Advertisement

Base Metals

Chapter

Abstract

The chief base metals used in vacuum tube production are Ni, Fe, Cu, and their alloys, and, to a smaller extent, Al, Be, and Ag

Keywords

Base Metal Discharge Tube Carbonyl Iron Brinell Hardness Ultimate Elongation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Base Metals

General

  1. [1]
    Bedworth, R. E.: The Oxidation of Metals at High Temperatures. J. Inst. Met. vol.29 (1923) p. 576.Google Scholar
  2. [2]
    Donaldson, J. W.: Thermal Conductivities of Metals and Alloys. Metallurgia vol. 12/13 (March 1936) pp. 159–160. (NiCr-alloys, alloy and stainless steels, tool steels, cast irons.)Google Scholar
  3. [3]
    Fast, J. D.: Diffusion of Gases Through Metals. Philips Tech. Rev. vol.6 (1941) pp. 369–376, No. 12; vol.7 (1942) pp. 73-81, No. 3.Google Scholar
  4. [4]
    Schwarz, O.: Die technischen Werkstoffe. Leipzig 1932.Google Scholar
  5. [5]
    Smithells, C. J.: Gases in Metals. Metal Treat, vol.35 (1935) pp. 165–171.Google Scholar

Nickel

  1. [6]
    ASTM-Standards, Part IB: Non-ferrous Metals. Philadelphia 1946. (Nickel and Nickelbase alloys.)Google Scholar
  2. [7]
    Barnes, B. T.: Total Radiation from Polished and from Soot-Covered Nickel. Phys. Rev. vol. 34 (1929) pp. 1026–1030.Google Scholar
  3. [8]
    Baukloh, W.: Giesserei vol.22 (1935) p. 406. (The reduction of H 2 diffusion through iron by aluminizing.)Google Scholar
  4. [9]
    Baukloh, W., and U. F. Kayser: Z. Metallkde. vol.26 (1934) p. 159. (The transmission of H 2 by Ni, Fe, Cu, and alloys.)Google Scholar
  5. [10]
    Borchers, W.: Das Nickel. Halle 1917.Google Scholar
  6. [11]
    Briggs, T. H.: Carbonized Nickel for Radio Tubes. Metals and Alloys vol. 9 (1938) pp. 303–306.Google Scholar
  7. [12]
    Bryce, G.: The Vaporization of Nickel in Vacuo. J. Chem. Soc. (1936) pp. 1517–1518.Google Scholar
  8. [13]
    Bureau of Standards Circular No. 100: Nickel and its Alloys. Washington 1924.Google Scholar
  9. [14]
    Cardwell, A. B.: Photoelectric and Thermionic Properties of Ni. Phys. Rev. vol.76 (1949) p. 125.Google Scholar
  10. [15]
    Carpenter, L. G., and C.F. Stewart: Phil. Mag. vol.25 (1939) pp. 551–564. (Resistance of Ni to melted K.)Google Scholar
  11. [16]
    Chevenard, M. P.: Rev. Nickel 1932, p. 55. (Resistance of NiFe Alloy.)Google Scholar
  12. [17]
    Davies, R. M., and I. H. Thomas: Resistance and Temperature Variation of Nickel. Phil. Mag. vol. 22 (1936) pp. 687–688, 705, 712, No. 148.Google Scholar
  13. [18]
    Delmonte, J.: Wires for Radio Tubes. Wire and Wire Prod. vol. 13 (1938) pp. 9–14, 43-44.Google Scholar
  14. [19]
    Espe, W., and E. B. Steinberg: Aluminium-Clad Iron for Electron Tubes. Tele-Tech. vol.10 (1951) p. 28.Google Scholar
  15. [20]
    Euriger, G.: Z. Phys. vol.96 (1935) p. 37. (Diffusion of hydrogen through nickel.)Google Scholar
  16. [21]
    Fetz, E.: The Temperature of Recrystallization of nickel. Metals and Alloys vol. 8 (1937) pp. 339–344, No. 12. (Earlier studies, carbonyl-nickel, compressed powder, electrolytic nickel; Fig. 1: Diagram of re-crystallization; Fig. 2: Softening by annealing 100 hours at 200° C; references.)Google Scholar
  17. [22]
    Fox, G. W., and R. M. Bowie: A New Method for Determining of Thermionic Work Functions ϕ of Metals and Its Application to Nickel. Phys. Rev. vol. 44 (1933) pp. 345 to 348. (Sample heated by electron bombardment, emission data obtained as the specimen cools. Results: ϕ = 5.03 ±. 05 V; A = 1.38 · 103. A/cm2 degree2.)Google Scholar
  18. [23]
    Gen. Elec. Co.: DRP 332330/17/21. (Stem clamp base for electrodes.)Google Scholar
  19. [24]
    Hamprecht, G., and L. Schlecht: Metallwirtsch. vol.12 (1933) p. 281.Google Scholar
  20. [25]
    Harrison, E. P.: Phil. Mag. vol.7 (1904) p. 626. (Expansion-coefficient.)Google Scholar
  21. [26]
    Jordan, L., and W. H. Swanger: The Properties of Pure Nickel. J. Res. Nat. Bur. Stds. vol. 5 (1930) pp. 1291–1307. (Vacuum-fused electrolytic nickel, purity 99.94%,. see Table 12.)Google Scholar
  22. [27]
    Kohl, W. H.: Materials Technology for Electron Tubes. New York: Reinhold 1951.Google Scholar
  23. [28]
    Kuhlewein, H.: Physik. Z. vol.31 (1930) p. 627. (Demagnetization temperature of wire alloys.)Google Scholar
  24. [29]
    Masing, G., and L. Koch: Z. Metallkde. vol.19 (1927) p. 278. (Effect of S on Ni.)Google Scholar
  25. [30]
    Merica, P. D.: Physical and Mechanical Properties of Nickel. (ASM) Metals Handbook 1936, pp. 1257-1262.Google Scholar
  26. [31]
    Michaelson, H. B.: Work Functions of the Elements. J. Appl. Phys. vol.21 (1950) p. 536.Google Scholar
  27. [32]
    Mudge, W.A.: Manganese-Nickel Alloys. Met. Prog, vol.29 (1936) p. 57, No. 4.Google Scholar
  28. [33]
    Owen, E. A., and E. L. Yates: X-ray Measurement of the Thermal Expansion of Pure Nickel. Phil. Mag. vol. 21 (1936) pp. 809–819, No. 142.Google Scholar
  29. [34]
    Ransley, C. E., and C. J. Smithells: Mechanical Properties of Ni Wires. J. Inst. Met., Lond. vol.49 (1932) p. 287.Google Scholar
  30. [35]
    Rocard, Y. A.: DRP. 539889/29/31. (NiCo for indirectly heated cathcdes.)Google Scholar
  31. [36]
    Rohn, W.: DRP. 558948/29/32. (NiBe, NiTi for vacuum tubes.)Google Scholar
  32. [37]
    Rohn, W.: Z. Metallkde. vol.24 (1932) p. 127. (Increase of creep limit of metals by prefiring.)Google Scholar
  33. [38]
    Schwarz, O.: Die technischen Werkstoffe. Leipzig 1932.Google Scholar
  34. [39]
    Starr, C. (Harvard University): An Improved Method for the Determination of Thermal Diffusivities. Rev. Sci. Instr. vol. 8 (1937) pp. 61–64. (Result: Thermal conductivity of nickel =.618 watts/cm° C.)Google Scholar
  35. [40]
    Sykes, W. P.: Trans. iAmer. Inst. Min. Metallurg. Engrs. vol.64 (1921) p. 780. (Tensile strength of Mo and Ni.)Google Scholar
  36. [41]
    Tamman, G.: Lehrbuch der Metallkunde. Leipzig 1932.Google Scholar
  37. [42]
    Van Dusen, M. S., and S. M. Shelton: J. Res. Nat. Bur. Stds. vol.12 (1934) p. 429. (Heat Conductivity.)Google Scholar
  38. [43]
    Wise, E. M.: The Platinum Metals: A Review of Their Properties and Uses. Electrochem. Soc. vol.97 (1959) pp. 57–64.Google Scholar
  39. [44]
    Wise, E. M.: Nickel in the Radio Industry. Proc. IRE vol. 25 (June 1937) pp. 714–752, No. 6.Google Scholar
  40. [45]
    Wise, E. M., and R. H. Schaefer: The Properties of Pure Ni. Metals and Alloys (Sept., Nov., Dec. 1942) pp. 424, 891 and 1067.Google Scholar
  41. [46]
    Worthing, A. G.: Spectral Fmissivity of Ta, Pt, Ni, and Au as a Function of Temperature, and the Melting Point of Ta. Phys. Rev. vol. 28 (July 1926) pp. 174–189.Google Scholar

Iron

  1. [47]
    ASTM-Standards, Part IA: Ferrous metals. Philadelphia 1946.Google Scholar
  2. [48]
    Austin, J. B.: Industr. Eng. Chem. vol.24 (1932) p. 1225. (Heat capacity data of iron.)Google Scholar
  3. [49]
    Austin, J. B. (II), and R. H. H. Pierce: The Linear Thermal Expansion and Alpha-Gamma Transformation Temperature of Pure Iron. J. Appl. Phys. vol.4 (1933) p. 409. (Carbonyl-iron.)Google Scholar
  4. [50]
    B.B.C. (Brown-Boveri & Cie.): BBC Nachr. vol.22 (1935) p. 27. (H 2 diffusion through water-cooled steel tubes.)Google Scholar
  5. [51]
    Borelius, G. U. S., and Lindblom: Ann. Phys. vol.82 (1927) p. 201. (Diffusion of hydrogen through metal.)Google Scholar
  6. [52]
    Brower, T. E., B. M. Larsen and W. E. Shenk: Critical Studies of a Modified Ledebur Method for Determination of Oxygen in Steel II. Iron and steel div. Aime vol. 113 (1934) pp. 74–78.Google Scholar
  7. [53]
    Bureau of Standards: Carbonyl Iron. J. Franklin. Inst. vol.221 (1936) p. 557, No. 4.Google Scholar
  8. [54]
    Busch, H.: Ann. Phys. vol.64 (1921) p. 404.Google Scholar
  9. [55]
    Chevenard, M. P.: Rev. Nickel (1932) p. 55. (Resistance of nickel-iron alloys.)Google Scholar
  10. [56]
    Cleaves, H. E., and J. G. Thompson: Preparation of Iron Oxide as a Source of High-Purity Iron. J. Res. Nat. Bur. Stds. vol. 18 (Jan–June 1937) pp. 595–607, No. 5. (with references.)Google Scholar
  11. [57]
    Cole, R. A. L., and D. D. Dalzell: The Hydrogen-Filled Iron Wire Ballast lamp. Electr. Comm. vol. 18 (1939) pp. 115–119. (Summary of the theory developed by H. Busch) — Ann. Phys. vol. 64 (1921) p. 401; Fig. 1, p. 115. (Typical voltage-current characteristic.)Google Scholar
  12. [58]
    Cooper-Hewitt, P.: USA-Pat. 1007694 (1908). (Steel rectifier.)Google Scholar
  13. [59]
    Dällenbach, W.: Elektrotechn. Z. vol.55 (1934) p. 89. (Procedure for micro-analysis of gases from metal in mercury-iron rectifiers.)Google Scholar
  14. [60]
    Dällenbach, W., and E. Gebecke: Großgleichrichter ohne Vakuumpumpe (Steel tank mercury rectifier without vacuum pump). Elektrotechn. Z. vol. 57 (1936) pp. 937 to 940, No. 33.Google Scholar
  15. [61]
    Deck, W.: Die Aufzehrung von Gasen durch Eisenwände in Vakuum-Entladungsapparaten und ihre Bedeutung für die Lebensdauer der pumpenlosen Mutatoren. (The clean-up effect on gases of iron walls in vacuum tubes and its significance on the life of pump-less rectifiers.) Brown Boveri Rev. vol. 29 (1942) pp. 202–204, No. 8.Google Scholar
  16. [62]
    Fast, J. D.: Permeation of Gases through Metals. Philips Tech. Rev. vol. 6 (1931) pp. 365–376, No. 12; vol.7 (1942) pp. 74-81, No. 3.Google Scholar
  17. [63]
    Gehlhoff, G.: Lehrbuch der technischen Physik, Bd. III. Die Physik der Stoffe. Leipzig 1928.Google Scholar
  18. [64]
    Hamprecht, G., and L. Schlecht: Metallwirtsch. vol.12 (1933) p. 281. (Sintering carbonyl-nickel and nickel-iron.)Google Scholar
  19. [65]
    Hemsley, S. H.: Diffusion of Hydrogen Through the Walls of Mercury Rectifiers. Beama-J. vol. 41 (1937) pp. 74–76.Google Scholar
  20. [66]
    Issendorff, J. v.: Phys. Z. vol.29 (1928) p. 957. (Hg cathodes.)Google Scholar
  21. [67]
    Issendorff and H. Jungmichl: DRP 461320/26/28.Google Scholar
  22. [68]
    Kenyon, R. L.: Physical and Mechanical Properties of Iron. (ASM) Metals Handbook 1936, pp. 304-327.Google Scholar
  23. [69]
    Krais, P.: Werkstoffe. Leipzig 1921.Google Scholar
  24. [70]
    Kraus, A., and W. Mailey: Sealed-off Iron Rectifiers. U.S. Patent 1046081.Google Scholar
  25. [71]
    Lehmann, W.: Brit. Pat. 404283, 1931. (Cooling of rectifiers with iron walls without H-Ions.)Google Scholar
  26. [72]
    Lewkonja, G., and W. Baukloh: Z. Metallkde. vol.25 (1933) p. 309. (Diffusion of H 2 through Iron.)Google Scholar
  27. [73]
    Linn, A.: DRP 567471/30/33; DRP 585350/30/33.Google Scholar
  28. [74]
    Livingston, O. W., and W.J. Walker: Gas-filled Electronic Tubes. Gen. Electr. Rev. vol. 41 (1938) pp. 354–360, No. 8. (Iron bulbs for pool and ignitron tubes.)Google Scholar
  29. [75]
    Lubszynski, G.: Diss. Technische Hochschule Berlin 1933. (The screening effect of iron and copper.)Google Scholar
  30. [76]
    McMaster, L. L. Jr.: Power Tube Manufacturing Problems. Radio Engineering vol. 16 (1936) pp. 11–12. (Iron anodes.)Google Scholar
  31. [77]
    Messkin, W. S., and A. Kussman: Die ferromagnetischen Legierungen. Berlin 1932.Google Scholar
  32. [78]
    Mittasch, A.: Z. angew. Chem. vol.41 (1928) p. 832.Google Scholar
  33. [79]
    Mulder, G.W.: Philips Tech. Rev. vol.3 (1938) pp. 74–79, No. 3. (Barretters.)Google Scholar
  34. [80]
    Packard, D., and J. H. Hutchins: Sealed-off Ignitrons for Welding Control. Electr. Engr. vol. 56 (1937) pp. 37–40 and 66, No. 1. (Bulb made from stainless steel for preventing corrosion and hydrogen diffusion; hydrogen concentration in ordinary tap water — 10−7 moles/per liter. Fernico seals.)Google Scholar
  35. [81]
    Powell, R.W.: Proc. Phys. Soc., Lond. (5) vol.46 (1934) p. 659. (Thermal conductivity and resistance of iron.)Google Scholar
  36. [82]
    Powell, R.W.: Proc. Phys. Soc. vol.51 (1939) p. 410. (Thermal Conductivity) and p. 416 (el. resistivity).Google Scholar
  37. [83]
    Remscheid, E. J.: The Water-cooled Steel Tank Rectifier Corrosion Problem. Elect. Engrs. vol. 60 (1941) pp. 173–178. (Fig. 3 electrolytic corrosion.)Google Scholar
  38. [84]
    Ribbeck, F.: Z. Phys. vol.38 (1926) p. 725; vol. 39 (1926) p. 798. (Specific Resistance of Ni, Fe-Alloys.)Google Scholar
  39. [85]
    Schenkel, M.: DRP 372588/18/23. (Use of pure iron in discharge tubes.)Google Scholar
  40. [86]
    Schlecht, L., u. a.: Z. Electrochem. vol.37 (1931) p. 485. (Sintering of carbonyliron.)Google Scholar
  41. [87]
    Schwarz, O. (1): Die technischen Werkstoffe. Leipzig 1932.Google Scholar
  42. [88]
    Schwarzenbruch, H.A.: Ann. Phys. (5) vol.17 (1933) p. 385. (Nickel anodes in magnetic fields.)Google Scholar
  43. [89]
    Sibjeholm, G.: Untersuchung über die glühelektrische Emission des Eisens (Electron emission of iron). Ann. Phys. vol.10 (1931) p. 178.Google Scholar
  44. [90]
    Simon, H.: Herstellung von Glühelektroden, in Wien-Harms: Handbuch der Experimental-Physik vol. 13, Teil II. 1929.Google Scholar
  45. [91]
    Smithells, C. J., and C. E. Ransley: Proc. Roy. Soc., Lond. vol.150 (1935) p. 172. (The diffusion of gases in metals.)Google Scholar
  46. [92]
    SSW (Siemens-Schuckert-Werke): DKP 589526/28/33. (Spray-ignition of mercury rectifiers with Fe envelopes.)Google Scholar
  47. [93]
    Tammann, G.: Lehrbuch der Metallkunde, 4. Aufl. Leipzig 1932.Google Scholar
  48. [94]
    Thompson, J. G., and H. E. Cleaves: A Summary of Information on the Preparation and Properties of Pure Iron. J. Res. Nat. Bur. Stand, vol. 16 (Jan–June 1936) pp. 105 to 130, No. 2 (with 72 references.)Google Scholar
  49. [95]
    Todd, H. C. (1): Radio Eng. vol. 12 (Sept. 1932) p. 18. (Svea iron for electrodes, physical data, working methods.)Google Scholar
  50. [96]
    Ullmann, F.: Enzyklopädie der technischen Chemie, 5. Aufl. Wien 1930.Google Scholar
  51. [97]
    Ungelenk, A.: Fortschr. Röntgenstr. vol.49 (1934) p. 166. (Rotating anodes of tungsten.)Google Scholar
  52. [98]
    Ungelenk and Wiehr J.: Z. VDI vol.74 (1930) p. 431. (X-ray tube construction.)Google Scholar
  53. [99]
    Van Brunt, Ch., and E. J. Reinscheid: Retarding Corrosion in the Water Systems of Power Rectifiers. Gen. Elect. Rev. vol. 39 (1936) pp. 128–130, No. 3. (Sodium di-chrornate as passivating agent improves the vacuum by preventing hydrogen diffusion through iron walls.)Google Scholar
  54. [100]
    Wendt, K.: Krupp Mh. vol.3 (1922) p. 133; vol. 6 (1925) p. 29. (Calorization of molten iron.)Google Scholar
  55. [101]
    Werkstoffhandbuch: Stahl u. Eisen. Düsseldorf 1927.Google Scholar

Copper

  1. [102]
    Anderson, P. A.: The WTork Function of Copper. Phys. Rev. vol. 76 (1949) pp. 388 to 390.Google Scholar
  2. [103]
    ASTM-Standards, Part IB: Non-ferrous Metals. Philadelphia 1946. (Copper and copper-base alloys.)Google Scholar
  3. [104]
    Borchers, W.: Das Kupfer. Halle a. S. 1915.Google Scholar
  4. [105]
    Boukloh, W. (3), and F. Kayser: Z. Metallkde. vol.26 (1934) p. 159. (H 2 permeability of Ni, Fe, Ca and alloys.)Google Scholar
  5. [106]
    Boumeester, H. G.: Development and Manufacture of Modern Transmitting Valves. Philips Tech. Rev. vol.2 (1937) pp. 115–121, No. 4.Google Scholar
  6. [107]
    Bureau of Standards: Copper. Circ. No. 73, Washington (1918) p. 103.Google Scholar
  7. [108]
    Coolidge, W. D.: J. Roentgen Soc. vol.15 (1921) p. 3787. (Casting of W-anticathodes in vacuo.)Google Scholar
  8. [109]
    Dalzell, R. C: Copper in Electronic Tubes. Electronics vol. 22 (April 1949) pp. 164 to 170.Google Scholar
  9. [110]
    Davis, E. A.: Creep and Relaxation of Oxygen-Free Copper. J. Appl. Mech. vol. 10 (1943) pp. A101–A105. (Up to 235° C.)Google Scholar
  10. [111]
    Ellis, W. C., F. L. Morgan and G. F. Sager: The Thermal Conductivities of Copper and Nickel and Some Alloys of Nickel. Rensselaer Polytechn. Inst. Bull. Eng. Sci. ser. No. 21 (1928).Google Scholar
  11. [111a]
    Fischer, A.: Verdampfungskühlung von Senderöhren und HF-Generatoren. Siemens-Z. vol. 30 (1956) pp. 69–73.Google Scholar
  12. [111b]
    Fick, J. B., H. D. Hagstrum and P. L. Hartman: The Bell System Techn. Journal vol. 25 (April 46) No. 2 pp. 167-348.Google Scholar
  13. [112]
    Fox, F. A.: Copper and Its Alloys. Machinery, Lond. vol. 52 (1938) pp. 39–43, No. 1331.Google Scholar
  14. [113]
    Fujumoto, U.: USA. Pat. 1621926/22/23. (Rotary anode X-ray tubes.)Google Scholar
  15. [114]
    Gehrts, A., and A. Semm: Naturwiss. vol.23 (1935) p. 587. (Transmitting tubes.)Google Scholar
  16. [115]
    Housekeeper, W. G. (1): The Art of Sealing Base Metals Through Glass. J. Aiee vol. 42 (1923) pp. 870–876. (Cu-glass seals.)Google Scholar
  17. [116]
    Housekeeper, W. G. (2): USA-Patent 1560690 (1923). (Cu-Anodes.)Google Scholar
  18. [117]
    Huth, E. F., G. m. b. H.: DRP 492046/15/30. (Exterior cooled copper anodes.)Google Scholar
  19. [118]
    Jenkins, W. D., and T. G. Digges: Creep of High-Purity Copper. J. Res. Nat. Bur. Stds. (1950).Google Scholar
  20. [119]
    Karl, O.: DRP 516310/28/31. (Joining copper foil-ribbons to glass.)Google Scholar
  21. [120]
    Kohl, W. H.: Materials Technology for Electron Tubes. New York 1951.Google Scholar
  22. [121]
    Kruh, O.: DRP 424133/17/26. (Copper sheath for glass to metal seals.)Google Scholar
  23. [122]
    Miller, H. J.: Oxygen in Copper. Metal Treat, vol. 1 (1935) pp. 191–194) (with references).Google Scholar
  24. [123]
    Parker, E. R.: The Effect of Impurities on Some High-Temp. Properties of Cu. Trans. Amer. Soc. Met. vol.29 (1941).Google Scholar
  25. [123a]
    Pfetscher, O.: Moderne Großleistungssenderöhren. Elektronische Rundschau, Heft 9 (Sept. 1956) pp. 237–241.Google Scholar
  26. [124]
    Picken, W. I.: Wireless section, chairman’s address. Inst. Electr. Eng. vol. 88 (1941) pp. 38–46, No. 1. (Abstract about development of transmitting valves. Fig. 1 to 13 transmitting tubes with water-or air-cooled Cu-ancdes.)Google Scholar
  27. [125]
    Philips Gloeilampen Fabricken (1): French Patent 764126, 1932. (Cu-sleeve for indirectly heated cathodes.)Google Scholar
  28. [126]
    Rassow, E., and L. Velde: Z. Metallkde. vol.12 (1920) p. 369. (Recrystallization diagram of copper.)Google Scholar
  29. [127]
    Richard, J. T.: Beryllium-Copper. Mater. and Meth. vol.31 (1950) Manual No. 58 pp. 70–90.Google Scholar
  30. [128]
    Röntgen, P., and F. Möller: Metallwirtsch. vol.13 (1934) p. 81, 97. (Solubility of gases in copper and aluminium.)Google Scholar
  31. [129]
    Schwarz, O. (1): Die technischen Werkstoffe. Leipzig 1932.Google Scholar
  32. [130]
    S. and H. (Siemens & Halske): DRP 404096/21/24. (Glass to copper seals.)Google Scholar
  33. [131]
    Skaupy, F.: Metallkeramik. Berlin 1930.Google Scholar
  34. [132]
    Smithells, C. J., and C. E. Ransley: Proc. Roy. Soc., Lond. vol.150 (1935) p. 172. (Diffusion of gases through metals.)Google Scholar
  35. [133]
    Stauffer, R. A., K. Fox and W. O. Di Pietro: Vacuum Melting and Casting of Copper. Ind. and Eng. Chem. vol. 40 (1948) pp. 820–825.Google Scholar
  36. [134]
    Tafel, V.: Lehrbuch der Metallhüttenkunde. 2 Bde. Leipzig 1927 u. 1929.Google Scholar
  37. [135]
    M. O. Valve Co.: Brit. Pat. 378994/31/32; 389170/31/33.Google Scholar
  38. [136]
    Anon.: The Vapour Pressure of Copper and Iron. J. Amer. Chem. Soc. vol.59 (1937) p. 1163.Google Scholar
  39. [137]
    Anon.: Production of Oxygen-free Electrolytic Copper. Metal Ind., Lond. vol.40 (June 1932) p. 617. (Abstract from Metallwirtschaft No. 5, 1932.)Google Scholar

Aluminum

  1. [138]
    Anderson, S.: Mechanism of Electrolytic Oxydization of Aluminum. J. Appl. Phys. vol. 15 (1944) pp. 477–480.Google Scholar
  2. [139]
    ASTM-Standards, Part IB: Non-Ferrous Metals. Philadelphia 1946. (Aluminium and aluminium-base alloys.)Google Scholar
  3. [140]
    Beesching, R.: The Structure of Aluminum, Chromium and Copper Films, Evaporated on Glass. Phil. Mag. vol. 22 (1936) pp. 938–950, No. 150.Google Scholar
  4. [141]
    Bohner, H.: Metall u. Erz vol.30 (1933) p. 334. (Manufacture of pure aluminum.)Google Scholar
  5. [142]
    Borchers, W.: Aluminium. Balle a. S. 1921.Google Scholar
  6. [143]
    Borries, B. v., and M. Knoll: Phys. Z. vol.35 (1935) p. 279.Google Scholar
  7. [144]
    Dana, W., C. S. Taylor and L. A. Willey: The Properties of High Purity Aluminum. Metals & Alloys vol. 9 (1938) pp. 189–192, No. 8.Google Scholar
  8. [145]
    Gentner, K., and W. Rollwagen: The Distribution of Energy-Absorption of Cathode Rays in Aluminum. Phys. Z. vol.37 (1936) pp. 214–215, No. 5.Google Scholar
  9. [146]
    Knoll, M., and B. v. Borries: Elektrotechn. Z. vol.11 (1930) p. 493.Google Scholar
  10. [147]
    Knoll, M.: Z. techn. Phys. vol.11 (1930) p. 491.Google Scholar
  11. [148]
    Knoll, M., H. Knoblauch and B. v. Borries: Elektrotechn. Z. vol.51 (1930) p.Google Scholar
  12. [149]
    Knoll, M., and B. v. Borries: Z. techn. Phys. vol.11 (1930) p. 111.Google Scholar
  13. [150]
    Krais, P.: Werkstoffe. Leipzig 1921.Google Scholar
  14. [151]
    Nichols, E. C. (Mount Wilson Obs.): A Non-Porous Aluminum Alloy for Vacuum-Chamber Castings. J. Opt. Soc. Amer. vol. 19 (1929) pp. 164–165. (Silicon-aluminum: 5% Si, 95% Al.)Google Scholar
  15. [152]
    Rassow, E., and L. Velde: Z. Metallkde. vol.13 (1921) p. 557. (Recrystallization diagram of Al.)Google Scholar
  16. [153]
    Regelsberger, F.: Aluminum, in Ullmann: Encyclopedia of Technical Chemistry, 2. Aufl., vol. 1. 1928.Google Scholar
  17. [154]
    Röntgen, P., and F. Möller: Metallwirtsch. vol.13 (1934) p. 81, 97. (Solubility of gases in copper and aluminum.)Google Scholar
  18. [155]
    Smith, H. A.: Fatigue and Crystal Recovery in Aluminum. J. Appl. Phys. vol. 5 (1934) pp. 412–414. (Commercially pure Al for transmission cables.)Google Scholar
  19. [156]
    Strong, J. (Cal. Inst. Tech.): Evaporation Technique for Aluminum. Phys. Rev. vol.43 (1933) p. 498. (Dimensions of tungsten helix in evaporation.)Google Scholar
  20. [157]
    Taylor, C. S., and others: High-purity Aluminum. Metal Ind., Lond. vol. 53 (1938) pp. 247–249, No. 11.Google Scholar
  21. [157a]
    Werkstoffhandbuch: Nichteisenmetalle. Berlin 1928.Google Scholar
  22. [158]
    Anon.: The Alfol System of Heat Insulation (AI as an insulating material). Metal Ind., Lond. vol. 40 (Feb. 1932) p. 205. (Foil-thickness about.0003 inches; 3 layers of foil = 1 inch of insulation thickness; used for baking furnaces.)Google Scholar

Indium

  1. [159]
    Kohlrausch, F.: Praktische Physik, vol. 2. Stuttgart: Teubner 1956.Google Scholar
  2. [160]
    Römpp, H.: Chemie-Lexikon, vol. 1. Stuttgart: Franckh 1952.Google Scholar
  3. [161]
    DAns, J., and E. Lax: Taschenbuch für Physiker und Chemiker. Berlin/Göttingen/ Heidelberg: Springer 1949.Google Scholar
  4. [162]
    Mellor, J. W.: Inorganic and Theoretical Chemistry, vol. 5 (1952) pp. 387–405, London: Longmans.Google Scholar
  5. [163]
    Gmelin: Handbuch der anorganischen Chemie, vol. 37 (1936).Google Scholar

Silver

  1. [164]
    Bureau of Standards: Silver, Its Properties and Industrial Uses. Circular C 412, Washington 1937; J. Franklin Inst. vol.223 (1937) p. 104, No. 1.Google Scholar
  2. [165]
    Jonhson, F. M. G., and P. Larose: Amer. Chem. Soc. vol.49 (1927) p. 312. (Equation for diffusion of O 2 through Ag.)Google Scholar
  3. [166]
    Krais, P.: Werkstoffe. Leipzig 1921.Google Scholar
  4. [167]
    Laatsch, W.: Die Edelmetalle. Berlin 1925.Google Scholar
  5. [168]
    Taylor, J. B. (Gen. El. CO.): A Convenient Method for Introducing Oxygen Into Evacuated Systems. Rev. Sci. Instr. vol.6 (1935) p. 243A. (Silver tube 3 mm diameter, 5 mil walls, (heated in air at a length 3 cm) gives increase of pressure of 100 microns per minute for 500 cm3 bulb.)Google Scholar

Beryllium

  1. [169]
    Atlee, Z. J.: Gen. Elect. Rev. vol. 46 (April 1943) p. 233. (Beryllium windows.)Google Scholar
  2. [170]
    Beryllium Corporation of Pennsylvania (Reading, Pa.): Properties of Be.Google Scholar
  3. [171]
    Brush Beryllium Corp., Cleveland, Ohio: Properties of Pure, Vacuum-Melted Be.Google Scholar
  4. [172]
    Brackney, H., and Z. J. Attlee (Gen. El. Co., Chicago): Beryllium Windows for Permanently Evacuated X-ray Tubes. Rev. Sci. Instr. vol. 14 (1943) pp. 59–63. (Fig. 1: X-ray transmission of windows used in diffraction tubes; Fig. 2: X-ray transmission of beryllium and Lindemann glass for the K 1 radiations commonly used in diffraction work; Fig. 6: X-ray-transmission through.010″ Be; Be window for sealed-off tubes is silver-soldered to a small ring, which is brazed to a Fernico or kovar sleeve, sealed in a hard-glass envelope.)Google Scholar
  5. [173]
    Clausen, G. E., and Skehan, J. W.: Malleable Beryllium. Metals & Alloys vol.15 (April 1942) p. 599. (Obtained by addition of.5% Ti or Zr as reducing agents; hot-rolling in nickel envelopes.)Google Scholar
  6. [174]
    Crane, H. R. (Univ. Michigan): Note on Making Beryllium Targets. Rev. Sci. Instr. vol. 9 (Dec. 1938) p. 428 (A). (Soldering of a Be-block onto a backing piece with ammonium chloride and wire solder, for cyclotron targets.)Google Scholar
  7. [175]
    Folsom, T. R., and G. Ferlazzo (Memorial Hospital, N. Y. C): Aaas meeting, Dec. 28, 1936. (Evaporation of Be-flakes for films of 10−4 to 10−3 cm thickness.)Google Scholar
  8. [176]
    Gmelin: Handbuch der anorganischen Chemie, 8. Aufl., vol. Beryllium. Berlin 1930.Google Scholar
  9. [177]
    Güntherschulze, A.: Z. Phys. vol.36 (1926) p. 563; vol. 37 (1926) p. 868; vol. 38 (1926) p. 575; vol. 62 (1930) p. 607; vol. 71 (1931) p. 279. (Cathode poisoning.)Google Scholar
  10. [178]
    Hasterlik, R. J.: Beryllium Poisoning. Physics Today vol. 2 (June 1949) p. 14. (25 micrograms per cubic meter causes disease; disease may be delayed for 5 years.)Google Scholar
  11. [179]
    Hausser, K. W., A. Bardehle and G. Heisen: Fortschr. Röntgenstr. vol.35 (1926) p. 643. (Beryllium X-ray window.)Google Scholar
  12. [180]
    Illig, K.: Wiss. Veröff. Siemens-Konzern vol. 8 (1929) Heft 1, p. 75. (Technology of beryllium.)Google Scholar
  13. [181]
    Jacobs, R. B. (Harvard): X-ray Diffraction of Substances Under High Pressures. Phys. Rev. vol. 53 (Sept. 1938) pp. 325–331. (Be window up to 5000 ohm.)Google Scholar
  14. [182]
    Klug, H. P. (Univ. Minnesota): Beryllium Window for X-ray Tubes. Rev. Sci. Instr. vol. 12 (1941) pp. 155–156. (Demountable tube, description of grinding to.008″ thickness.)Google Scholar
  15. [183]
    Kroll, W.: Metallwirtsch. vol.13 (1934) p. 725Google Scholar
  16. [184]
    Kroll, W.: The Reduction of Beryllium Oxide. Z. anorg. allg. Chem. vol.240 (1939) p. 331.Google Scholar
  17. [185]
    Kroll, W.: Is Beryllium Ductile? Metals and Alloys vol. 8 (1937) pp. 349–353, No. 12.Google Scholar
  18. [186]
    Machlett, R. R.: An Improved X-ray Tube for Diffraction Analysis. J. Appl. Phys. vol.13 (1942) p. 398. (Be-windows.)Google Scholar
  19. [187]
    Owen, E. A., and T. LL. Richards: On the Thermal Expansion of Beryllium. Phil. Mag. vol. 22 (1936) pp. 304–311, No. 146.Google Scholar
  20. [188]
    Powell, R. W.: The Thermal and Electrical Conductivities of Be. Phil. Mag. vol.44 (1953) p. 645.Google Scholar
  21. [189]
    Rogers, T. H.: High-Intensity Radiation from Beryllium-Window X-ray Tubes. Radiology vol.48 (1947) p. 594. (Flat [40 degree] and dome [180 degree] windows.)Google Scholar
  22. [190]
    Rogers, T. H.: A High-Intensity Source of Long Wavelength X-rays. Proc. IRE vol.35 (1947) p. 236. (Domed Be-window tube 50 KV, 50 mA for processing of materials.)Google Scholar
  23. [191]
    Sawyer, C.B.: Yale Sci. Mag. vol.16 (1941) p. 11. (Hot-rolling process of Be.)Google Scholar
  24. [192]
    Sawyer, C.B., and B. Kiellgren: Beryllium and Some of Its Aluminum Alloys. Metals & Alloys vol. 11 (June 1940) p. 163.Google Scholar
  25. [193]
    Siemens-Reiniger Werke: DRP 473930/25/29. (Hollow X-ray tube anticathode made from W-Cu with Be-window.)Google Scholar
  26. [194]
    Sloman, H.A.: Researches on Beryllium. J. Inst. Met. vol.49 (1932) p. 365.Google Scholar
  27. [195]
    Sloman, H.A.: Met. Ind., Lond. vol.64 (1934) p. 160, 183. (Manufacturing and properties of pure Be.)Google Scholar
  28. [196]
    Stott, L. L.: Properties and Alloys of Beryllium. Trans. Amer. Inst. Min. Metallurg. Engng. vol.122 (1936) p. 57.Google Scholar
  29. [197]
    Stock, A.: Beryllium. Med. Ind., Lond. vol.40 (1932) pp. 661–664. (Historical, manufacturing, properties.)Google Scholar
  30. [198]
    Stock, A., and H. Goldschmidt: DRP 375824/21/23.Google Scholar
  31. [199]
    Van Atta, L. C., A. M. Glogston and H. O. Puls (M. LT.): Note on Making Be-Targets. Rev. Sci. Instr. vol.10 (1939) p. 148, No. 4. (Max. thickness by evaporation 10−3cm; thicker coatings by heating Be grains on a copper target; used up to 2 MeV and 100 µA/cm2 ion current.)Google Scholar

Mercury

  1. [200]
    Angerer, E. v.: Technische Kunstgriffe bei physikalischen Untersuchungen, 2. Aufl. Braunschweig 1928.Google Scholar
  2. [201]
    De Haas, W. J., and H. Bremmer: Determination of Heat Resistance of Mercury at the Temperatures Obtainable with Liquid Helium. Physica, Haag vol. 3 (1936) pp. 678 to 691, No. 7. (Minimum at 3.8° K.)Google Scholar
  3. [202]
    Dushmast, S.: Scientific Foundations of Vacuum Technique. New York 1949. (Chapters 7 to 10: Sorption phenomena.)Google Scholar
  4. [203]
    Eltenton, G. C. (Shell Co.): Note on Mercury Poisoning. Rev. Sci. Instr. vol.10 (1939) p. 68. (Measures for reducing chronic mercury poisoning in laboratories.)Google Scholar
  5. [204]
    Gaede, W. Z. techn. Phys. vol.4 (1923) p. 337.Google Scholar
  6. [205]
    Gen. El. Co.: Mercury-Vapour Detector Uses Color Comparison. Electronics vol.9 (1936) p. 44. (Yellowish Se-sulphide (SeS 2) which turns brown when exposed to Hg vapour pressure 10−5 10−6 mm.) — One in a hundred million. Gen. Elect. Rev. vol. 39 (1936) p. 309, No. 6 — Msrcury vapour detector for plants. Electronics vol. 18 (April 1945) p. 176. (Scattering of the mercury 2537 resonance line by Hg vapour; limit one part in 200,000,000.)Google Scholar
  7. [205a]
    Goetz, A.: Physik und Technik des Hochvakuums. Braunschweig 1926.Google Scholar
  8. [206]
    Goodman, C.: Mercuring Poisoning. A Review of Present Knowledge. Rev. Sci. Instr. vol. 9 (1938) pp. 233–236, No. 8.Google Scholar
  9. [207]
    Güntherschulze, A.: Handbuch der Physik, vol. 17. Berlin 1926 — Elektrische Gleichrichter und Ventile, 2. Aufl. Berlin 1929.Google Scholar
  10. [208]
    Hall, W. C: The Thermal Conductivities of Mercury, Sodium and Sodium Amalgams in the Liquid State. Phys. Rev. vol. 53 (1938) pp. 1004–1009.Google Scholar
  11. [209]
    Hellmuth, F. H.: Der Argonalgleichrichter. Leipzig 1933; Helios, Lpz. vol.41 (1935) p. 33. (Gas-Expansion Lamp.)Google Scholar
  12. [210]
    Hildebrand, J. H.: J. Amer. Chem. Soc. vol.35 (1913) p. 513. (Amalgams of alkali metals.)Google Scholar
  13. [211]
    Innes, M., and H. W. Gould: Metallurgy of Quicksilver. Handbook of Non-ferrous Metallurgy, vol.2. New York: McGraw Hill (1926) pp. 1226–1257.Google Scholar
  14. [212]
    Klein, K.: Verbesserte Quecksilberreinigung (Improved purification of mercury). Chem. Fabrik vol. 10 (1937) pp. 150–151, No. 13/14.Google Scholar
  15. [213]
    Knoll, M., F. Ollendorfe und E. Rompe: Gasentladungstabellen. Berlin 1935.Google Scholar
  16. [214]
    Krais, P.: Werkstoffe. Leipzig 1921.Google Scholar
  17. [215]
    Kohlrausch, F.: Lehrbuch der praktischen Physik. Leipzig 1930.Google Scholar
  18. [216]
    Leighton, W. G., and P. A. Leighton: J. Chem. Education vol.12 (1935) p. 139. (Optical methods for detection of mercury vapour.)Google Scholar
  19. [217]
    Lobb, G. W., and J. Bell: An Improved Form of High-Vacuum Cut-Off. J. Sci. Instr. vol. 12 (1935) pp. 14–17. (Uses LiBi amalgam, saturation pressure 6·10−8mm at freezing point-44° C; contents.2% Li,.1% Bi;Fig. 3: sat. pressure of amalgams.)Google Scholar
  20. [218]
    Mason, R. (Westinghouse Co.): The Reflection Coefficient of Mercury. J. Appl. Phys. vol. 9 (1938) pp. 535, 539.Google Scholar
  21. [219]
    Nordlander, B. W.: J. Ind. and Engr. Chem. vol. 19 (1927) vol. 518. (SeS 2 method.)Google Scholar
  22. [220]
    Prince, D. C., and F. B. Vogdes: Principles of Mercury-Arc Rectifiers. London 1927.Google Scholar
  23. [221]
    Ptizin, S.: The Absorption of Gases by Mercury. J. Techn. Phys. Ussr vol. 2 (1935) pp. 66–78, No. 1.Google Scholar
  24. [222]
    Ramsay, W.: J. Chem. Soc., Lond. vol.55 (1889) p. 530. (Amalgams of alkali metals.)Google Scholar
  25. [223]
    Ricker, N. H. (Rice Inst., Houston, Texas): The Luminosity of Mercury Vapour Distilled from the Arc in Vacuo. Phys. Rev. vol. 17 (1921) pp. 195–226. (Produced during the recombination of positive and negative ions.)Google Scholar
  26. [224]
    Rohn, W. (B.): Z. Instrumentenkde. vol.34 (1914) p. 349. (Apparatus for distillation of Hg.)Google Scholar
  27. [225]
    Shephard, M., S. Schuhman, R. H. Flinn, J. W. Hough and P. A. Neal: Hazard of Mercury Vapour in Scientific Laboratories. J. Res. Nat. Bur. Stds. vol. 26 (May 1941) pp. 357–375, No. 5. (Detector, local sources, amount and reduction of vapour, respiratory experiments, medical examination of 38 workers, max. dose is 100 mg of Hg per m3 of air; 12 references.)Google Scholar
  28. [226]
    Slepian, J., and W. M. Brubacker: Condensation of Mercury in Mercury-Arc Tubes. Electr. Engng. Trans, vol. 59 (July 1940) pp. 381–384, No. 7. (Increase of condensing efficiency of water-cooled steel surfaces by positive-ion bombardement.)Google Scholar
  29. [227]
    Stock, A.: Z. angew. Chem. vol.47 (1934) p. 64. (Use of iodine charcoal as absorbent, also for masks.)Google Scholar
  30. [228]
    Stock, A., and F. Cucuez: Ber. dtsch. chem. Ges. vol.67 (1934).Google Scholar
  31. [229]
    Strong, J.: Procedures in Experimental Physics, p. 540. New York: Prentice-Hall 1943. (Mercury.)Google Scholar
  32. [230]
    Tafel, V.: Lehrbuch der Metallhüttenkunde, vol. 2. Leipzig 1927 und 1929.Google Scholar
  33. [231]
    Tonks, L. (Gen. Elec. Co.): The Rate of Vaporization of Mercury from an Anchored Cathode Spot. Phys. Rev. (1938) pp. 634-639. (Rate of evap. increases with arc current, temperature and exposed area.)Google Scholar
  34. [232]
    Ullman, F.: Enzyklopädie der technischen Chemie, 5. Aufl. Wien 1930.Google Scholar
  35. [233]
    Weiller, P. G.: Notes on the Manufacture of Mercury Vapour Rectifier Tubes. Electronics vol. 6 (1933) pp. 99–101.Google Scholar
  36. [234]
    Woodson. T. T. (Gen. Elec. Co.): A New Mercury Vapour Detector. Rev. Sci. Instr. vol. 10 (1939) pp. 308–311. (Optical type, useful range from one part per million to one part per billion by volume.)Google Scholar
  37. [235]
    Woytacek, C.: Lehrbuch der Glasbläserei. Wien 1932.Google Scholar

Alkali Metals, Alkali Earths, Incl. Alloys

  1. [236]
    Aichel, O., and L. Weiss: Über die Reduktion von Metalloxyden mit Hilfe von Ceritmetallen. Ann. Chem. vol.337 (1904) p. 370.Google Scholar
  2. [237]
    Andreew, K. K.: Phys. J. Ussr vol.6 (1934) p. 121. (Calcium-Azide.)Google Scholar
  3. [238]
    Angerer, E.V.: Technische Kunstgriffe bei physikalischen Untersuchungen, 2. Aufl. Braunschweig 1928.Google Scholar
  4. [239]
    Attlee, Z. J., J. T. Wilson and J. C. Filmer: Lubrication in Vacuum by Vaporized Thin Metallic Films. J. Appl. Phys. vol. 11 (1940) pp. 611–615. (Ba film on bearingballs of rotating anode.)Google Scholar
  5. [240]
    Beck, A.: The Technology of Mg and Its Alloys. London: F. A. Hughes and Co. 1940.Google Scholar
  6. [241]
    Benjamin, M., C. W. Cosgrove and G. W. Warren: Modern Receiving Valves; Design and Manufacture. J. Inst. Electr. Engng., Lond. vol. 80 (1937) pp. 401–439. Chemical composition and physical state cf practical oxide coatings for hot cathcdes, p. 417; Fig. 31: Emission from solid solution of Ba and SrO in diff. percentages.)Google Scholar
  7. [242]
    Benjamin, M., and R.O. Jenkins: The Surface Migration of Barium. Phil. Mag. vol. 26 (1938) pp. 1049–1062. (Ba does not migrate over the surface of nickel or tungsten, which is important in the manufacture cf cxide cathedes for electron optical devices. Th does migrate over tungsten under similar conditions.)Google Scholar
  8. [243]
    Blewett, J. P., H. A. Liebhafsky and E. F. Henelly: The Vapour Pressure and Rate of Evaporation of BaO. J. Chem. Phys. vol. 7 (1939) pp. 478–484. (Gives formula between 1200 and 1800° K; agreement with results of Claassen and Veenemans, disagreement with Herman’s.)Google Scholar
  9. [244]
    Bosworth, R. C. L.: The Mobility of Potassium on Tungsten. Proc. Roy. Soc., Lond. vol. 154 (1936) pp. 112–123, No. 881. (Center on tungsten strip filament fired by potassium ions; photoemission along the strip recorded.)Google Scholar
  10. [245]
    Carpenter, L. G., and C. J. Steward: The Atomic Heat of Potassium. Phil. Mag. vol. 27 (1939) pp. 551–564.Google Scholar
  11. [246]
    Cath, P. G., and O. L. v. Steenis: Der Ausdehnungskoeffizient von Barium und Kalzium und Allotropie. Z. techn. Phys. vol.17 (1936) pp.239–241, No. 7.Google Scholar
  12. [247]
    Chiong, Y. S.: Viscosity of Liquid Sodium and Potassium. Proc. Roy. Soc., Lond. (A) vol. 157 (1936) pp. 264–277, No. 891. (From melting points to 360° C. Results obey satisfactorily Andrade’S formula.)Google Scholar
  13. [248]
    Claassen, A., and C. F. Veenemans: Z. Phys. vol.80 (1933) p. 342. (Vapour pressure of BaO.)Google Scholar
  14. [249]
    Clay, R. E.: The Use of Li for an X-ray Window. J. Sci. Inst., Lond. vol. 11 (1934) pp. 371–372. (Demountable X-ray tube; 1 mm thick Li-window is sealed to brass support with Apiezon plasticene.)Google Scholar
  15. [250]
    Comas, P., and G. Peter: Berechnung der wichtigsten Konstanten des metallischen Sr and Ba (calculation of the most important constants of metallic Sr and Ba). Z. Phys. vol. 107 (1937) pp. 656–661.Google Scholar
  16. [251]
    Cooper, H. S.: USA-Patent 1721544 (1927/1929). (Al + BaO reaction liberates Ba as a getter.)Google Scholar
  17. [252]
    De Boer, I. H., and others: Z. anorg. allg. Chem. vol.160 (1927) p. 128. (Preparation of K, Cs, and Rb from chlorides.)Google Scholar
  18. [253]
    De Boer, I. H., and J. D. Fast: Z. anorg. allg. Chem. vol.191 (1930) p. 113. (Preparation of alkalies by reduction with Zr.)Google Scholar
  19. [254]
    Farnsworth, P. T.: Sekundäremissionsröhre mit Cs. J. Franklin Inst. vol. 218 (1934) 411.Google Scholar
  20. [255]
    Fast, J. D.: Ductile Zirconium, Its Preparation and Fabrication. Metal Ind., Lond. vol.54 (1939) p. 164–165.Google Scholar
  21. [256]
    Fisher, E.: The Energy Levels of Sodium Chloride. Phys. Rev. vol. 73 (1948) pp. 36 to 40.Google Scholar
  22. [257]
    Fleischer, R., and H. Teichmann: Die lichtelektrischen Zellen und ihre Herstellung. Dresden and Leipzig 1932.Google Scholar
  23. [258]
    General Elec. Co: DRP. 512262/17/30. (Opening of glass ampules filled with Cs in vacuo.)Google Scholar
  24. [259]
    General Motors Corp.: Herstellung von Aluminium-Barium-Legierungen. Osram-Ber. vol.5 (1936) p. 42.Google Scholar
  25. [260]
    Germershausen, K. J., and H. E. Edgerton: A Cold Cathode Arc Discharge Tube. Electr. Engng. vol. 55 (1936) pp. 790–794 and 809, No. 7. (Cs-compound-cathode.)Google Scholar
  26. [261]
    Geyer, K. H.: Über Eigenschaften der Ausbeute und Energieverteilung von Sekundärelektronen aus Aufdampfschichten wachsender Dicke. Ann. Phys. vol. 41 (1942) pp. 117–143. (p. 128 vapor pressure curves of MgF 2 and NaCl 1000–2000° K.)Google Scholar
  27. [262]
    Goldschmidt, K.: Aluminothermie (Aluminothermic processes). Leipzig 1925.Google Scholar
  28. [263]
    Gombàs, P., and G. Peter: Berechnung der wichtigsten Konstanten des metallischen Strontiums und Bariums. Z. Phys. vol. 107 (1937) pp. 656–661, No. 9-10.Google Scholar
  29. [264]
    Gordon, A. R.: Die freien Energien und Dampf drucke der Alkalimetalle. J. chem. Phys. vol. 4 (1936) pp. 100–102.Google Scholar
  30. [265]
    Günter, R., K. Andrew and A. Ringborn: Z. Elektrochem. vol.36 (1930) p. 211. (Barium-azide.)Google Scholar
  31. [266]
    Harder und E. Zintl: Zur Stöchiometrie binärer Natriumverbindungen (21. Mitteilung über Metalle und Legierungen). Z. phys. Chem., Abt. B vol. 34 (1936) pp. 238 to 254, No. 3-4.Google Scholar
  32. [267]
    Hartmann, W. M.: Erdalkalien. Z. anal. Chem. vol. 104 (1936) pp. 360–363, No. 9 to 10.Google Scholar
  33. [268]
    Harvey, F. E.: Trans. Faraday Soc. vol.29 (1933) p. 653. (Barium-azide.)Google Scholar
  34. [269]
    Hoffmann, F., and A. Schulze: Z. Metallkde. vol.27 (1935) p. 155. (Melting points of alkaline-earth metals.)Google Scholar
  35. [270]
    Hoffmann, F., and A. Schulze: Bestimmung der Schmelzpunkte von Ca, Sr, Ba. Phys. Z. vol.36 (1935) p. 453 — Z. Metallkde. vol. 27 (1935) p. 155. (Bibliography.)Google Scholar
  36. [271]
    Jaffe, H.: Eine metallische Verbindung von Lithium mit Ammoniak; elektrische Leitfähigkeit und galvanomagnetische Effekte. Z. Phys. vol. 93 (1935) pp. 741–761, No. 11-12.Google Scholar
  37. [272]
    Kaufmann, W., and P. Siedler: Verdampfung von Magnesium im Vakuum. Z. Elektrochem. vol. 37 (1931) pp. 492–497.Google Scholar
  38. [273]
    Kernet Laboratories Co. Inc., Getter Materials. USA Patent 2018965 (1933).Google Scholar
  39. [274]
    Kremers, H. C., and H. Benker: The Preparation and Some Properties of Metallic Ce. Trans. Amer. Electrochem. Soc. vol.47 (1925) pp. 353–364. (Ce getters O 2, H 2 at low temp, N 2 at Higher temp.)Google Scholar
  40. [275]
    Marden, J. W.: Brit. Patent 267902 (1926/1928; preparation of K, Cs, Rb, and Ba by the Thermite processes), b. Alkaline metals: K, Na, Cs, Rb, Li, and their compounds. (See also Cathodes.)Google Scholar
  41. [276]
    Mellor, I. W.: Inorg. and Theor. Chem. vol.11, Chapt. 20; The Alkali Metals, Li, Na, K, Rb, Cs, p. 419-880 (1941).Google Scholar
  42. [277]
    Mellor, I. W.: Inorg. and Theor. Chem. vol. III, Chapt. 24; The Alkaline Earths: Ca, Sr, Ba, pp. 619-908 (1941).Google Scholar
  43. [278]
    Mellor, I. W.: Inorg. and Theor. Chem. vol. IV, Chapt. 29; Magnesium; p. 249-397 (1941).Google Scholar
  44. [279]
    Müller, F.: Die Dampfdruckkurve des Thalliums bei sehr geringen Dampfdichten. Helv. Phys. Acta vol. 8 (1935) pp. 152–164, No. 2. (Druckbereich 10−5bis 10−6mm Hg; Formel; Fig. 4, Kurve.)Google Scholar
  45. [280]
    Patin, A.: DRP.-Anm. P 64613/32/35. (Einbringen von Alkalinemetall in Vakuumröhren als Ammoniaklösung.)Google Scholar
  46. [281]
    Rakowicz, P.: Calcium, das Leichtmetall der Zukunft. Zbl. prakt. Metallbearbeitung vol. 45 (1935) pp. 559–561, No. 21, 22.Google Scholar
  47. [282]
    Rudberg, E., and J. Lempert: The Vapour Pressure of Barium. J. Chem. Phys. vol. 3 (1935) pp. 627–631. (525-750° C.)Google Scholar
  48. [283]
    Schröter, F.: Z. techn. Phys. vol.4 (1923) p. 208. (Alkali-electrodes in gas-filled tubes.)Google Scholar
  49. [284]
    Schröter, F.: Handbuch der Bildtelegraphie und des Fernsehens. Berlin 1932.Google Scholar
  50. [285]
    Schulze, A.: Das Calzium. Chemiker-Ztg. vol. 60 (1936) pp. 733–735, No. 72.Google Scholar
  51. [285a]
    Siemens & Halske (H. Vatter); French Pat. 775170/33/34 (ALK-Legierung für Glimmlampen).Google Scholar
  52. [286]
    Taylor, J. B., and J. Langmuir (Gen. El. Co.): Vapour Pressure of Cs by the Positive Ion Method. Phys. Rev. vol. 51 (1937) pp. 753–760, No. 9. (Exp. results compared with formulae.)Google Scholar
  53. [287]
    Thompson, M. De Kay, and W. G. Armstrong (MIT): The Vapour Pressure of BaO. Amer. Electrochem. Soc. Trans. vol.54 (1928) pp. 85–89. (1280-1470° C.)Google Scholar
  54. [288]
    Thompson, A. P., and H. Kremeks: The Preparation and Properties of Ce-free Mischmetal. Trans. Amer. Electrochem. Soc. vol. 47 (1925) pp. 345–352. (Pyrophoric; 35 La, 35 Nd, 6 Pr, 14 Sm, 7 Gd, 3 Er and oxydes of the Y-group.)Google Scholar
  55. [289]
    Van Voorhis, C. C., A. G. Shenstöne and E. W. Pike: Purification of Inert Gas with Mischmetal. Rev. Sci. Instr. vol. 5 (1934) pp. 367–368. (Mischmetal contains 50–60% Ce, 25% La, 15% Dy, Sa, etc., 1–2% Fe. Effective for removing small traces of impurity from inert gases already roughly cleaned by other methods when used as cathode of direct-current discharge in the gas to be cleaned.)Google Scholar
  56. [290]
    Van Liempt, K. A. M.: Die Dampfdrucke des Bariums. Philips Reprint No. 1112, pp. 468-470. (Vapour pressure of Ba.)Google Scholar
  57. [291]
    Van Liempt, J. A. M.: Die Dampfdrucke des Caesiums. Rec. Trav. chim. Pays-Bas vol.55 (1936) p. 157–160.Google Scholar
  58. [292]
    Vereinigte Glühlampen u. El.-Ges. Ujpest: DRP. 593719/27/34. (Ba-Mg-alloy.)Google Scholar
  59. [293]
    Wiedmann, G., and W. Hallwachs: Verh. dtsch. phys. Ges. vol.16 (1914) p. 107. (Distillation of K and Na.)Google Scholar
  60. [294]
    Anon.: Die Verwendung von Cäsium für photoelektrische Zellen. Die chem. Industrie vol. 59, No. 6. (Cs for photoelectric cells.)Google Scholar

References on Antimony

  1. [295]
    Coblenz, W. W.: International Critical Tables. 1929.Google Scholar
  2. [296]
    Moss, T. S.: Photoconductivity in the Elements. New York and London 1952. (See for additional references.)Google Scholar
  3. [297]
    Sommer, A. H.: Multi-Alkali Photocathodes Trans. Inst. Radio. Eng. N. S. 3 (Nov. 1956) p. 8.Google Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations