of glass.)Google Scholar
  39. [74]
    Gehlhoff, G.: Lehrbuch der technischen Physik. Bd. III. Die Physik der Stoffe. Leipzig 1928.Google Scholar
  40. [75]
    Gmelin: Handbuch der anorganischen Chemie, 8. Aufl. Vol. Edelgase. Berlin 1926. (Noble gases, diffusion through glass.)Google Scholar
  41. [76]
    Green, R. L., and K. B. Blodgett: Electrically Conducting Glasses. J. Amer. Ceram. Soc. vol. 31 (1948) pp. 89–100.Google Scholar
  42. [77]
    Greene, C. H.: Note on the Transverse Strength of Glass. J. Amer. Ceram. Soc. vol. 15 (January 1932) No. 1.Google Scholar
  43. [78]
    Gregorious, J. S.: Modulus of Rupture and Thermal Shock Resistance at Elevated Temperatures. Bull. Amer. Ceram. Soc. vol. 15 (1936) pp. 271–273. (A 72 SiO 2, 13 Na 2 O, 11 CaO, 2.7 and.16 MgO glass.)Google Scholar
  44. [79]
    Guyer, E. M.: Mechanical Properties of Some Rolled and Polished Glass. J. Amer. ceram. Soc. vol. 13 (September 1930) No. 9.Google Scholar
  45. [80]
    Guyer, E. M.: The Electrical Behavior of Glass at Room Temperature. J. Amer. ceram. Soc. vol. 16 (December 1933) No. 12.Google Scholar
  46. [81]
    Guyer, E. M.: Electrical Glass. Proc. IRE vol. 32 (December 1944) No. 12.Google Scholar
  47. [82]
    Hampton, W. M.: The Thermal Endurance of Glass. J. Soc. Glass Tech. vol. 20 (1936) pp. 461–474 (23 réf.).Google Scholar
  48. [83]
    Hampton, W. M.: Ilium. Eng., N. Y. vol.26 (1933) p. 48. (Opal glass.)Google Scholar
  49. [84]
    Hampton, W. M., and C. E. Gould: Some Implications of the Known Variation in the Strength of Glass. J. Soc. Glass Tech. vol. 18 (1934) pp. 194–200. (1936) pp. 461-474. (23 ref.)Google Scholar
  50. [85]
    Hänlein, W., and M. Thomas: Untersuchungen über den Aggregationspunkt und Transformationspunkt von Gläsern durch Messung des elektrischen Widerstandes. Glastechn. Ber. vol. 12 (1934) pp. 109–116, H. 4.Google Scholar
  51. [86]
    Harrison, A. J.: Water Content and Infrared Transmission of Simple Glasses. J. Amer. Ceram. Soc. vol. 30 (1947) No. 12.Google Scholar
  52. [87]
    Hertzrücken, S.: Die physikalischen Eigenschaften von Lithium-Beryllium-Borat-Glas “Getan”. Techn. Phys. Ussr vol. 3 (1936) pp. 336–349, No. 4.Google Scholar
  53. [88]
    Hicks, V.: X-ray Studies of Crystalline Substances in Glasses. J. Amer. Ceram. Soc. vol. 19 (1936) pp. 148–152. (Detection of substances responsible for color, opalescence, opacity, and of selective molecular orientation in surface pieces.)Google Scholar
  54. [89]
    Jackson, W.: A Record of Recent Progress Towards the Correlation of the Chemical Composition, the Physical Constitution and the Electrical Properties, of Solid Dielectric Materials. J. Inst. Electr. Engrs. vol. 79 (1936) pp. 565–576. (Crystalline solids, amorphous solids, cond. glasses, rubber compounds, ceramic materials; 43 ref.)Google Scholar
  55. [90]
    Jenckel, E.: Die Vorgänge bei der Abkühlung von Gläsern und Kunstharzen. Angew-Chem. vol.50 (1937) p. 614, No. 31.Google Scholar
  56. [91]
    Keller, F.: Die dielektrischen Verluste von Gläsern in Abhängigkeit von der Glaszusammensetzung. Z. techn. Phys. vol.3 (1933) p. 14.Google Scholar
  57. [92]
    Kerten, H., and C. H. Dwight: Colorization of Glass by Soft X-rays. J. Phys. Chem. vol. 1 (1933) pp. 627–629.Google Scholar
  58. [93]
    Kiehl, H. R.: El. Conductivity of Glass. J. Appl. Phys. vol. 5 (1934). Part I: The formation of highly resistant layers, pp. 363–369; Part II: Current increase phenomena with highly resistant layers, pp. 370-373.Google Scholar
  59. [94]
    Kirby, P. L.: Electrical Conduction in Glass. Brit. J. Appl. Phys. vol. 1 (1950) pp. 193 to 202.Google Scholar
  60. [95]
    Klemm, A., and E. Berger: Glastechn. Ber. vol. 5 (1927/28) p. 405.Google Scholar
  61. [95a]
    Knoll, M., Hook, H. O., and Stone, R. P.: Proc. I.R.E. vol.42 (1954) p. 1503.Google Scholar
  62. [96]
    Kuan-Han Sun and L. L. Sun: Neutron Absorbing and Transmitting Glasses. Glass Ind. vol. 31 (1950) pp. 507–515.Google Scholar
  63. [97]
    Kusunose, Y.: Puncture Damage Through the Glass Wall of a Transmitting Vacuum Tube. Inst. Radio Engng. vol. 15 (1927) pp. 431–437.Google Scholar
  64. [98]
    Laboratory for Insulation Research, MIT, Cambridge, Mass. Technical Report No. 10 (June 1948): Table of Dielectric Materials.Google Scholar
  65. [99]
    Lillie, H. R.: Precise Measurement of the Viscosities of Glasses at Temperatures Near Their Annealing Points. J. Amer. Ceram. Soc. vol. 15 (August 1932) No. 8.Google Scholar
  66. [100]
    Lillie, H. R.: Viscosity Measurements in Molten Glass. J. Rheology vol. 3 (January 1932) No. 1.Google Scholar
  67. [101]
    Lillie, H. R.: Viscosity of Glass between the Strain Point and Melting Temperature. J. Amer. Ceram. Soc. vol. 14 (1931) pp. 502–511.Google Scholar
  68. [102]
    Lillie, H. R.: Viscosity of Glass between the Strain Point and Melting Temperature. J. Amer. Ceram. Soc. vol. 16 (1933) pp. 619–631, No. 12.Google Scholar
  69. [103]
    Lillie, H. R.: High Temperature Viscosities of Soda-Silica Glasses. J. Amer. Ceram. Soc. vol. 22 (November 1939) No. 11.Google Scholar
  70. [104]
    Lindemann, C.F., and C. A. Lindemann: Z. Röntgenkde vol.13 (1911) p. 141.Google Scholar
  71. [105]
    Lindemann, C. L., and F. A. Lindemann: Phys. Z. vol.13 (1912) p. 104; German Patent 223654 (1908). (Lindemann-glass.)Google Scholar
  72. [106]
    Littleton, J. T.: The Physical Processes Occurring in the Melting and Cooling of Glass. J. Amer. Ceram. Soc. vol. 17 (March 1934) No. 3.Google Scholar
  73. [107]
    Littleton, J. T.: The Effect of Heat on the Physical Prop. of Glass. J. Amer. Ceram. Soc. vol. 15 (September 1936) No. 9.Google Scholar
  74. [108]
    Littleton, J. T.: Critical Temperatures in Silicate Glasses. Industrial and Engineering Chemistry vol. 25 (July 1933) p. 748.Google Scholar
  75. [109]
    Littleton, J. T.: A Method for Determining the Softening Temperature of Glasses. J. Amer. Ceram. Soc. vol. 10 (April 1917) No. 4.Google Scholar
  76. [110]
    Littleton, J. T.: The Softening Point of Glass. J. Soc. Glass Tech. vol. 24(1940 p. 176, No. 105.Google Scholar
  77. [111]
    Littleton, J. T., and G. W. Morey: Electrical Properties of Glass. London 1933.Google Scholar
  78. [112]
    Littleton, J. T., and H. C. Bates: Heat Transfer through Industrial Glass Tubing. Chem. Met. Engng. vol. 39 (June 1932) pp. 315–318.Google Scholar
  79. [113]
    Littleton, J. T., and E. H. Roberts: A Method for Determining the Annealing Temperature of Glass. J. Opt. Soc. Amer. vol. IV (1920) pp. 224–229.Google Scholar
  80. [114]
    Littleton, J. T., and W. L. Wetmore: The Electrical Conductivity of Glass in the Annealing Zone as a Function of Time and Temperature. J. Amer. Ceram. Soc. vol. 19 (September 1936) pp. 243–245, No. 9.Google Scholar
  81. [115]
    Loebe, W., and W. Ledig: Z. techn. Phys. vol.6 (1925) p. 325. (UV-transmission of glasses.)Google Scholar
  82. [116]
    Loffler, J.: Rare Earths and How They Are Used for Coloring and Decolorization of Glass. Glashütte vol.86 (1936) p. 63.Google Scholar
  83. [116a]
    Lord Rayleigh: Proc. Roy. Soc. vol.156 (1936) p. 350.Google Scholar
  84. [117]
    Matossi, F., and H. Kruger: Infrared Reflection Spectrum of Silicates. (In German.) Z. Phys. vol. 99 (1936) pp. 1–3.Google Scholar
  85. [118]
    Matossi, F., and H. Blusche: Infrared Reflection Spectrum of Glasses. (In German.) Z. Phys. vol. 108 (1938) pp. 295–313.Google Scholar
  86. [119]
    McCormick, J. M.: Tests of the Strength of El. Lamp Bulbs with Special Reference to the Time Factor. Bull. Amer. Ceram. Soc. vol. 15 (1936) pp. 268–271.Google Scholar
  87. [120]
    McDowell, L. S., and H. L. Begeman: The Behavior of Glass as a Dielectric in Alternating Current Circuits. I: Relation of power factor and dielectric constant to conductivity. Phys. Rev. vol. 31 (1928) pp. 476–481.Google Scholar
  88. [121]
    Mengelkoch, K.: Temperaturabhängigkeit der Zerreißfestigkeit von Glasstäben. Z. Phys. vol.97 (1935) p. 46, 1. u. 2. Heft.Google Scholar
  89. [122]
    Metz, A.: Ein neues Dilatometer für die Untersuchung von Gläsern. Glastechn. Ber. vol. 16 (1938) pp. 19–20, H. 1. (Dilatometer.)Google Scholar
  90. [123]
    Meunier, P.: Contribution to the Study of Electrical Properties of Glass Used for the Construction of Electron Tubes. (In French.) Ann. Radioel. vol. 4 (1949) pp. 54–67.Google Scholar
  91. [124]
    Morey, G. W.: Glass as a Dielectric. J. Franklin Inst. vol. 219 (1935) pp. 315–320.Google Scholar
  92. [125]
    Morey, G. E., and B. E. Warren: Annealing of Pyrex Chemical Resistant Glass. Industr. Engng. Chem. vol. 27 (1935) pp. 966–971, No. 8.Google Scholar
  93. [126]
    Morey, G. W.: The Properties of Glass, p. 561. New York: Reinhold 1938.Google Scholar
  94. [127]
    Murphy, E. J., and S. O. Morgan: The Dielectric Properties of Insulating Materials. Bell Syst. Techn. J. vol. 16 (October 1937).Google Scholar
  95. [128]
    Murphy, E. J., and S. O. Morgan: The Dielectric Properties of Insulating Materials — II. Bell Syst. Tech. J. vol. 17 (October 1938).Google Scholar
  96. [129]
    Murphy, E. J., and S. O. Morgan: The Dielectric Properties of Insulating Materials — III. Bell Syst. Tech. J. vol. 18 (July 1939).Google Scholar
  97. [130]
    Mylius, F.: Silikat-Z. vol.1 (1913) p. 2.Google Scholar
  98. [131]
    Nordberg, M. E.: Properties of Some Vycor-Brand Glasses. J. Amer. Ceram. Soc. vol. 27 (1944) pp. 299–305, No. 10.Google Scholar
  99. [132]
    Nordberg, M. E.: U. V. Transmitting Glasses for Mercury-Vapor Lamps. J. Amer. Ceram. Soc. vol. 30 (1947) pp. 174–179.Google Scholar
  100. [132a]
    Norton, F. J.: Permeation of Gases Through Solids. J. Appl. Phys. vol. 28 (1957) pp. 34–39.Google Scholar
  101. [133]
    Overbeck, C. J.: Low-Expansion Glass. J. Soc. Instr., Lond. vol. 17 (1940) pp. 13–14. (New Corning glass product, for practical purposes equal to fused quartz.)Google Scholar
  102. [134]
    Partridge, J. H.: Resistant Glasses for Modern Electric Discharge Lamps. J. Soc. Glass Tech. vol. 19 (1935) pp. 266–278.Google Scholar
  103. [135]
    Peters, C. G., and C. H. Cragoe: Measurement of the Thermal Dilatation of Glass at High Temperatures. Bur. Stand. Sci. paper 393.Google Scholar
  104. [136]
    Peysson, J., Electrolysis Phenomena in Glass. (In French.) Ann. Radioel. vol. 3 (1948) pp. 107–114.Google Scholar
  105. [137]
    Phillips, C. J.: Glass as an Electrical Insulator. J. Appl. Phys. vol. 11 (March 1940) pp. 173–181, No. 3.Google Scholar
  106. [138]
    Pike, E. W.: The Electrolysis of Sodium Through “Pyrex” Glass. Rev. Sci. Instr. vol.4 (1933) p. 687.Google Scholar
  107. [139]
    Preston, E.: Supercooled Silicates and Their Importance in Considerations of the Liquid State. Proc. Phys. Soc., Lond. vol. 53 (1941) pp. 568–584.Google Scholar
  108. [140]
    Preston, F. W.: The Mechanical Properties of Glass. J. Appl. Phys. vol. 13 (1942) pp. 623–634.Google Scholar
  109. [141]
    Randall, J. T., H. P. Rooksby and B. S. Cooper: The Diffraction of X-rays by Vitreous Solids and its Bearing on their Constitution. Nature vol.125 (1930) p. 458 (Supplement 3151).Google Scholar
  110. [142]
    Retzow, U.: Die Eigenschaften elektrischer Isoliermaterialien in graphischen Darstellungen. Berlin 1927.Google Scholar
  111. [143]
    Rindone, G. E., E. C. Marbee and W. A. Weyl: Oxidation and Reduction of Glasses by Electrolysis. J. Amer. Ceram. Soc. vol. 30 (1947) pp. 314–319.Google Scholar
  112. [144]
    Ritter, H.: Begriff und Zusammensetzung des Glases und einige einfache chemische Hilfsmittel zur schnellen Glasuntersuchung. Glas und Apparat vol. 12 (1931) pp. 143 to 146, No. 18.Google Scholar
  113. [145]
    Rogers, T. H.: A High-Intensity Source of Long Wave Length X-Rays. Proc. IRE vol. 35 (1947) pp. 236–241.Google Scholar
  114. [146]
    Russ, A.: Sprechsaal vol.61 (1928) p. 908.Google Scholar
  115. [147]
    Sawi, I., and I. Kubo: The Softening of Glasses at High Temperatures. J. Soc. Glass. Tech. vol. 21 (1937) pp. 113–122, No. 83.Google Scholar
  116. [148]
    Schaefer, C., P. Matossi and K. Wirtz: Infrared Reflection Spectrum of Silicates. (In German.) Z. Phys. vol. 89 (1934) pp. 210–233.Google Scholar
  117. [149]
    Schmidt, R.: Neuere Entwicklung von Sondergläsern auf dem Gebiet der Lichttechnik. Glastechn. Ber. vol. 15 (1937) pp. 89–99, No. 3.Google Scholar
  118. [150]
    Schönborn, J.: Allgemeine Verfahren zur Bestimmung der Wärmefestigkeit der Glasmasse. Glastechn. Ber. vol.15 (1937) p. 57, 67-70.Google Scholar
  119. [151]
    Schwarz, R., and J. Halberstadt: Z. anorg. allg. Chem. vol.210 (1933) p. 286.Google Scholar
  120. [152]
    Seddon, E.: Bestimmung der Wärmefestigkeit des Glases. Glastechn. Ber. vol. 15 (1937) pp. 361–363, No. 9.Google Scholar
  121. [153]
    Sharp, D. E., J. Bailey and I. Hyman: An Apparatus for Determining the Annealing Constants of Glass. J. Amer. Ceram. Soc. vol.14 (1931) p. 820, No. 10.Google Scholar
  122. [154]
    Siemens & Halske: DRP. 391/232/21/24. (Tube base with drying agent.)Google Scholar
  123. [155]
    Siemens & Halske: DRP. 350/318/20/22. (Discharge tubes with double walls.)Google Scholar
  124. [156]
    Singer, G.: Absorption of X-Rays by Lead Glasses and Lead Barium Glasses. J. Res. Nat. Bur. Stand. vol. 16 (1936) pp. 233–251. (Determination of the protection coefficient.)Google Scholar
  125. [157]
    Skanavi, I.: The Experimental Study of Dielectric Losses and Polarization in Glasses. Technical Phys. vol. 4 (1937) pp. 289–298, No. 4.Google Scholar
  126. [158]
    Smelt, J.: Glass for Modern Elec. Lamps and Radio Valves. Philips Tech. Rev. vol. 2 (March 1937) pp. 87–93.Google Scholar
  127. [159]
    Smyth, C. N. (Kolster Brands, Ltd., London): The Implosion of Cathode-Ray Tubes. El. Communication vol. 18 (October 1939) pp. 133–134. (Photographs of shattering.)Google Scholar
  128. [160]
    Späte, F.: Anforderungen an die in der Elektroindustrie verwendeten Gläser. Glastechn. Ber. vol. 10 (1932) pp. 521–540, H. 10.Google Scholar
  129. [161]
    Stanworth, J. E.: Glass Manufacture for El. Lamps. The Development of Special Glasses for Mercury-Discharge Lamps. J. Soc. Glass Tech. vol. 23 (1939) pp. 268–280.Google Scholar
  130. [162]
    Stanworth, J. E.: Physical Properties of Glass. Oxford: Clarendon Press 1950.Google Scholar
  131. [163]
    Stanworth, J. E.: Transmission of Bactericidal Radiation Through Glass. Nature vol.161 (1948) p. 856, No. 4100; vol. 165 (1950) pp. 724-725, No. 4201; also: J. Soc. Glass Tech. vol. 34 (1950) pp. 153-172.Google Scholar
  132. [164]
    Steiner, H. C.: Glass in Electron Tubes. Bulletin of Amer. Ceram. Soc. vol. 24 (Feb. 1945) No. 2.Google Scholar
  133. [165]
    Stevels, J. M.: Progress in the Theory of the Physical Properties of Glass. New York: Elswier Publishing Co., Inc. 1948.Google Scholar
  134. [166]
    Stevels, J. M.: Some Experiments and Theories on the Power Factor of Glasses as a Function of Their Composition. Philips Res. Rep. vol. 5 (February 1950) p. 1.Google Scholar
  135. [167]
    Stevels, J. M.: Quelques Nouveautés dans les Recherches sur le Verre. Verres et Réfractaires vol. 4 (Feb. 1950) pp. 3–9.Google Scholar
  136. [168]
    Stevels, J. M.: The Relation Between the Dielectric Losses and the Composition of Glass. J. Soc. Glass Tech. vol. 34 (1950) pp. 80–100, 158.Google Scholar
  137. [169]
    Stockdale, G. F., and F. V. Tooley: Effect of Humid Conditions on Glass Surfaces Studied by Photographic and Transmission Techniques. J. Amer. Ceram. Soc. vol. 33 (1950) pp. 11–16.Google Scholar
  138. [169a]
    Stone, R. P.: Techniques for Maintaining. High Vacua; N. Y. Natl. Conf. Elect. Tube Techniques (Oct. 15, 1953).Google Scholar
  139. [170]
    Stong, D. E.: The Modulus of Elasticity of Glass: I. J. Amer. Ceram. Soc. vol. 20 (January 1937) No. 1.Google Scholar
  140. [171]
    Stookey, S. D.: Photosensitive Glass. P. S. A. J. vol. 14 (July 1948) No. 7.Google Scholar
  141. [172]
    Stosharow, A. J., and W. A. Florinskaja: Das Entspannen von Glas bei tiefen Temperaturen. Optiko-mechan. Prom. (Ussr) vol. 6 (1936) pp. 10–11, No. 1.Google Scholar
  142. [173]
    Stott, V. H.: Viscosity Measurements with Glass. Proc. Roy. Soc., Lond. vol. 108 (1925) pp. 154–171.Google Scholar
  143. [174]
    Sun, L. L., and Kuan Han Sun: X-ray Absorbing and Transmitting Glasses. Glass Ind. vol. 29 (1948) pp. 686–691.Google Scholar
  144. [175]
    Taylor, W. C.: A Report of Progress on Glass Durability Methods. Trans. Soc. Glass Technol. vol. 20 (1936).Google Scholar
  145. [176]
    Taylor, N. W., E. P. Mcnamara and J. Sherman: A Study of the Elastic-Viscous Properties of a Soda-Lime Silica Glass at Temperatures near the Transformation Point. J. Soc. Glass Technol. vol. 21 (1937) pp. 61–81, No. 83.Google Scholar
  146. [177]
    Thomas, M.: Glastechn. Ber. vol.4 (1926/27) p. 323. (Cooling of glass.)Google Scholar
  147. [178]
    Trost, A.: Über Radioaktivität von Gläsern. Z. Phys. vol. 100 (1936) pp. 549–552, No. 9-10.Google Scholar
  148. [179]
    Turner, W. E. S.: Analysis of Glasses, Refractory Materials and Silicate Slags. p. 96. Sheffield: Soc. Glass Technol. 1929.Google Scholar
  149. [180]
    Ungelenk, A.: Fortschr. Röntgenstr. vol.49 (1934) p. 166. (Rotating X-ray anode.)Google Scholar
  150. [181]
    Veith, H.: Simple Method for the Determination of the Water Film Adhering to Glass. (In German.) Z. phys. Chem. vol. 193 (1944) pp. 378–385.Google Scholar
  151. [182]
    Victoreen, J. A.: The Calculation of X-ray Mass-Absorption Coefficients. J. Appl. Phys. vol. 20 (1949) pp. 1141–1147.Google Scholar
  152. [183]
    Vieweg, R.: Elektrotechnische Isolierstoffe. Berlin: Springer 1937.Google Scholar
  153. [184]
    Von Hippel, A.: Electric Breakdown of Solid and Liquid Insulators. J. Appl. Phys. (1937) p. 815.Google Scholar
  154. [185]
    Warren, B. E., and J. Biscoe: Fourier Analysis of X-Ray Patterns of Soda-Silica Glass. J. Amer. Ceram. Soc. vol. 21 (1938) pp. 259–265.Google Scholar
  155. [186]
    Weigel, R. G.: Licht vol.4 (1934) p. 1, 13, 39. (Opaque glasses.)Google Scholar
  156. [187]
    Weyl, W. A.: Chemical Aspects of Some Mechanical Properties of Glass. Research vol. 2 (1948) pp. 50–61.Google Scholar
  157. [188]
    Weyl, W. A.: The Dielectric Properties of Glass and Their structural Interpretation. J. Soc. Glass Tech. vol. 33 (1949) pp. 153, 220-238.Google Scholar
  158. [189]
    White, J. F., and W. B. Silverman: Some Studies on the Polarization of Glass. J. Amer. Ceram. Soc. vol. 38 (1950) pp. 252–257.Google Scholar
  159. [190]
    Yager and Morgan: Surface Leakage of Pyrex Glass. J. Phys. Chem. vol.35 (1931) p. 2026.Google Scholar
  160. [191]
    Zachariasen, W. H.: The Atomic Arrangement in Glass. J. Amer. Chem. Soc. vol. 54 (1932) pp. 3841–3851.Google Scholar
  161. [192]
    Zschimmer, E.: Z. VDI vol.39 (1923) p. 960. (Thermal resistivity of glass.)Google Scholar

References on Quartz Glass and Quartzware

  1. [193]
    Baukloh and A. Hoffman: Ber. dtsch. keram. Ges. vol.15 (1934) p. 424. (H 2-diffusion through ceramics and quartz.)Google Scholar
  2. [194]
    Berliner Quarz-Schmelze: Sonderprospekt VLK 3507. Berlin 1935. (Chem. properties.)Google Scholar
  3. [195]
    Besborodow, N. A., N. D. Sawjalow and F. A. Kurljankin: Der Einfluß der Rohstoffe auf die Kristallisation von Quarzglas. Feuerfeste Mater. vol. 4 (1936) pp. 638–649.Google Scholar
  4. [196]
    Braaten and G. F. Clark: Die Diffusion von Helium durch geschmolzene Kieselsäure. J. Amer. chem. Soc. vol. 57 (1935) pp. 2714–2717.Google Scholar
  5. [197]
    Brauer, G.: Über eine Reaktion von atomarem Quarz. Z. phys. Chem. vol.174 (1935) p. 435, H. 6.Google Scholar
  6. [198]
    Briggs, L. i.: J. Phys. Chem. vol.9 (1905) p. 617. (Water-film on quartz at 80% rel. humidity:.45 · 10−6 cm; at 99% rel. humidity: 2.7 · 10−6 cm (or 100 moleculelayers).Google Scholar
  7. [199]
    Dawihl, W. and W. Rix: Über die Festigkeitssteigerung von Quarzglas durch Temperaturerhöhung. Z. Phys. vol. 112 (1939) pp. 654–666, H. 11/12.Google Scholar
  8. [200]
    Dawihl, W., and W. Rix: Über die Temperaturabhängigkeit der mechanischen Festigkeit von Quarzglas. Z. techn. Phys. vol. 19 (1938) pp. 294–296.Google Scholar
  9. [201]
    Edwards, H. W.: The Evaporation of Quartz on Silver. Rev. Sci. Instr. vol.8 (1937) p. 451.Google Scholar
  10. [201a]
    Espe, W.: Werkstoffe der Elektrotechnik in Tabellen und Diagrammen. Berlin 1954.Google Scholar
  11. [202]
    Gabor, D.: DRP 513448/31/33. (Metal foil-quartz sealing with an arc.)Google Scholar
  12. [203]
    Hanlein, W.: Ein Verfahren zum kontinuierlichen Schmelzen und Ziehen von Rohren und Stäben aus Quarzglas und hochschmelzenden Gläsern. Z. techn. Phys. vol. 21 (1940) pp. 97–101, No. 5.Google Scholar
  13. [204]
    Hanlein, W.: Schmelzen und Verarbeiten von Quarzglas und ähnlichen hochschmelzenden Gläsern. Glastechn. Ber. vol. 18 (1940) pp. 308–314, H. 11.Google Scholar
  14. [205]
    Kluge, W.: Z. techn. Phys. vol.16 (1935) p. 184. (Alkali-photo cells.)Google Scholar
  15. [206]
    Krischer, O.: Die Wärmeleitfähigkeit korniger Stoffe. Z. VDI vol. 79 (1935) pp. 1315 to 1316, No. 43.Google Scholar
  16. [207]
    Kurljankin, F. A.: Thermische Eigenschaften von Erzeugnissen aus durchsichtigem Quarzglas. Keramik und Glas vol. 12 (1936) pp. 27–32, No. 2.Google Scholar
  17. [208]
    Kurljankin, F. A.: Der Einfluß von Zusätzen auf die Kristallisationsgeschwindigkeit von Quarzglas. Feuerfeste Mater. vol. 5 (1937) pp. 533–540, No. 8.Google Scholar
  18. [209]
    Law, H. B.: Formation of Insulating Layers by the Thermal Decomposition of Ethyl Silicate. Rev. Sci. Instr. vol. 20 (Dec. 1949) p. 958.Google Scholar
  19. [210]
    Moore, B., and R. Brown: Die Diffusion von Luft durch durchscheinende geschmolzene Kieselsäure. J. Soc. chem. Ind. vol. 58 (1939) pp. 142–146.Google Scholar
  20. [211]
    Moser: Messungen der wahren spezifischen Wärme von Silber, Nickel, β-Messing, Quarzkristall usw. Phys. Z. vol.37 (1936) p. 749, No. 21.Google Scholar
  21. [212]
    Parks, Ch. I.: Phil. Mag. vol.5 (1903) p. 617. (Thickness of water film on quartz at 150°C in saturated water vapors: 130μ.)Google Scholar
  22. [213]
    Silica Syndicate: DRP 241260/10/11. (Clear molten quartz.)Google Scholar
  23. [214]
    Singer, F.: Geschmolzener Quarz, in M. Pirani: Elektrothermie. Berlin 1930.Google Scholar
  24. [215]
    Skaupy, F., and G. Weissenberg: Neues Verfahren zur Herstellung von Gegenständen aus glasigem Quarz. Glastechn. Ber. vol. 15 (1937) pp. 306–308, No. 8.Google Scholar
  25. [216]
    Sosman, R. S.: Properties of Silica. New York 1927.Google Scholar
  26. [217]
    Volarovich, M. P., and A. A. Leontieva: Determination of the Viscosity of Quartz Within the Softening Range. J. Soc. Glass Tech. vol. 20 (1936) pp. 139–143.Google Scholar
  27. [218]
    v. Wartenberg: Analyse von Quarzglas. Naturwiss. vol.30 (1942) p. 440, H. 28.Google Scholar

References on Ceramic Materials

  1. [219]
    Albers-Schönberg, E.: Hochfrequenz-Keramik. Berlin: Steinkopff 1939. (Including metallization processes.)Google Scholar
  2. [220]
    Albers-Schönberg, E.: Ferromagnetic Oxide Bodies, a Counterpart to the Ceramic Dielectrics. Ceram. Age vol. 56 (Oct. 1950) pp. 14–16, 41.Google Scholar
  3. [221]
    Albers-Schönberg, A.: Ein Fortschritt im Aufbau keramischer Dielektrika. ETZ vol.56 (1935) p. 226, No. 9.Google Scholar
  4. [222]
    Austin, J. B.: The Thermal Expansion of Some Refractory Oxides. J. Amer. Ceram. Soc. vol. 10 (1931) pp. 795–810, No. 11.Google Scholar
  5. [223]
    ASTM Standards, part III B: Non-metallic Materials, pp. 92, 104. Philadelphia: Ceramic Products 1946.Google Scholar
  6. [224]
    Baier, O.: Elektronenröhren aus keramischen Werkstoffen. Fortschritte der Hochfrequenztechnik vol. 1 (1941) pp. 422–431 and 400-402.Google Scholar
  7. [225]
    Baukloh, W., and A. Hoffmann: Ber. dtsch. keram. Ges. vol.15 (1934) p. 424.Google Scholar
  8. [226]
    Bigood, E. S., and G.H. Kent: Cataphoresis and Alundum Coatings. Transact. Electrochem. Soc. vol. 87 (1945) pp. 321–329.Google Scholar
  9. [227]
    Bogorodizky, N, and Malyschew: Arch. Elektrotechn. vol.28 (1934) p. 664. (El. resistivity of mica.)Google Scholar
  10. [228]
    Bültemann, A.: Dielectric Material. Berlin 1926.Google Scholar
  11. [229]
    Burnside, D. G.: Ceramic-Metal Seals of the W-Fe Type. R, C. A. Rev. vol. 15 (March 1954) p. 46.Google Scholar
  12. [230]
    Cambell, J. B.: Metals and Refractories Combined in High-Temperature Structural Parts. Mater. and Meth. vol. 31 (1950) pp. 59–63.Google Scholar
  13. [231]
    Curtis, C. E., and D. Laurie: Investigation of Various Properties of Stabilized Zirconia at Elevated Temperatures 1–3. J. Amer. Ceram. Soc. vol. 33 (1950) pp. 198 to 207.Google Scholar
  14. [232]
    de Bretteville, A. P.: Oscillograph Study of Dielectric Properties of Barium Titanate. J. Amer. Ceram. Soc. vol. 29 (1946) pp. 303–307.Google Scholar
  15. [233]
    Demuth, W.: Elektrotechn. Z. vol.48 (1927) p. 1629. (Porcelain, Steatite.)Google Scholar
  16. [234]
    Dettmer, F.: Die Herstellung des Porzellans. Erfahrungen aus dem Betrieb (1938).Google Scholar
  17. [235]
    Donley, H.: Titanate and Strontium Titanate Resonators. R. C. A. Rev. vol. 9 (1948) pp. 218–228.Google Scholar
  18. [236]
    Donley, H.: Effect of Field Strength on Dielectric Properties of Barium Titanate. R. C. A. Rev. vol.8 (1947) p. 533.Google Scholar
  19. [237]
    Durand, M. A.: The Coefficient of Thermal Expansion of Magnesium Oxide. Physics vol. 7 (1936) pp. 297–298, No. 8.Google Scholar
  20. [238]
    Ebert, H., and C. Tingwaldt: Ausdehnungsmessungen bei Temperaturen bis 2000° C. Phys. Z. vol. 37 (1936) pp. 471–475, No. 13.Google Scholar
  21. [239]
    Eitel, W.: Aufbau und Zusammensetzung der technischen anorganischen Isolierstoffe. — R. Vieweg: Elektrotechnische Isolierstoffe (Springer 1937).Google Scholar
  22. [239a]
    Espe, W.: Werkstoffe der Elektrotechnik in Tabellen und Diagrammen. Berlin 1954.Google Scholar
  23. [240]
    Evans, H. J.: Method of Determining the Dielectric Constant and Power Factor of Ceramics at 100 Megacycles as a Function of Temperature. J. Amer. Ceram. Soc. vol.32 (1949) p. 262.Google Scholar
  24. [241]
    Fairchild, C. O., and M. F. Peters: Characteristics of Pyrometric Cones. J. Amer. Ceram. Soc. vol. 9 (1926) pp. 701–743.Google Scholar
  25. [242]
    Fischer, W.: Die elektrische Isolierung in der Wärme. Elektrotechn. Z. vol.58 (1937) p. 479, No. 18.Google Scholar
  26. [243]
    Gerdien, H.: Z. techn. Phys. vol.13 (1932) p. 586. (Sintered Al 2 O 3.)Google Scholar
  27. [244]
    Gimmelmann, J.: Ein keramischer Werkstoff kleiner Wärmeausdehnung. Helios vol. 41 (1935) pp. 920–922, No. 31.Google Scholar
  28. [245]
    Gleason, J. M.: Steatite for High-Frequency Insulation. J. Brit. Inst. Rad. Eng. vol. 6 (1946) pp. 20–32.Google Scholar
  29. [246]
    Handrek, H.: Neuartige Stromeinführungen in Vakuumgefäße. Z. techn. Phys. vol.15 (1934) p. 494.Google Scholar
  30. [247]
    Handrek, H.: Tabelle über keramische Werkstoffe. Elektrotechn. Z. vol. 58 (1937) pp. 475–477.Google Scholar
  31. [248]
    Hausner, H. H.: Metal Ceramics. A New Field of Powder Metallurgy. Proc. of the Fourth Annual Spring Meeting, Metal Powder Assoc. 420 Lexington Ave. New York 17, N.Y. (1950).Google Scholar
  32. [249]
    Hecht, H.: Lehrbuch der Keramik. Berlin 1930.Google Scholar
  33. [250]
    Howatt, G. M., R. G. Breckenridge and J. M. Brownlow: Fabrication of Thin Ceramic Sheets for Capacitors. J. Amer. Ceram. Soc. vol. 30 (1947) pp. 237–241.Google Scholar
  34. [251]
    Ijdens, R. A.: Ceramics and Their Manufacture. Philips Tech. Rev. vol. 10 (1949) pp. 205–213.Google Scholar
  35. [252]
    Javitz, A. E.: Ten New Magnetic Materials. El. Mfg. vol. 40 (1947) pp. 74–78, 194, 196.Google Scholar
  36. [253]
    Jobst, G., and F. Summer: Telefunkenröhre vol.1 (1934) p. 8 — Brit. Pat. 428165/ 33/35. (Screening of insulators.)Google Scholar
  37. [254]
    Johnson, J. R.: Radioactive Tracer Methods Applicable to Ceramic Research. Ceram. Bull. vol. 29 (1950) pp. 16–19.Google Scholar
  38. [255]
    Johnson, P. D.: Behavior of Refractory Oxides and Metals, Alone and in Combination in Vacuo at High Temperatures. J. Amer. Ceram. Soc. vol. 33 (1950) pp. 168 to 171.Google Scholar
  39. [256]
    Junker, E.: Zur Kenntnis des Verhaltens des Titanoxydes beim Erhitzen und seines Verhaltens zu Fe 2 O 3, Na 2 O and MgO. Z. anorg. allg. Chem. vol. 228 (1936) pp. 97 to 111, No. 2.Google Scholar
  40. [257]
    Kawai, Noboru: Formation of Solid Solution between Some Ferrites. J. Soc. Chem. Ind., Japan vol.37 (1934) p. 4.Google Scholar
  41. [257a]
    Kingery, W. D: Ceramic Fabrication Processes. 236 pages. New York: J. Wiley 1958.Google Scholar
  42. [258]
    Klemperer, H.: Heater-Cathode Insulation Performance. Electr. Engng. vol. 55 (1936) pp. 981–985.Google Scholar
  43. [259]
    Kobayashi, Akio, and Hino Hiroo: Effects of Firing Temperature on the Dielectric Properties of Barium Titanate Ceramics. J. Phys. Soc., Japan vol. 6 (1951) pp. 371 to 373, No. 5.Google Scholar
  44. [260]
    Koenig, J. H.: Ceramics for Engineering Applications. Mater. and Meth., Manual 62 vol. 32 (Sept. 1950) pp. 69–84.Google Scholar
  45. [261]
    Kohl, H.: Ber. dtsch. keram. Ges. vol.13 (1932) p. 70 — Keram. Rdsch. vol.41 (1933) p. 75 — Arch. techn. Messen (ATM) vol.1 (1931) p. 96. (Sintered M 2 O 3.)Google Scholar
  46. [262]
    Landolt-Bornstein: Phys. Chem. Tabellen, 1221 (1912).Google Scholar
  47. [263]
    Liebisch, T., and H. Rubens: Preuß. Akad. Wiss. Berlin Ber. vol.8 (1921) p. 211.Google Scholar
  48. [264]
    Lindsay, E. W., and L. J. Berberich: Electrical Properties of Ceramics as Influenced by Temperature. Trans. Amer. Inst. electr. Eng. vol. 67 (1948) pp. 734–742.Google Scholar
  49. [265]
    Lübcke, E., and W. Schottky: Wiss. Veröff. Siemens-Konzern (1) vol.9 (1930) p. 390.Google Scholar
  50. [266]
    Mackay, G. M. J.: Int. Crit. Tables vol.6 (1929) p. 153. (Resistivity of oxides.)Google Scholar
  51. [267]
    Matthias, B. T., R. G. Breckenridge and D.W. Beaumont: Single Crystals of Barium Titanate. Phys. Rev. vol.72 (1947) p. 532.Google Scholar
  52. [268]
    Megaw, H. D.: Crystal Structure of BaTiO 3. Nature vol. 155 (1945) pp. 484–485.Google Scholar
  53. [268a]
    Molthan, W.: Störeffekte durch Streuelektronen. Z. techn. Physik, voll. 14 (1933) p. 233.Google Scholar
  54. [269]
    Navias, L.: Compositions and Properties of Some High-Titania Ceramics. J. Amer. Ceram. Soc. vol. 24 (1941) pp. 148–155.Google Scholar
  55. [270]
    Navias, L.: Extrusion of Refractory Oxide Insulators for Vacuum Tubes. J. Amer. ceram. Soc. vol. 15 (1932) pp. 234–251.Google Scholar
  56. [271]
    Navias, L.: Solid Reactions at 1000 to 1200° C Between MgO or BeO and Ni, Fe, Cr, Mn and Their Oxides. J. Amer. Ceram. Soc. vol. 19 (1936) pp. 1–7. (Order of reactivity: Ni [least]; Fe, Cr, Mn [most]; less reaction with BeO than with MgO.)Google Scholar
  57. [271a]
    Nelson, L. S., and G. P. Spindler: Sealing Glass to Sapphire. Rev. Sci. Instr. vol.29 (1958).Google Scholar
  58. [272]
    Norton, F. H.: Refractories. New York: McGraw-Hill 1949.Google Scholar
  59. [273]
    Norton, F. I.: Organo-Silicon Films. Gen. Electr. Rev. vol. 47 (Aug. 1944) pp. 6–16. (Increase of el. surface leakage resistance of ceramic insulators at high humidity.)Google Scholar
  60. [274]
    Nukoyama, Shiro: Th e Thermal Conductivity of Glass, Chilled Glass, Quartz, Fused Quartz, Bakelite, India Rubber, Coal, Insolite, Porcelain, Slate, Granite and Marble. Trans. Soc. Mech. Eng., Japan vol. 2 (1936) pp. 344–345, No. 8.Google Scholar
  61. [275]
    Palumbo, T. R. (Ceramic Heater Cathode Co., Keyport, N.J.): Ceramic Heaters and Cathodes for Electron Tubes. Symposium on Thermionics held at New York Univ. (Jan./Feb. 1950).Google Scholar
  62. [276]
    Partridge, J. H.: Refractory Materials. Metal Ind. (London vol. 51 (1937) pp. 111 to 114. (Alumina, magnesia, zirconia, thoria, beryllia; shaping and thermal properties.)Google Scholar
  63. [277]
    Partridge, J. H., and J. R. Lait: The Manufacture of Refractory Carbides from Pure Oxides of High Melting Point. J. Soc. Glass Tech. vol. 20 (1936) pp. 200–217.Google Scholar
  64. [278]
    Patrick, W. L.: Fused Magnesia in the Konferrous Metal Industry. Met. Ind. London vol. 48 (1936) pp. 231–232. (Immersion heaters, metals and alloys of higher melting point; 10 ref.).Google Scholar
  65. [279]
    Pfeiffer, R.: Keramische Werkstoffe in der chem. Industrie, im Maschinen-und Behälterbau. Z. VDI vol. 81 (1937) pp. 1088–1090, No. 37.Google Scholar
  66. [280]
    Pirani, M., and H. SchöNborn: Z. techn. Phys. vol.9 (1925) p. 351. (Breakdown-temperatures of insulators.)Google Scholar
  67. [281]
    Pullen, N. D.: Oxide Films on Aluminum. Some of Their Physical Characteristics. Metal Ind., Lond. vol.54 (1939) pp. 327–329. (6 ref.)Google Scholar
  68. [282]
    Riddle, F. H.: Ceramic Spark Plug Insulators. J. Amer. Ceram. Soc. vol. 32 (1949) pp. 333–346.Google Scholar
  69. [283]
    Riecke, R., and A. Ungewiss: Keramische und dielektrische Eigenschaften von ” Massen ausTiO 2, MgO-ZrO. Ber. dtsch. keram. Ges. vol. 17 (1936) pp. 237–264, No.5.Google Scholar
  70. [284]
    Riecke, R.: Die Herstellung des Elektroporzellans. Elektrotechn. Z. vol.57 (1936) p. 469, H. 17.Google Scholar
  71. [285]
    Rigby, G. R.: The Application of Crystal Chemistry to Ceramic Materials. Trans. Brit. Ceram. Soc. vol. 48 (1949) pp. 1–67.Google Scholar
  72. [286]
    Roberts, S.: Dielectric and Piezoelectric Properties of Barium Titanate. Phys. Rev. vol. 71 (1947) pp. 890–895.Google Scholar
  73. [287]
    Rousseau, E.: Die elektrische Leitfähigkeit des Magnesiumoxyds bei hohen Temperaturen. Chim. et Ind. No. Special vol. 31 (1934) pp. 755–758.Google Scholar
  74. [288]
    Rooksby, H. P.: Compounds of Structural Type of Calcium Titanate. Nature vol. 155 (1945) pp. 484–485.Google Scholar
  75. [289]
    Rosenthal, E.: Porcelain and Other Ceramic Insulating Materials, 387 pages. London: Chapman and Hall 1944. (Vol. 1: Raw materials, mfg. processes, testing and characteristics.)Google Scholar
  76. [290]
    Roup, R. R.: Titania Dielectrics. Ceram. Bull. vol.29 (1950) pp. 160–163.Google Scholar
  77. [291]
    Rowland, D. H.: Porcelain for High-Voltage Insulators. Electr. Engng. vol. 55 (1936) pp. 618–626.Google Scholar
  78. [292]
    Ruff, O., and F. Ebert: Beiträge zur Keramik hochfeuerfester Stoffe I. Z. anorg. allg. Chem. vol.180 (1929) p. 40.Google Scholar
  79. [293]
    Russel, R., Jr., and L. J. Berberich: Low-Loss Ceramics. Electronics vol. 17 (1944) pp. 136–142, 338.Google Scholar
  80. [294]
    Russel, R., Jr., and W. G. Mohr: Characteristics of Zircon Porcelain. J. Amer. Ceram. Soc. vol. 30 (1947) pp. 32–35.Google Scholar
  81. [295]
    Ryschkewitsch, R.: Neue Wege zur Eroberung hoher Temperaturen. Die Wärme vol. 60 (1937) pp. 467–471, No. 30.Google Scholar
  82. [296]
    Sato, T.: Eine Methode zur Verringerung der Porosität von aus Aluminiumoxyd hergestellten Schmelzrohren. Technol. Rep. Tohoku Imp. Univ. vol. 11 (1935) pp. 192 to 204, No. 4.Google Scholar
  83. [297]
    Sauermann, G.: Hochfeuerfeste Sonderbaustoffe. Ber. dtsch. keram. Ges. vol. 18 (1937) pp. 74–87, Nr. 2.Google Scholar
  84. [298]
    Schwartzwalder, K.: Injection-Molding of Ceramic Materials. Bull. Amer. Ceram. Soc. vol. 28 (1949) pp. 459–461.Google Scholar
  85. [299]
    Shardlow, L. R.: A New Series of Insulators for Ultra-High-Frequency Tubes. RCA Rev. vol. 5 (1941) pp. 498–504, H. 4.Google Scholar
  86. [300]
    Shelton, G. R., A. S. Creamer and E. L. Bunting: Properties of Barium Magnesium Titanate Dielectrics. J. Amer. Ceram. J. vol. 31 (1948) pp. 205–212.Google Scholar
  87. [301]
    Singer, F.: Geschmolzener Quarz, in Pirani: Elektrothermie. Berlin 1930.Google Scholar
  88. [302]
    Snoek, J. L.: New Developments in Ferromagnetic Materials. New York: Elsevier Publ. Co. 1947.Google Scholar
  89. [303]
    Snoek, J. L.: Non-metallic Materials for High Frequencies. Philips Tech. Rev. vol. 8 (1946) pp. 353–360.Google Scholar
  90. [304]
    Snyder, C. L., E. Albers-Schönberg and H. A. Goldsmith: Magnetic Ferrites, Core Materials for High Frequencies. El. Mfg. vol. 44 (Dec. 1949) pp. 86–91.Google Scholar
  91. [305]
    Sommerfeld, A.: Plastische Massen. Berlin 1934. (Rubber, ceramics, glass, asbestos.)Google Scholar
  92. [306]
    Sosman, R. B.: The Properties of Silica. New York: Reinhold Publ. Corp. 1927.Google Scholar
  93. [307]
    Soyck, W.: Keramische Dielektrika. Schweiz. Arch. angew. Wiss. Techn. vol. 2 (1936) pp. 159–167, No. 7.Google Scholar
  94. [308]
    Soyck, W.: Die chemischen und physikalischen Grundlagen der Hochfrequenzkeramik. Feinmech. u. Präz. vol.50 (1942) p. 225, H. 15/16.Google Scholar
  95. [309]
    Soyck, W.: Hochspannungskondensatoren für Hochfrequenz aus keramischen Werkstoffen. Elektrotechn. u. Masch.-Bau vol. 59 (1941) pp. 243–246, H. 29/30.Google Scholar
  96. [310]
    Steger, W.: Ausdehnungs-und Schwingungsmessungen an ungebrannten keramischen Massen. Ber. dtsch. keram. Ges. vol. 19 (1938) pp. 2–22, No. 1.MathSciNetGoogle Scholar
  97. [311]
    Steger, W.: Beständigkeit und Schutz keramischer Werkstoffe im chemischen Apparatebau (1937).Google Scholar
  98. [312]
    Strutt, M. J. O.: Ferromagnetic Materials and Ferrites. Wireless Engr. vol. 27 (1950) pp. 277–284.Google Scholar
  99. [313]
    Takei, T.: Metallic Oxides as Ferromagnetic Materials. Electr. Engng. Soc. J., Japan vol.59 (1939) p. 6.Google Scholar
  100. [314]
    Thurnauer, H.: Ceramic Insulating Materials. Electr. Engng. vol. 59 (1940) pp. 451 to 459.Google Scholar
  101. [315]
    Thurnauer, H.: High-Frequency Insulation. Ceram. Bull. vol. 29 (1950) pp. 158 to 160.Google Scholar
  102. [316]
    Thurnauer, H.: Properties and Uses of Technical Ceramics. Mater. and Meth. vol. 26 (1947) pp. 87–92.Google Scholar
  103. [317]
    Thomas, Shakespeare, Cohen, Patten and Henri: Ceramic Materials for Synchrotron Vacuum Tubes. Bull. Amer. Phys. Soc. Wash. meeting A5, p. 6 (April 1949).Google Scholar
  104. [318]
    Townsend, B., and F. R. Williams: Heat Insulation Developed for Every Purpose. Chem. and Metallurgical Eng. vol.39 (1932) p. 219.Google Scholar
  105. [319]
    Vieweg, R.: Elektrotechnische Isolierstoffe, Entwicklung, Gestaltung, Verwendung (Schmelzpunkte reiner Oxyde), p. 285. Berlin: Springer 1937.Google Scholar
  106. [320]
    Von Hippel, A., R. G. Breckenridge, F. C. Chesley and L. Isaza: High Dielectric Constant Ceramics. Industr. Engng. Chem. vol. 38 (1946) 1097–1109.Google Scholar
  107. [321]
    Von Hippel, A., and R. J. Maurer: Electric Breakdown of Glasses and Crystals as a Function of Temperature. Phys. Rev. vol. 59 (1941) pp. 820–823.Google Scholar
  108. [322]
    Wagner, E. R.: Electronics vol.7 (1934) p. 104 and 213. (Raw materials for tube manufacturing.)Google Scholar
  109. [323]
    Weber, H.: Die elektrischen Metallfadenglühlampen. Leipzig 1914.Google Scholar
  110. [324]
    Weicker, W., u. a.: Elektrotechn. Z. vol.56 (1935) p. 915 and 937. (Properties of ceramics.)Google Scholar
  111. [325]
    Werner, K.: Sprechsaal vol. 63 (1930) pp. 537, 557, 581, 599, 619. (Resistivity of MgO and Al 2 O 3.)Google Scholar
  112. [326]
    Wilke, R.: Isolierstoffe der HF-Technik. Handbuch der Arbeitsverfahren.Google Scholar
  113. [327]
    Anon.: Richtlinien für die Bestimmung der thermischen Eigenschaften an besonders hergestellten Prüfkörpern. Ber. dtsch. keram. Ges. vol. 8 (1927) pp. 44–57.Google Scholar

References on Mica

  1. [328]
    ASTM Standards, part III-B: Non-metallic Materials. Philadelphia 1946. (Mica stampings, used in electronic devices and incandescent lamps, p. 154.)Google Scholar
  2. [329]
    Becker: Messung von Durchschlagsfeldstärken. Arch. Elektrotechn. vol.30 (1936) p. 419.Google Scholar
  3. [330]
    Bennett, W.: The Stopping Power of Mica for α-particles. Proc. Roy. Soc., Lond. vol. 155 (1936) pp. 419–434.Google Scholar
  4. [331]
    Bogorodizky, N., and M. Malyschew: Arch. Elektrotechn. vol.8 (1934) p. 644. (Electrical conductivity of mica.)Google Scholar
  5. [332]
    British Electrical Research Association: World Power vol.11 (1929) p. 32. (Mechanical Data on Mica.)Google Scholar
  6. [333]
    Chowdbury, R. R.: Handbook of Mica. Brooklyn: Chemical Publ. Co. 1941.Google Scholar
  7. [334]
    Crossley, P. B.: Brit. Pat. 152780/19/20, DRP 378522/19/23. (Micalex.)Google Scholar
  8. [335]
    Donal, J. S., Jr.: Sealing Mica to Glass or Metal to Form a Vacuum-Tight Joint. Rev. Sci. Instr. vol.13 (1942) p. 266.Google Scholar
  9. [335a]
    Espe, W.: Werkstoffe der Elektrotechnik in Tabellen und Diagrammen. Berlin 1954.Google Scholar
  10. [336]
    Fischer, W.: Elektrotechnische Isolierstoffe. Berlin: R. Vieweg (Springer) 1937.Google Scholar
  11. [337]
    Grundke, V., and L. Rohde: Elektrotechn. Z. vol.55 (1934) p. 1214. (Dielectric oss of glass, quartz and ceramic materials.)Google Scholar
  12. [337a]
    Harris, E. J.: Gasket for Mica Windows. J. Sci. Instr. vol.26 (1949) p. 205.Google Scholar
  13. [338]
    Hidnert, P., and G. Dickson: Some Physical Properties of Mica (RP 1675). J. Res. Nat. Bur. Stand. vol. 35 (1945) pp. 353–509.Google Scholar
  14. [339]
    Heinrich, G. C.: Mica: A Review of Design Factors. Electrical Manufacturing (Dec. 1947) pp. 82-87.Google Scholar
  15. [340]
    Jackel, R. D.: Progress in Synthetic Mica. EL Mfg. vol.45 (1950) pp. 99–103, 190, 192.Google Scholar
  16. [341]
    Jobst, G., and F. Sommer: Telefunkenröhre vol.1 (1934) p. 8 — Brit. Pat. 428165/ 33/35. (Screaning of Isolators).Google Scholar
  17. [342]
    Karl, O.: DRP 506622/29/30. (Mica-springs.)Google Scholar
  18. [343]
    Kohl, W. H.: Materials Technology for Electron Tubes. New York 1951.Google Scholar
  19. [344]
    Labeyrie, J.: Vacuum-Tight Sealing of Glass and Mica. (In French.) J. Phys. Radium vol.11 (1950) p. 20.Google Scholar
  20. [345]
    LÜbcke, E., and Schottky: Wiss. Veröff. Siemens-Konzern (1) vol.9 (1930) p. 390. (Hg discharge amplifier.)Google Scholar
  21. [346]
    Mica Fabricators’ Assoc: Handbook on Fabricated Natural Mica. New York 1949. (Stewart N. Clarkson Associates, Inc.)Google Scholar
  22. [347]
    M. O. Valve Co.: Brit. Pat. 378994/31/32 — Brit. Pat. 389170/31/33. (Mica in Catkintubes.)Google Scholar
  23. [347a]
    Olden, T. H.: A Thin Window Cathode Ray Tube for High Speed Printing with „Elektrofax“. RCA Rev. vol. 18 (Sept. 1957) p. 343 (Mica and Glass Electron Window).Google Scholar
  24. [348]
    Powell, R. W., and E. Griffiths: The Variation with Temperature of the Thermal Conductivity and the X-ray Structure of Some Micas. Proc. Roy. Soc., Lond. (A) vol.163 (1937) p. 189.Google Scholar
  25. [349]
    Retzow, U.: Elektrotechn. Z. vol.47 (1926) p. 409, 443. (Micalex.)Google Scholar
  26. [350]
    Robinson, E. Y.: Brit. Pat. 436606/34/35. (Mica springs for tube assemblies.)Google Scholar
  27. [351]
    Rhode, L., and W. Schlegelmilch: Electrotechn. Z. vol.54 (1933) p. 581. (Dielectric loss of glass, quartz, ceramic materials.)Google Scholar
  28. [352]
    Roy, R.: Decomposition and Resynthesis of the Micas. J. Amer. Ceram. Soc. vol. 32 (1949) pp. 202–209.Google Scholar
  29. [353]
    Scholer, K.: Die Glimmerarten und ihre Eigenschaften. Feinmech. u. Präz. vol. 49 (1941) pp. 275, H. 22.Google Scholar
  30. [354]
    Schroder, K., and H. Schering: Die Isolierstoffe der Elektrotechnik. Berlin 1924. Elektrotechn. Z. vol.54 (1933) p. 541. (Mica.)Google Scholar
  31. [355]
    Schroeder, R.: Glimmer und Glimmerprodukte. Elektrotechn. Z. (1933) p. 541, H. 23.Google Scholar
  32. [356]
    Stager, H.: Elektrotechnische Isoliermaterialien. Stuttgart 1931.Google Scholar
  33. [357]
    Straimer, G.: Der Kondensator in der Fernmeldetechnik. Leipzig 1939.Google Scholar
  34. [358]
    Strong, J.: On Splitting Mica. Rev. Sci. Instr. vol. 6 (Aug. 1935) p. 243.Google Scholar
  35. [359]
    Symons, H., and M. Walker. J. Inst. Electr. Engr. vol.48 (1912) p. 674. (Mica.)Google Scholar
  36. [360]
    Walter, A. F., M. A. Gladkich and K. I. Martjuschoff: Dielektrische Verluste in Bor-Glasarten bei hohen Frequenzen. J. techn. Phys. vol. 10 (1940) pp. 1593–1603, No. 19.Google Scholar
  37. [361]
    Wilson: Electrician vol.54 (1904) p. 356. (Breakdown voltages of mica.)Google Scholar
  38. [362]
    Wu, C. S., C. L. Meaker and H. A. Glassford: Thin Window Counter with Special Mica-to-Glass-Seal. Rev. Sci. Instr. vol. 18 (1947) pp. 693–695.Google Scholar
  39. [363]
    Anon.: J. Inst. Electr. Engr. vol.68 (1930) p. 1313. (Mica.)Google Scholar
  40. [364]
    Anon.: AEG-Mitt. 1928, No. 12. (Micalex.)Google Scholar

References on Asbestos

  1. [365]
    ASTM Standards, Part III B: Nonmetallic Materials. Philadelphia 1946. Asbestos pp. 158, 162, 167 and 173.Google Scholar
  2. [365a]
    Espe, W.: Werkstoffe der Elektrotechnik in Tabellen und Diagrammen. Berlin 1954.Google Scholar
  3. [366]
    Fischer, W.: R. Vieweg/Springer (1937) p. 283.Google Scholar
  4. [367]
    Gröber, H.: Forsch. Ing.-Wes. (1911) Heft 104 — Z. VDI vol. 54 (1910) p. 1319.Google Scholar
  5. [368]
    Güntherschulze, A.: Handbuch der Physik, vol. 17. Berlin 1926 — Elektrische Gleichrichter und Ventile, 2. Aufl. Berlin 1929.Google Scholar
  6. [369]
    Hessenbruch, W. (Asbestos). Elektrotechn. Z. vol.60 (1939) p. 866.Google Scholar
  7. [370]
    Nüsselt, W.: Diss. München 1908 — Z. VDI vol.52 (1908) p. 906, 1003.Google Scholar
  8. [371]
    Popp, M.: Kautschuk vol.11 (1935) p. 60. (Asbestos for furnaces.)Google Scholar
  9. [372]
    Schöllmann, W.: Das Ganze der Asbestfabrikation, 3. Aufl. Berlin 1925.Google Scholar
  10. [373]
    Schürmann, E., and W. Esch: Kautschuk vol. 10 (1934) pp. 102, 104, 119. (Asbestos for furnaces.)Google Scholar
  11. [374]
    Schürmann, E., and W. Esch: Über die korrodierenden Einwirkungen von Asbest auf Nickel und dessen Legierungen. Mitt. dtsch. Mat.-Prüf.-Anst. vol. 26 (1935) pp. 109–114, No. 26.Google Scholar
  12. [375]
    Siemens, A.: Siemens-Z. vol.8 (1928) p. 316. (Rectifier gaskets.)Google Scholar
  13. [376]
    Siemens-Schuckert-Werke: DRP. 512976/27/30. (Asbestos in demountable rectifier gaskets.)Google Scholar
  14. [377]
    Sommerfeld, A.: Plastische Massen. Berlin 1934.Google Scholar
  15. [378]
    Stager, H.: Elektrotechnische Isoliermaterialien. Stuttgart 1931.Google Scholar
  16. [379]
    Ullmann, F.: Enzyklopädie der technischen Chemie, 5. Aufl. Wien 1930.Google Scholar

References on Silicon Carbide

  1. [380]
    Cage, J. M.: The Theory of the Immersion Mercury Arc Igniter. Gen Elect. Rev. vol.38 (Oct. 1935) p. 464.Google Scholar
  2. [381]
    Cobine, J. D.: Gaseous Conductors, p. 422. New York 1941.Google Scholar
  3. [382]
    Coblenz, W. W.: International Critical Tables 1929.Google Scholar
  4. [383]
    Dow, W. G., and W. H. Power: AIEE Trans, vol.54 (1935) p. 942.Google Scholar
  5. [383a]
    Espe, W.: Werkstoffe der Elektrotechnik in Tabellen und Diagrammen. Berlin 1954.Google Scholar
  6. [384]
    Kohl, W. H.: Materials Technology for Electron Tubes. New York: Reinhold 1951.Google Scholar
  7. [385]
    Mierdel, G.: Wiss. Veröff. Siemens-Konzern vol.15(part 2) (1936) p. 36.Google Scholar
  8. [386]
    Slepian, G., and L. R. Ludwig: A New Method for Initiating the Cathode of an Arc. Trans. Aiee vol. 52 (June 1933) pp. 464, 643, 693.Google Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations