High Melting Metals and Alloys in Tube Design



Spectral Emissivity Tungsten Wire Vacuum Tube Incandescent Lamp Core Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on High Melting Metals Condensed Papers and Books on Tungsten

  1. [1]
    Alterthum, H.: Wolfram (Tungsten). Braunschweig 1925.Google Scholar
  2. [2]
    Forsythe and Pirani: Measurements of Radiant Energy. New York: McGraw Hill.Google Scholar
  3. [3]
    Jeffries and Archer: The Science of Metals. New York: (McGraw Hill) 1924.Google Scholar
  4. [4]
    Lax, E., and M. Pirani: Wolfram (Tungsten) in Lehrbuch der Techn. Physik vol. 3. Leipzig 1929.Google Scholar
  5. [5]
    Li, K. C., and Chi Yu Wang: Tungsten. New York 1946.Google Scholar
  6. [6]
    Palme, R.: Glas-u. Hochvakuumtechnik vol. 1 (1952) pp. 134–139 — Planseeberichte (1953) pp. 61-71.Google Scholar
  7. [6]
    Smithells, C. J.: Tungsten. A treatise on its metallurgy, properties and applications. 318 pages. London: Chapman and Hall 1952. (Most complete treatment, many references.)Google Scholar

Physical and Chemical Properties of Tungsten

  1. [7]
    Agte, C., and K. Becker: Phys. Z. vol.32 (1931) p. 65. (Torsion Modulus of Wolfram.)Google Scholar
  2. [8]
    Ahearn, A. J.: Effect of Temperature, Degree of Thoriation and Breakdown on Field Currents from Tungsten and Thoriated Tungsten. Phys. Rev. vol.50 (1936) p. 238.Google Scholar
  3. [9]
    Ahearn, A. J., and J.A. Becker (Bell Tel. Lab.): Electron Microscope Studies of Thoriated Tungsten. Phys. Rev. vol. 54 (1938) pp. 448–448.Google Scholar
  4. [10]
    Andrews, M. R.: Evaporation of Thorium from Tungsten. Phys. Rev. vol.33 (1929) p. 454.Google Scholar
  5. [11]
    Andrews, M.R.: J. Phys. Chem. vol.27 (1923) p. 270. (W, WC, W 2, C; el. resistivity.)Google Scholar
  6. [12]
    Andrews, M. R., and S. Dushman: Diffusion of Carbon through Tungsten and Carbide. J. Phys. Chem. vol.29 (1925) p. 462. (WC, W 2 C; el. resistivity.)Google Scholar
  7. [13]
    Balke, C. W.: Industr. Engng. Chem. vol.21 (1929) p. 1006. (W, Ta, Na.)Google Scholar
  8. [14]
    Becker, J. A.: Thermionic Emission and Adsorption. Rev. Mod. Phys. vol.7 (1935) p. 95.Google Scholar
  9. [15]
    Berger, W.: Annealing of Tungsten Helix. German patent DRP 653603.Google Scholar
  10. [16]
    Bien, R. P. (M.I.T.): A Study of the Crystal Structure of Heat-Treated Tungsten Filaments. Phys. Rev. vol.47 (1935) p. 806A.Google Scholar
  11. [17]
    Brattain, W. H., and J. A. Becker: Thermionic and Adsorption Characteristics of Thorium on Tungsten. Phys. Rev. vol.43 (1933) p. 428.Google Scholar
  12. [18]
    Bremmer, H., and W. Haas: On the Conduction of Heat by Some Metals at Low Temperatures. Physica Haag vol. 3 (1936) pp. 672–686, No. 7.Google Scholar
  13. [19]
    Brown, A. A.: Preparation of Tung3ten Single-Crystal Faces for Thermionic Emission Studies. Phys. Rev. vol.60 (1941) p. 120 (Summary only). (Etching by K3Fe(CN)6 and NaOH, then polishing.)Google Scholar
  14. [20]
    Coblenz, W. W.: Int. Crit. Tables vol.5 (1929) p. 238. (Strahlungskonstanten.)Google Scholar
  15. [21]
    Davisson, C.,and L. H. Germer: The Thermionic Work-Function of Tungsten. Phys. Rev. vol.20 (1932) p. 300.Google Scholar
  16. [22]
    de Boer, I. H.: Ind. Chem. vol.19 (1927) p. 1256. (Zircon.)Google Scholar
  17. [23]
    Dodge, H. L.: Phys. Rev. (2) vol.11 (1918) p. 311. (Constants of W)Google Scholar
  18. [24]
    Ebert, F., and H. Flasch: Neue Anschauungen über niedere Wolframoxyde. Z. anorg. allg. Chem. vol. 226 (1935) pp. 65–81, No. 1.Google Scholar
  19. [25]
    Estabrook, G. B.: University of Pittsburgh Bull. vol.29 (1933) No. 3.Google Scholar
  20. [26]
    Fonda, G. R.: Burnout of Incandescent Lamps. Gen. Electr. Rev. vol. 32 (1929). (Gas-filled lamps.)Google Scholar
  21. [27]
    Forsythe, W. E., and E.Q. Adams: Radiation Characteristics of Tungsten and Tungsten Lamps. J.O.S.A. vol.35 (1945) pp. 108–113.Google Scholar
  22. [28]
    Forsythe, W. E., and E. M. Watson (Gen. El. Co.): Resistance and Radiation of Tungsten as a Function of Temperature. J. Opt. Soc. Amer. vol. 24 (1934) pp. 114–118.Google Scholar
  23. [29]
    Forsythe, W. E., and A. G. Worthing: The Properties of Tungsten and the Characteristics of Tungsten Lamps. Astrophysical J. vol. 61 (1925) pp. 146–185.Google Scholar
  24. [30]
    Fowler, R. H., and L. Nordheim: Electron Emission in Intense Electric Fields. Proc. Roy. Soc. Ser. A. vol.119 (1918) p. 173.Google Scholar
  25. [31]
    Geiss, W.: Physica vol.3 (1923) p. 232. (W-monocrystal constants.)Google Scholar
  26. [32]
    Gehlhoff, G.: Lehrbuch der technischen Physik; Bd. III. Die Physik der Stoffe. Leipzig 1928.Google Scholar
  27. [33]
    Hidnert, P., and W. T. Sweeney: Thermal Expansion of Tungsten. Scientific papers of the Bureau of Standards No. 515 (1925) pp. 483–487.Google Scholar
  28. [34]
    Hoyt, S. L.: Ductile Tungsten. Metal and Alloys. vol.6 (1935) pp. 11–18.Google Scholar
  29. [35]
    Jarvis, G. A.: Positive Ions from Thoriated Tungsten. Phys. Rev. vol.70 (1946) p. 106.Google Scholar
  30. [36]
    Jeffries, Z.: Trans. Amer. Inst. Min. Metallurg. Engng. vol.60 (1919) p. 474. (Mechanical properties of tungsten between 0 and 900°C.)Google Scholar
  31. [37]
    Johnson, R. P (Gen. El. Co.): Construction of Filament Surfaces. Phys. Rev. vol.54 (1938) p. 459–467. (Structure depends on whether the lamp was evacuated or gas-filled, and on whether it was run on a. c. or d. c.)Google Scholar
  32. [38]
    Johnson, R. P., A. B. White and R.B. Nelson (Eastman Res. Lab. and M.I.T.) An Engine for Smoothing Small Tungsten Wires. Rev. Sci. Instr. vol. 9 (1938) pp. 253 to 255. (For better interpretation of data on thermionic emission, field emission, adsorption, spectral emissivity, and related phenomena. Grinding time about 100 hours.)Google Scholar
  33. [39]
    Jones, H.A. (Gen. El. Co.): A Temperature Scale for Tungsten. Phys. Rev. vol.28 (July 1926) pp. 202–207.Google Scholar
  34. [40]
    Jones, H. A., and I. Langmuir: The Characteristic of Tungsten Filaments as Functions of Temperature. Gen. Electr. Rev. vol.30 (1927) p. 310, 354, and 408.Google Scholar
  35. [41]
    Jones, H. A., I. Langmuir and G. M. J. Mackay: The Rates of Evaporation and the Vapor-Pressures of Tungsten, Molybdenum, Platinum, Nickel, Iron, Copper and Silver. Phys. Rev. vol. 30 (1927) pp. 201–214.Google Scholar
  36. [42]
    Jones, T. I.: Thermionic Emission. London: Methuen Co. 1936.Google Scholar
  37. [43]
    Kohl, W. H.: Materials Technology for Electron Tubes. New York: Reinhold 1951.Google Scholar
  38. [44]
    Koller, L. R.: The Physics of Electron Tubes. New York: McGraw Hill 1937.Google Scholar
  39. [45]
    Kramers, H. A.: On the Theory of X-ray Absorption and of the Continuous X-ray Spectrum. Phil. Mag. vol.16 (1923) p. 836. — See also Silberstein: Phil. Mag. vol. 19 (1935) p. 1042. — Kaye and Binks: Brit. J. Rad. vol. 13 (1940) vol. 193. (Formula of the “brems-strahlung” as a function of wavelength.)Google Scholar
  40. [46]
    Langmuir, I.: J. Amer. Chem. Soc. vol.35 (1913) p. 931 — Z. anorg. allgem. Chem. vol. 85 (1914) p. 261. (Combination of evaporated tungsten atoms with nitrogen molecules to WN 2, forming brown deposit if reaching the tube wall.)Google Scholar
  41. [47]
    Langmuir, J., and J. B. Thaylor: Radiation and Absorption of Energy by Tungsten Filaments at Low Temperature. J. Opt. Soc. Amer. vol.25 (1935) p. 321–325, No. 10. (Radiation of a thoriated-tungsten filament and absorption of this energy by the surrounding bulb.)Google Scholar
  42. [48]
    Liempt, J.A.M. van, and H.W. Geiss: DRP. 529338/24/31. (Mo case for W coil manufacturing.)Google Scholar
  43. [49]
    Michels, W. C., and M. Cox: The Thermal Conductivity of Tungsten. Physics vol.7 (1936) p. 153–155, No. 4.Google Scholar
  44. [50]
    Nichols, M. H., and R. Smoluchowski: Average Thermionic Constants for Single Crystal Tungsten Wire. Work function and double layer. Phys. Rev. vol.59 (1941) p. 944. (Summaries only.)Google Scholar
  45. [51]
    Nottingham, W. B.: Thermionic Emission from Tungsten and Thoriated Tungsten Filaments. Phys. Rev. vol.49 (1936) p. 78.Google Scholar
  46. [52]
    Osborn, R. H. (Univ. of Pittsburgh): Thermal Conductivities of Tungsten and Molybdenum at Incandescent Temperatures. J. Opt. Soc. Amer. vol. 31 (1941) pp. 428–432, H.6.Google Scholar
  47. [53]
    Ornstein, L. S.: Tables of the Emissivity of Tungsten as a Function of Wavelength in the Region of Temperature 1600°–3000° K. Physica vol. 3 (1936) pp. 561–562.Google Scholar
  48. [54]
    Ptitzyn, S. W.: Gasabgabe des Wolframs bei seiner Erhitzung im Vakuum. J. techn. Phys. (in Russian) vol. 4 (1936) pp. 1189–1194.Google Scholar
  49. [55]
    Robinson, C. S. Jr.: Rate of Crystal Growth in Drawn Tungsten Wires as a, Function of Temperature. J. Appl. Phys. vol.13 (1942) pp. 647–651.Google Scholar
  50. [56]
    Schriever, W.: Phys. Rev. (2) vol.23 (1924) p. 255. (Torsion modulus of tungsten.)Google Scholar
  51. [57]
    Smithells, C. J.: Tungsten. London 1926.Google Scholar
  52. [58]
    Ulrey, C. T.: An Experimental Investigation of the Energy in the Continuous X-ray Spectra of Certain Elements. Phys. Rev. vol.11 (1948) p. 401. (X-ray intensity as a function of wavelength [continuous spectrum] for tungsten targets.)Google Scholar
  53. [59]
    Worthing, A. G.: Effect of Strong Electrostatic Fields on the Vaporization of Tungsten II. Phys. Rev. vol.17 (1921) p. 418.Google Scholar

Manufacturing of Tungsten

  1. [60]
    Beggs, E. W.: Electr. J. (Feb. 1938) p. 52.Google Scholar
  2. [61]
    Coolidge, W. D.: 1. Powder Metallurgy of Tungsten. J. Amer. Inst. Electr. Engng. vol.29 (1910) p. 961 2. J. Roentgen Soc. vol.17 (1921) p. 23. (Casting process of Cu onto tungsten discs in vacuo.)Google Scholar
  3. [62]
    Grebel, B. F. S.: DRP. 527217, 26/31. (Securing of W wires in Ni grid supports by beating.)Google Scholar
  4. [63]
    Gross, R.: Manufacturing of Single-Crystal Tungsten Wire. J. Radiol. vol.15 (1918) p. 270.Google Scholar
  5. [64]
    Jacobi, K., and F. Kobef (Non-sag wire): German patent DRP 371623 (1923).Google Scholar
  6. [65]
    Jeffries, Z.: Trans. Amer. Inst. Min. Metallurg. Engrs. vol.60 (1919) p. 588. (Metallography of Tungsten; non-sag wires.)Google Scholar
  7. [66]
    Jones, H. A.: Chem. Metallurg. Engrs. vol.22 (1920) p. 9. (Manufacturing of Tungsten.)Google Scholar
  8. [67]
    Jones, H.A., and I. Langmuir Gen. El. CO.): Manufacturing of Tungsten. Chem. Metallurg. Engrs. vol.22 (1920) p. 9.Google Scholar
  9. [68]
    Kieffer, R., and F. Benesovsky: Wolfram, seine Metallurgie, Eigenschaften und Verwendung. Elektrotechnik u. Masch.-Bau vol. 65 (1948) pp. 17–24.Google Scholar
  10. [69]
    Knepper, E.: Die Fabrikation von Wolframdrähten für el. Glühlampen und Radioröhren. Leipzig 1930. (Manufacturing of tungsten wires for incandescent lamps and radio tubes.)Google Scholar
  11. [70]
    Koref, F., and R. Moers: (Non-sag wire) German patent 424879 (1926).Google Scholar
  12. [71]
    Lax, E., and M. Pirani (in Geiger-Scheel X4): Handbuch der Physik. vol.19, p. 440. (Life of W-wires.)Google Scholar
  13. [72]
    Lee, J. A.: Tungsten and Tantalum. Chem. Engng. (Sept. 1948) p. 110.Google Scholar
  14. [73]
    Moers, K., and K. Sichling: Über das Ziehen von Drähten allerfeinster Durchmesser. Werkstattstechnik u. Werksleiter vol. 30 (1936) pp. 21–23, H. 2. (Drawing of very thin wires.)Google Scholar
  15. [74]
    Pintsch, A. G.: DRP 291 994, 1916 (Production of W monocrystalline wires.)Google Scholar
  16. [75]
    Power, A.D., and I. M. Kakascik (RCA Harrison): Particle-Size Distribution of Tungsten and Molybdenum Powders, p. 311 in The Physics of Powder Metallurgy, chapt. 19, 1951.Google Scholar
  17. [76]
    Schaller, O.: Single-Crystal Tungsten Wire. Z. angew. Chem. vol.30 (1917) p. 71.Google Scholar
  18. [77]
    Schwarzkopf, P.: Sublimation Process for Manufacturing of Tungsten and Molybdenum. German patents DRP 480287, DRP 521570 (1931); DRP 566948 (1932).Google Scholar
  19. [78]
    Skaupy, F.: Metallkeramik (Powder metallurgy, growing of suitable crystals). Berlin 1930.Google Scholar
  20. [79]
    Smithells, C. J.: ThO2 and other Tungsten Alloys. J. Inst. Met., Lond. vol.27 (1922) p. 107.Google Scholar
  21. [80]
    Smithells, C. J.: Tungsten. London 1926.Google Scholar
  22. [81]
    Westinghouse Corp.: ThO2 — Tungsten Alloy. Austrian patent No. 41247 (1910)Google Scholar

Filaments for Incandescent Lamps and Cathodes

  1. [82]
    Aboville, R. De: Rev. Gen. Electr. vol.37 (1935) p. 161.Google Scholar
  2. [83]
    Abshagen, F.: Die Doppelwendellampe für Allgemeinbeleuchtung. Das Licht vol.5 (1935) p. 199.Google Scholar
  3. [84]
    Barnes, B. T., W. E. Forsythe and W. J. Karach: 1. Spectral Distribution of Radiation from Lamps of Various Types. Gen. Electr. Rev. vol. 42 (1939) No. 12,. pp. 540–543. (Tables on Gaseous Discharge Lamps, Fluorescent Lamps, Tungsten Filament Lamps, Black-Bodies, Solar Energy Flux.) 2. Spectral Radiant Intensities of some Tungsten Filament Incandescent Lamps. J. Opt. Soc. Amer. vol.26 (1936) p. 313.Google Scholar
  4. [85]
    Bastaymac, E.: Über die Lebensdauer einer glühenden Wolframwendel und die Verdampfungsgeschwindigkeit des Wolframs im Hochvakuum. Z. angew. Phys. vol.2 (1950) p. 347.Google Scholar
  5. [86]
    Beggs, E. W. (Westinghouse Lamp Co.): 1. The Value of Quality in Mazda Lamps. Elektro-J. vol. 34 (1937), No. 12 pp. 475–477 2. Precision in Manufacture Improves Lamp Quality. Elektro-J. vol. 35 (1938) pp. 51-54, No. 2. (Reduction of WO 3, diamond dies, coil winding, inspection of filaments.)Google Scholar
  6. [87]
    Daily, H. J.: Designing Thoriated Tungsten Filaments. Electronics (Jan. 1948) pp. 107-109.Google Scholar
  7. [88]
    Forsythe, W. E., and E. Q. Adams: Effect of Voltage Change on the Light Output of Tungsten-Filament Incandescent I amps. Gen. Electr. Rev. vol. 39 (1936) pp. 497 to 500.Google Scholar
  8. [89]
    Forsythe, W. E., and A. G. Worthing: The Properties of Tungsten and the Characteristics of Tungsten Lamps. Astrophys. J. vol.61 (1925) p. 146.Google Scholar
  9. [90]
    Geiss, W.: The Development of the Coiled-Coil Lamp. Philips techn. Rev. vol. 1 (April 1936) pp. 97–101.Google Scholar
  10. [91]
    Goucher, F. S.: DRP 599896 (1921). (Interlocked NS tungsten wire.)Google Scholar
  11. [92]
    Haller, C. E. (RCA): Filament and Heater Characteristics. Electronics vol. 17 (July 1944) pp. 126–131. (Math. analysis of volt-ampere characteristics of tungsten, molybdenum, tantalum and nickel filaments. Resulting equations are plotted as reference chart that gives filament current, temperature and wattage for any electron tube at various operating voltages, see Table 1 and Fig. 1.)Google Scholar
  12. [93]
    Horsting, C. W.: Carbide Structures in Carburized Thoriated Tungsten Filaments. J. Appl. Phys. vol. 18 (1947).Google Scholar
  13. [94]
    Jakobi, R., and F. Koref: DRP 371623 (1921). (Interlocked NS tungsten wire.) [95] Jones, H. A., and L. Langmuir: The Characteristics of Tungsten Pilaments as a Function of Temperature. Gen. Electr. Rev. vol. 30 (1927) vol. 310, 354, and 408.Google Scholar
  14. [96]
    Judd, D. B.: Change in Color Temperature of Tungsten-Filament Lamps at Constant Voltage.Google Scholar
  15. [97]
    Knepper, E.: Die Fabrikation und Berechnung der modernen Metalldraht-Glühlampen. (Manufacturing and Design of Modern Metal-Wire Incandescent Lamps.) Leipzig 1926.Google Scholar
  16. [98]
    Koref, W.: Z. techn. Phys. vol.7 (1926) p. 544.Google Scholar
  17. [99]
    Koref, F., and H. C. Plaut: Über die Lebensdauer der luftleeren und gasgefüllten Wendellampen und die Ursachen ihres Durchbrennens. Z. techn. Phys. vol.11 (1930) p. 515. (Life of incandescent vacuum and gas-filled lamps of the helix type and the reason for their failure.)Google Scholar
  18. [100]
    Koref, W., and K. Moers: DRP 474879 (1923). (Interlocked NS tungsten wire.)Google Scholar
  19. [101]
    Kurlander, J. H. (West. Lamp Co.): Radio Panel Lamps and their Characteristics. Proc. Inst. Rad. Engng. vol. 24 (1936) pp. 584–590. (Crystal Formation of Untreated, Non-sag and Sag Tungsten Wire.)Google Scholar
  20. [102]
    Langmuir, I.: Thoriated Tungsten Filaments. J.F.I. vol.217 (1934) pp. 543–569.Google Scholar
  21. [103]
    Langmuir, L, S. Mclane and K. Blodgett: The Effect of End Losses on the Characteristics of Filaments of Tungsten and Other Materials. Phys. Rev. vol.35 (1930) p. 478.Google Scholar
  22. [104]
    Langmuir, I., and I. B. Taylor: Heat Conductivity of Tungsten and the (ooling Effects of Leads upon Filaments at Low Temperatures. Phys. Rev. vol.50 (1936) p. 68.Google Scholar
  23. [105]
    Lax, E., and M. Pirani: in Geiger-Scheel: Handbuch der Physik, vol. 19, p. 440 (Life of hot tungsten wires) — vol.19 (1928) p. 400. (Pyrcmeter lamp.)Google Scholar
  24. [106]
    Lieb, J. W.: Trans. Hum. Engng. Soc. vol.18 (1923) p. 5. (Pictures of helical and straight filaments, run on a. c. and d. c. in gas and in vacuum.)Google Scholar
  25. [107]
    Liempt, J. A. M. Van, and W. Geiss: DRP 529338/24/31. (Mo core for W coil manufacturing.)Google Scholar
  26. [107a,]
    Meijering, J. L., and Rieck, G. D.: Die Funktion von Zusätzen in Wolfram für Glühfäden. Philips Techn. Rundschau Jg. 19 (1957/58) No. 4.Google Scholar
  27. [108]
    Mesnard and Uzan: Some Prevailing Treatments of Tungsten Filaments for Electron Tubes. (In French) Le Vide (5) vol. 30 (1950) pp. 896–904.Google Scholar
  28. [109]
    Millar, P. S.: The Qualities of Incandescent Lamps. Engineering vol. 55 (1936) pp. 516–523, 529. (Testing devices, shrinkage, comparison with imported lamps.)Google Scholar
  29. [110]
    Müller, N. L.: Die Fabrikation und Eigenschaften der Metalldrahtlampen. Halle 1914. (Contains early references.)Google Scholar
  30. [111]
    Reid, R. B.: Detection of Oil Contamination of Tungsten Wire. Sylv. Techn. vol.4 (1951) p. 54, No. 2.Google Scholar
  31. [111 a]
    Rieck, G. D.: The Texture of Drawn Tungsten Wires. Philips Techn. Rundschau Jg. 19 (1957/58) No. 5.Google Scholar
  32. [112]
    Schröter: Die Glimmlampe und ihre Schaltungen. Leipzig (1932) p. 498.Google Scholar
  33. [113]
    Smithells, C. J.: High Temperature Phenomena of Tungsten Filaments. Trans. Faraday Soc. vol.17 (1921) p. 485. (Corrosion of incandescent filaments by H2O-vapor.)Google Scholar
  34. [114]
    Ullmann, F.: Enzyklopädie der Techn. Chemie. Wien 1930.Google Scholar
  35. [115]
    Ungelenk, A., and J. Wiehr: Z. VDI vol.74 (1930) p. 431. (Design of X-ray tubes.)Google Scholar
  36. [116]
    Voogd, J.: Tungsten-Ribbon Lamps for Optical Measurements. Philips Techn. Rev. vol.5 (1940) pp.82–87. (Design and description of several types.)Google Scholar
  37. [117]
    Weber, H.: Die elektrischen Metalldrahtglühlampen. Leipzig 1914. (Contains early references.)Google Scholar
  38. [118]
    Wegener, A.: Die Herstellung der Osramlampen. (The Manufacturing of Osram Incandescent Lamps.) Berlin 1927.Google Scholar
  39. [119]
    Worthing, A. G.: Theory of End-Loss Corrections and its Application to Uniform Electrically-Heated Tungsten Filamentsin Vacuo. J.Franklin Inst. vol.194 (1922) p. 597.Google Scholar
  40. [120]
    Zwicker, C.: Physikalische Eigenschaften von Wolfram bei hohen Temperaturen. Physica vol.5 (1925) p. 252. (Efficiency as a function of life and temperature.)Google Scholar

Other Applications of Tungsten

  1. [121]
    Bouwen, A.: Roentgen Tube with a Rotating Anode and an Anode Cooler. Fortschr. Röntgenstr. vol.48 (1933) p. 237.Google Scholar
  2. [122]
    Berthold, R.: Grundlagen der technischen Röntgendurchstrahlung. Leipzig 1930.Google Scholar
  3. [123]
    Cieriorra, H., and W. Dawihl: Fortschritte auf dem Gebiet der Wolfram-Wendelöfen für hohe Temperaturen. Keram. Rdsch. vol. 44 (1938) pp. 171–172, No. 15 — Techn. wiss. Abh. Osram-Konzern vol.4 (1936) p. 114. (Tungsten furnaces for high temperatures.)Google Scholar
  4. [124]
    Dresler, A., R. Schmidt and H. Willenberg: Ein Gerät zur Registrierung von Widerstandsänderungen dünner Drähte. Techn. wiss. Abh. Osram-Konzern vol. 4 (1936) pp. 100–103. (Recording of change in resistance of thin thungsten wires.)Google Scholar
  5. [125]
    Fehse, W.: Elektrische Öfen und Heizkörper aus Wolfram. Braunschweig 1928.Google Scholar
  6. [126]
    Gross, M. J., and Z. J. Attlee: Progress in Design of Rotating-Anode Tubes. Amer. J. Roentgenol. vol.41 (1939) p. 276.Google Scholar
  7. [127]
    Halberstadt: Techn. Mitt. Röntgenbetriebe (1933) No. 14, sec. 1. (W-Anticathodes.)Google Scholar
  8. [128]
    Kramers, H.A.: On the Theory of X-ray Absorption and of the Continuous X-ray Spectrum. Phil. Mag. vol. 16 (1923) p.836. (See also Silberstein: Phil. Brit. J. Radiol. vol. 13 [1940] p. 193: Formula of the “Brems-strahlung” as a function of wavelength.)Google Scholar
  9. [129]
    Kulin, S. A.: Fluorescent Inspection of Tungsten. Electronics vol. 16 (July 1943) p. 95, 160 and 162. (Detection of minute longitudinal cracks by a fluorescent penetrant method. See figs. 1, 2, 3, 4 and 5.)Google Scholar
  10. [130]
    Machlett Lab.: Rotating-Anode Performance. Cathode Press (Springer 1947) p. 4.Google Scholar
  11. [131]
    Machlett, R. R., and T. H. Rogers: A New Design for Increasing the Heat-Dissipating Capacity of Rotating-Anode Tubes. Amer. J. Roentgenol. vol.48 (1942) p. 685.Google Scholar
  12. [132]
    Northrup, E. F.: Met. Chem. Engrs. vol.11 (1913) p. 45. (W-Mo Thermoelement.)Google Scholar
  13. [133]
    Pirani: Elektrothermie. Berlin 1930.Google Scholar
  14. [134]
    Pirani, M., and Wangenheim: Z. techn. Phys. vol.6 (1925) p. 358. (WWMo-Thermocouple.)Google Scholar
  15. [135]
    Rogers, T. H.: A High-Intensity Source of Long-Wavelength X-rays. Proc. Inst. Radio Engrs. vol.35 (1947) p. 236.Google Scholar
  16. [136]
    Spitzer, E.E.: Anode Materials for High-Vacuum Tubes. Engineering vol. 54 (1935) pp. 1246–1251. (W for high frequencies, Ni for inexpensive constructions, Mo for min. weight, graphite for uniformity of characteristics; high heat dissipation by conyection-or conduction-cooled copper anodes.)Google Scholar
  17. [137]
    Ungelenk, A.: Fortschr. Röntgenstr. vol.49 (1934) p. 166. (Rotating Anticathodes made from W.)Google Scholar
  18. J. Wiehr: Z. VDI vol.74 (1930) p. 431. (X-ray Tube Design.) — IV. Internationaler Radiologen-Kongreß, Bd. II, Zürich 1934. (Overloading of X-ray anticathodes.)Google Scholar
  19. [138]
    Van der Tuuk, J. H.: X-ray Tubes with Rotating Anode. Philips Techn. Rev. vol. 8 (Feb. 1946) p. 33.Google Scholar
  20. [139]
    Walsh, E. J.: Fine-Wire Vacuum Tube Grids. Bell Lab. Rec. vol.28 (1950) pp. 165 to 167.Google Scholar
  21. [140]
    Wendt, H.: Z. VDI vol.77 (1933) p. 853. (Rotating X-ray anodes.) (see also ref. on tungsten)Google Scholar


  1. [141]
    Auergeselschaft: DRP 212895/08/09. (Mo supports in Incandenscent Lamps.)Google Scholar
  2. [142]
    Chelius, J.: How to Fabricate Mo. Matr. and Meth. vol.32 (1950) p. 45-48.Google Scholar
  3. [143]
    Duschnitz, B.: Helios, Lpz. vol.39 (1933) p. 283. (Ta, W, Mo, fields of application.)Google Scholar
  4. [144]
    Gelok, J.: Molybdenum-Practical Structural Material. Westinghouse Engineer (Sept. 1947).Google Scholar
  5. [145]
    Jones, H. A., I. Langmuir and G. M. Z. Makay: The Rates of Evaporation and the Vapor Pressures of Tungsten, Molybdenum, Platinum, Nickel, Iron, Copper and Silver. Phys. Rev. vol.30 (1927) pp. 201–214.Google Scholar
  6. [146]
    Kieffer, R., and F. Benesovsky: Molybdän, seine Metallurgie, Eigenschaften und Verwendung. Elektrotechn. u. Mach.-Bau vol. 65 (1948) pp. 140–146.Google Scholar
  7. [147]
    Kieffer, R., and B.Natter: Elektrische Hochtemperaturöfen mit Molybdänheizwiderständen. Radex-Rdsch. (1948) pp. 49-56.Google Scholar
  8. [148]
    Kohl, W.H.: Materials Technology for Electron Tubes. New York 1951.Google Scholar
  9. [149]
    Langmuir, L: Chemical Reactions at Low Pressures. II. Cleaning up of Nitrogen by a Heated Molybdenum Filament. J. Amer. Chem. Soc. vol. 41 (1919) pp. 167–194.Google Scholar
  10. [150]
    Langmuir, L, and others: Phys. Rev. vol.30 (1927) p. 201. (Vapor Pressure.)Google Scholar
  11. [151]
    Marden, J. W., and D. M. Wroughton: The Effect of Working on the Physical Properties of Mo. Trans. Electrochem. Soc. vol. 89 (1946) pp. 217–228.Google Scholar
  12. [152]
    Miller, Q. L.: Molybdenum; Production, Properties, and Applications. Metal Ind., Lond. vol. 75 (Nov. 1949) pp. 411–413, 439-441.Google Scholar
  13. [153]
    Pokorny, E.: Molybdän (Molybdenum). Halle 1927.Google Scholar
  14. [154]
    Schwarzkopf, P.: 1. DRP 480,287/26/29; DKP 521 570/27/31; DRP 566948/27/32 (Mo Purification by Sublimation.) 2. Unpublished measurements, courtesy of Metallwerk Plansee. (MoO 3-Analyses; W-Mo-and Ta-extracticn.)Google Scholar
  15. [155]
    Schottky, W., and H. Rothe: Physik der Glühelektronen in Wien-Harms: Handbuch der Experimental-Physik vol. 13, Teil 1929.Google Scholar
  16. [156]
    Sintered Metals. Metal Ind. vol. 66 (1945) pp. 342-344, 354-356, 378-380.Google Scholar
  17. [157]
    Siemens & Halske: DRP 300191/17/21 (stamped grids).Google Scholar
  18. [158]
    Summers, R. D. (Univ. of Penn.): The Optical Constants of Folished and Sputtered Molybdenum Surfaces. J. Opt. Soc. Amer. vol. 24 (1934) pp. 261–263.Google Scholar
  19. [159]
    Swartz, C.E.: Present Status of Art of Mo Fabrication. Metal Prcgr. vol. 58 (1950).Google Scholar
  20. [160]
    Sykes, W. P.: Mechanical Properties of Metals (Mo, Ni, Al); Effects of Temperature, Deformation, Grain Size, and Rate of Loading. Trans. Amer. Inst. Min. Metallurg. Engrs. vol.64 (1921) p. 780. (Tensile strength of Mo and Ni.)Google Scholar
  21. [161]
    Tawney, G. L. (Gen. El. Co.): Zigzag and Helical Springs; Elastic Properties of Molybdenum. Rev. Sci. Instr. vol. 10 (1939) pp. 152–159. (Elastic limit of Mo between 300 and 1700° K. Charts I–IV: Deflection and limiting load of zigzag and helical springs.)Google Scholar
  22. [162]
    Tury, D., and St. Krausz: Effect of Molecular Nitrogen on Molybdenum at High Temperatures. Nature vol.138 (1936) p. 331 and 760 (see ext. c urves Fig.1, 331).Google Scholar
  23. [163]
    Whitney, L. V. (Univ. of Wisconsin): The Temperature Scales of Columbium, Thorium, Rhodium and Molybdenum at. 667µ. Phys. Rev. vol.48 (1935) pp.458–461.Google Scholar
  24. [164]
    W-Mo Alloys, see Smithells and Northrup, E.F.: Met. Chem. Engng. vol.11 (1913) p. 45. (W-Mo Thermocoup)Google Scholar
  25. [165]
    Worthing, A. G.: Physical Properties of Well-Seasoned Molybdenum and tantalum as a Function of Temperature. Phys. Rev. vol. 28 (July 1926) pp. 190–201.Google Scholar
  26. [166]
    Worthing, A. G.: The Temperature Scale and the Melting Point of Molybdenum. Phys. Rev. vol.25 (1925) pp. 846–857.Google Scholar
  27. [167]
    Zwicker, C.: Physical Properties of Mo at High Temperatures. Physica vol. 7 (1927) pp. 71–74.Google Scholar

Tungsten-Molybdenum Alloys

  1. [168]
    Bossart, P. N. (Univ. of Pittsburgh): Spectral Emissivities, Resistivity, and Thermal Expansion of Tungsten-Molybdenum Alloys. Physics vol. 7 (1936) pp. 50–54.Google Scholar
  2. [169]
    Fales, H.A., and H. Yogoda: The Separation and Determination of W and Mo. J. Amer. Chem. Soc. vol. 58 (1936) pp. 1494–1501.Google Scholar
  3. [170]
    Jeffries, Z.: Trans. Amer. Inst. Min. Metallurg. Engrs. vol.60 (1919) p. 588. (Metallography of W.)Google Scholar
  4. [171]
    Northrup, E. F.: Met. Chem. Engng. vol.11 (1913) p. 45. (W-Mo Thermocouple.)Google Scholar
  5. [172]
    Patai, E., and G. Frank: Z. techn. Phys. 16 (1935) p. 254. (W-Mo alloy-core with spiralized nickel wire for oxide cathodes.)Google Scholar
  6. [173]
    Pirani, M., and G. Von Wangenheim: Z. techn. Phys. vol.6 (1925) p. 358. (W-WMo Thermocouple.)Google Scholar
  7. [174]
    Smithells, C. J.: Inst. Met., Lond. vol.27 (1922) p. 107. (Additions to W 1 ThO 2.)Google Scholar
  8. [175]
    Van Liempt, J. A. M., and H. W. Geiss: DRP 529338/24/31. (Mo core for W coils.)Google Scholar

Tantalum and Columbium

  1. [176]
    Andrews, M. R.: Reaction of Gases with Incandescent Ta. J. Amer. Chem. Soc. vol. 54 (1932) pp. 1845–1854.Google Scholar
  2. [177]
    Balke, C.W. (Fansteel Met. Corp., Chicago): Chem. Metall. Engng. vol.27 (1922) p. 1271. (Manufacturing and properties of Ta.Google Scholar
  3. [178]
    Balke, C.W.: Industr. Engng. Chem. vol.21 (1929) p. 1006. (W, Ta, Cb.)Google Scholar
  4. [179]
    Balke, C. W.: Recent Developments in Ta and Cb; New Applications in Industry. The Metal Ind. vol. 52 (1938) pp. 425–427. (Heat treatment under lower pressure [1 μ], better mechanical properties.)Google Scholar
  5. [180]
    Balke, C. W.: Recent Developments in Tantalum and Columbium. Industr. Engng. Chem. vol. 30 (1938) pp. 251–254. (Metallurgy and applications incl. electrolytic condensers and hard carbide compositions.)Google Scholar
  6. [181]
    Balke, C. W.: Industr. Engng. Chem. vol.27 (1935) p. 1166. (Production of Ta and Cb Powders from Minerals and their Conversion into Finished Ingots.)Google Scholar
  7. [182]
    Bolton, W. v.: Z. Elektrochem. vol. 11 (1905) p. 45, 503, 722. (Tantal.)Google Scholar
  8. [183]
    Cardwell, A. B. (Univ. of Wisconsin): The Thermionic Properties of Tantalum. Phys. Rev. vol.47 (1935) p. 628.Google Scholar
  9. [184]
    Fansteel Prod. Co.: El. World, London vol.104 (1934) p. 1184. (Welding of Ta under Protective Liquid.)Google Scholar
  10. [185]
    Fansteel Prod. Co.: Bulletin 2500. (Tantalum.)Google Scholar
  11. [186]
    Fansteel Metallurgical Corp.: Information for Use of Columbium Getter Pellets, Chicago — Technical Information. Chicago 1946.Google Scholar
  12. [187]
    Fetkenheuer, B., and E. Cremer: Siemens-Z. vol.12 (1932) p. 168. (Tantalum properties.)Google Scholar
  13. [188]
    Ganswindt, S., and K. Matthies: Z. techn. Phys. vol.15 (1934) p. 26. (Niobium cathode.) — Werkstoffhandbuch Nichteisenmetalle, Blatt 04. Berlin 1928. (Tantal.)Google Scholar
  14. K. Matthies: Chem. Fabrik vol.6 (1933) p. 521. (Tantal.) — DRP. 563148/30/32. (Niobium cathode.)Google Scholar
  15. [189]
    Grant, K., and A. L. Reimann: Some High-Temperature Properties of Niobium. Phil. Mag. vol.22 (1936) p. 34–48.Google Scholar
  16. [190]
    Hunter, F. L. (Fansteel Met. Corp., Chicago): Processing of Ta Anodes and Grids for Transmitting Tubes. Fansteel Techn. Bulletin Ta 3902 (13 pages).Google Scholar
  17. [191]
    Hidnert, P., and H. S. Krider. J. Res. Nat. Bur. Stand. vol.11 (1933) p. 279. (Heat extension of Cb.)Google Scholar
  18. [192]
    Jeffries, Z.: Trans. Amer. Inst. Min. Metallurg. Engrs. vol.60 (1919) p. 588.Google Scholar
  19. [193]
    Jepsen, R. L.: Coaxial Ta Cylinder Cathode for C. W. Magnetrons RCA Rev. vol. 8 (1947).Google Scholar
  20. [194]
    Kobayaski, M., and O. Harashima (Nippon El. Co., Tokyo): Some Properties of Ta and its Applications to Ultra-Short Wave Tubes. Electrot. J., Tokyo vol. 4 (1940) pp. 244 to 227. (Characteristics of gas exhaust of Ta and Mo; hydrogen absorption; heat radiation, and output of tubes with Ta and Mo anode.)Google Scholar
  21. [195]
    Langmuir, D. B., and L. Malter (RCA): The Rate of Evaporation of Ta. Phys. Rev. vol. 55 (1939) pp. 748–749 (see Fig. 1).Google Scholar
  22. [196]
    Langmuir, D. B., and L. Malter (RCA): Specific Heat, Heat of Sublimation, and Vapor-Pressure Constant of Ta. Phys. Rev. vol.55 (1939) p. 1138A.Google Scholar
  23. [197]
    Lee, J. A.: Tungsten and Tantalum. Chem. Engng. (Sept. 1948) p. 110 —Tantalum Chem. Engng. (Sept. 1948) p. 152.Google Scholar
  24. [198]
    Malter, L., and D. L. Langmuir (RCA): Resistance, Emissivities, and Melting-Point of Ta. Phys. Rev. vol. 55 (1939) pp. 743–747.Google Scholar
  25. [199]
    Matthies, K.: Materialkonstanten von Ta und Nb (unpublished data).Google Scholar
  26. [200]
    Mellor, J. W.: Treatise on Inorganic Chemistry. vol.9 (1929) p. 837. (Columbium.)Google Scholar
  27. [201]
    Moers, K.: Metallwirtsch. vol.13 (1934) p. 640. (Ta-Aufwachsverfahren.)Google Scholar
  28. [202]
    Mroroka, B. A. (Univ. of Notre Dame): Controlled Crystal Growth in Ta-ribbons. J. Appl. Phys. vol. 14 (Dec. 1943) pp. 684–689. (Dependence of surface-structure on a. c. or d. c. heating.)Google Scholar
  29. [203]
    Neuburger, M.C.: Z. Kristallogr. vol.78 (1931) p. 164. (Density of Nb.)Google Scholar
  30. [204]
    Oesterheld, G.: Z. Elektrochem. vol.19 (1913) p. 585. (Ta and H 2.)Google Scholar
  31. [205]
    Pirani, M.: Z. Elektrochem. vol.11 (1905) p. 555. (Gas-Absorption of Ta.)Google Scholar
  32. [206]
    Reimann, A. L., and C. K. Granz: Some High-Temperature Properties of Niobium. Phil. Mag. vol.22 (1936) p. 34.Google Scholar
  33. [207]
    Reynolds, N.B.: Phys. Rev. vol.35 (1930) p. 158. (Electron Emission.)Google Scholar
  34. [208]
    Sanderson, L.: Niobium and Its Uses. Chem. Age, Lond. vol. 34 (May 1936) pp. 497 to 498, No. 883.Google Scholar
  35. [209]
    Siemens & Halske: DRP 152848/03/04; DRP 152870/03/04; DRP 155548/03/04. (Melting of Ta in a vacuum d. c. arc.)Google Scholar
  36. [210]
    Siemens & Halske: DRP 397641/22/24. (Tantalum-sintering in high vacuum.)Google Scholar
  37. [211]
    Schwarzkopf, P.: Unpublished data, courtesy of Metallwerk Plansee. (MoO 3-Analyses; W-, Mo-and Ta-extraction.)Google Scholar
  38. [212]
    Wahlin, H. B., and L. O. Sordahl: The Emission of Electricity from Columbium. Phys. Rev. vol.44 (1933) p. 1030A.Google Scholar
  39. [213]
    Wahlin, H. B.,and L. O. Sordahl: Positive and Negative Thermionic Emission from Columbium. Phys. Rev. vol. 45 (1934) pp. 886–889.Google Scholar
  40. [214]
    Whitney, L. V.: The Temperature Scales of Columbium, Thorium, Rhodium, and Molybdenum at. 667 µ. Phys. Rev. vol. 48 (1935) pp. 458–461. (Emissivity: Nb 374; Th 380; Rh 242; Mo 382.)Google Scholar
  41. [215]
    Worthing, A. G.: Spectral Emissivities of Ta, Pt, Ni, and Au as a Function of Temperature, and the-Melting-Point of Ta. Phys. Rev. vol. 28 (July 1926) pp. 174–1894Google Scholar
  42. [216]
    Worthing, A. G.: Physical Properties of Well-Seasoned Mo and Ta as a Function of Temperature. Phys. Rev. vol. 28 (1926) pp. 190–201.Google Scholar

Platinum and its Alloys

  1. [217]
    Angerer, E.V.: Technische Kunstgriffe bei physikalischen Untersuchungen. Braunschweig 1928.Google Scholar
  2. [218]
    Austin, J. B.: Physics vol.3 (1932) p. 252. (Heat-extension of Pt.Google Scholar
  3. [219]
    Bell Telephone Man. Co.: DRP 454806/21/28. (Pt-Ni core for oxide cathodes.)Google Scholar
  4. [220]
    Bendicks, C.: Phys. Z. vol.17 (1916) p. 320. (Wollaston-wire.)Google Scholar
  5. [221]
    Carter, F. E, and H. E. Stauss: Properties of Platinum and Platinum-Group Metals and Their Alloys. Metals Handbook, Cleveland (Amer. Soc. of Metals) (1939) pp. 1691-1695.Google Scholar
  6. [222]
    DuBridge, L. A.: The Termionic Emission from Clean Platinum. Phys. Rev. vol. 32 (1928) pp. 961–966.Google Scholar
  7. [223]
    Espe, W., and M. Knoll: Werkstoffkunde der Hochvakuumtechnik. Berlin 1936.Google Scholar
  8. [224]
    Gerlach, W., and E. Riedel: Phys. Z. vol.34 (1933) p. 516. (Spectral analysis of Pt.)Google Scholar
  9. [225]
    Gmelin: Handbuch der anorganischen Chemie, Bd. 5, Abt. III. 1915. (Platinum.)Google Scholar
  10. [226]
    Grigorjew, A. T.: Z. anorg. allg. Chem. vol.178 (1929) p. 213. (Konstanten des Pt.)Google Scholar
  11. [227]
    Keinath, G.: Arch. techn. Messen (ATM) vol.2 (1932) p. 156. (Thermo-element.)Google Scholar
  12. [228]
    Kurnakow, N. S., and W. A. Nemilow: Z. anorg. allg. Chem. vol.210 (1933) p. 19. (Resistance of Pt-Ni alloys.)Google Scholar
  13. [229]
    Laatsch, W.: Die Edelmetalle. Berlin 1925.Google Scholar
  14. [230]
    Mylius, F., and A. Mazzucchelli: Z. anorg. allg. Chem. vol. 89 (1914) Sec. 1. (Chemische Platinanalysen.)Google Scholar
  15. [231]
    Ullmann, F.: Enzyklopädie der technischen Chemie, 5. Aufl. Wien 1930.Google Scholar
  16. [232]
    Werkstoffhandbuch: Stahl u. Eisen. Düsseldorf 1927.Google Scholar
  17. [233]
    White, W. C., and J. J. Hickey: Electronics Simulates Sense of Smell. Electronics vol. 21 (March 1948) p. 100. (Ionemission from hot Pt anode in air is sensitive to halogen compound vapors and can be used for detecting leaks in gas filled tanks from outside.)Google Scholar
  18. [233 a,]
    Worthing, A. G.: Phys. Rev. vol.28 (1926) p. 174. (bdTa, Pt, Ni emissivity.)Google Scholar


  1. [234]
    Albert, M., Ch. Eichner and V. Lobard: Diffusion of Hydrogen through Palladium. C. R. Acad. Sci., Paris vol. 202 (1936) pp. 1777–1779.Google Scholar
  2. [235]
    Borelius, G., and S. Lindblom: Ann. Phys. vol.82 (1927) p. 201. (H 2-diffusion through metals.)Google Scholar
  3. [236]
    Fast, J. D.: Experiments on Diffusion of Gases through Metals. Philips Techn. J. (1942) pp. 73–81, No. 3.Google Scholar
  4. [237]
    Ham, W. R., and J. D. Sauter: Diffusion of Hydrogen through Iron and Palladium. Phys. Rev. vol.47 (1935) p. 337A, No. 4.Google Scholar
  5. [238]
    Ham, W. R.: Equations for diffusion of Gases through Metals. Phys. Rev. vol.47 (1935) p. 644A.Google Scholar
  6. [239]
    Jost, W., and A. Widmann: Z. Phys. Chem., Abt.B. vol.29 (1935) p.252. (H 2 diffusion through Pd.)Google Scholar
  7. [240]
    Nelson, H., and U.S. Patent 252 G 038: The Hydrogen Gauge. Rev. Sci. Instr, vol.16 (1945) p. 272. (Leak detector.)Google Scholar
  8. [241]
    Pat.-Treuhand-Ges.: DRP 486515/28/29. (H 2-valve for Na-tubes, made, from Pd.)Google Scholar
  9. [242]
    Sauter, J. D., and W. R. Ham: The Diffusion of Hydrogen through Highly-Degassed Palladium. Phys. Rev. vol.47 (1935) p. 645A.Google Scholar
  10. [243]
    Schofield, F. H.: The Freezing-Point of Palladium. Proc. Roy. Soc., Lond. vol. 155 (1936) pp. 301–308, No. 885.Google Scholar
  11. [244]
    Sieverts, A.: Z. phys. Chem. vol.60 (1907) p. 129; vol.74 (1910) p. 277; vol.77 (1911) p. 591 — Z. Metallkde. vol.21 (1929) p. 37. (Solubility of H 2 in metals.)Google Scholar
  12. [245]
    Smithells, C. J., and C. E. Ransley: Proc. Roy. Soc., Lond. vol.150 (1935) p. 172. (Diffusion of gases through metals.)Google Scholar

Zirconium (see also section on getters)

  1. [246]
    Arkel, A. E. van: Physica vol.3 (1923) p. 76. (W “growing” method.)Google Scholar
  2. [247]
    Arkel, A. E. Van: Metallwirtsch. vol.13 (1934) p. 405, 511. (Production of ductile zirconium by thermal dissociation.)Google Scholar
  3. [248]
    Chambers, G. H.: Metals and Alloys vol.4 (1933) p. 199. (Zirconium.)Google Scholar
  4. [249]
    De Boer, I. H.: Zirconium (also contains 61 references to Zr) Foote-Prints vol. III, No. 2. (Pub. Foote Mineral Co., Philadelphia, Pa., U.S.A.)Google Scholar
  5. [250]
    De Boer, I. H.: Ind. Chem. vol.19 (1927) p. 1256. (Zirconium.)Google Scholar
  6. [251]
    De Boer, I.H.: Foote-Prints on Rare Metals III, No. 2 (1930). (Zr.)Google Scholar
  7. [252]
    De Boer, I. H., and J. D. Fast: The α-β Transition in the Presence of H 2. Rec. Trav. chim. vol. 55 (1936) pp. 350 and 459.Google Scholar
  8. [253]
    De Boer, I. H., and J. D. Fast: Electrolysis of Solid Solutions of Oxygen in Metallic Zr. Rec. Trav. chim. vol. 59 (1940) pp. 161.Google Scholar
  9. [254]
    De Boer, I. H., and J. D. Fast: Zr, I, Z. An. Chem. vol.153 (1926) p. 1; vol. 187 (1930) p. 177.Google Scholar
  10. [255]
    De Boer, I. H., and others: Z. anorg. allg. Chem. vol.191 (1930) p. 113. (Alkali extraction by reduction with Zr.)Google Scholar
  11. [255a]
    Dushman, S.: Rev. Mod. Phys. vol.2 (1930) p. 394.Google Scholar
  12. [256]
    Espe, W.: Zirkon (inCzech.). Praha (1954). Zirkonium (in German), 74pages. Fuessen 1953.Google Scholar
  13. [257]
    Espersen, G. A.: Zirconium for Electron Tubes. Foote Prints vol. 18 (1946) No. 1. Philadelphia, Pa.: Publ. Foote Mineral Co.Google Scholar
  14. [258]
    Fast, J. D.: Ductile Zirconium, its Preparation and Fabrication. Metal Ind., Lond. vol. 54 (1939) pp. 164–165, No. 5.Google Scholar
  15. [259]
    Fast, J. D.: Ductile Shaping of Zirconium and Titanium. Metallwiss. vol.17 (1938) p. 459.Google Scholar
  16. [260]
    Fast, J. D.: Zirconium. Foote-Prints on Chemicals, Metals, Alloys and Ores. vol. 10 (Dec. 1937) p. 1; vol.13 (1940) p.Google Scholar
  17. [261]
    Fast, J. D.: Zirconium and its Compounds with a High Melting-Point. Philips techn. Rev. vol.3 (1938) p. 345.Google Scholar
  18. [262]
    Gillet, H. W.: Some Feature sof Ductile Zirconium and Titanium. Foote-Prints vol.13 (1940) p. 1.Google Scholar
  19. [263]
    Kroll, M. J., and A. W. Schlechten: Survey of Literature on the Metallurgy of Zr. Bureau of Mines Information Circular No. 7341 (1946).Google Scholar
  20. [264]
    Kroll, W. J., and A. S. Schlechten: Titanium and Zirconium — Two Metals of the Future. Metal Industry vol.69 (1946) p. 319.Google Scholar
  21. [265]
    Marden, J. W., and M. N. Rich: Investigations of Zirconium. Ind. Engng. Chem. vol. 12, No. 6 (1920) p. 651, and Bureau of Mines Bulletin vol. 186 — Mineral Technology vol. 25 (1921).Google Scholar
  22. [266]
    Philips: Holl. Pat. 24989/28/31; Drgm. 1222872/28/32. (Zr as getter.)Google Scholar
  23. [267]
    Raynor, W. M.: Properties and Applications of High-Purity Ductile Zirconium. Foote-Prints vol. 24 (1952) No. 2. Published by Foote Mineral Co., Philadelphia, Pa., U.S.A.Google Scholar
  24. [268]
    Rogers, A.N.: Use of Zr in the vacuum tube. Trans. Electrochem. Soc. vol.88 (1945) p. 207.Google Scholar
  25. [269]
    Shelton, S. M.: Zirconium. Scientific Amer. vol.184 (June 1951) p. 19.Google Scholar
  26. [270]
    Wahl, A.: The Effects of Oxygen and Nitrogen on the Thermionic Emission from Zirconium; E. E. Dept., Princeton University, Tech. Report No. 1, Naval Contract N6onr-27010, NR074-333.Google Scholar
  27. [271]
    Wainer, E.: Technology of Zr and Ti and their Compounds. Ceram. Age vol.48 (Nov. 1946) p. 198.Google Scholar
  28. [272]
    Wedekind, E.: Über die Darstellung des sog. kristallisierten Zr im el. Ofen. Z. Elektrochem. vol.10 (1904) p. 331.Google Scholar

Titanium (see also Zr)

  1. [273]
    Arkel, A. C. Van: Physica vol.3 (1923) p. 76. (W-“growing” method); vol. 4 (1924) p. 286. (W-, Ti, Ta-Carbide “growing” method.)Google Scholar
  2. [274]
    Benjamin, M.: Phil. Mag. vol.20 (1935) p. 1. (Ti-alloyed cores for hot cathodes.)Google Scholar
  3. [275]
    Bradford, C. I., J. P. Catlin and E. L. Wemple: Properties of Wrought Commercially-Pure Titanium Prepared by Arc-Welding and Casting. Metal Progr. vol.55 (1949) p. 348.Google Scholar
  4. [276]
    Campbell, I.E., and others: The Preparation and Properties of Pure Ti. J. Electrochem. Soc. vol.93 (1948) p. 271.Google Scholar
  5. [277]
    Clausing, P., and G. Moubis: Physica vol.7 (1927) p. 245.Google Scholar
  6. [278]
    Daellenbach, M.: Großgleichrichter ohne Vakuumpumpe. Elektrotechn. Z. vol.55 (1934) p. 85.Google Scholar
  7. [279]
    Dean, R. S., and B. Silkes: Metallic Ti and its Alloys. U.S. Dept. Int., Bur. of Mines Inf. Circular 7381 (Nov. 1946) p. 38.Google Scholar
  8. [280]
    De Boer, I. H., and P. Clausing: Physica vol.10 (1930) p. 267.Google Scholar
  9. [281]
    Du Pont de Nemours, E. I. (Inc.): Titanium Metal. Electronics vol.22 (March 1949) p. 207.Google Scholar
  10. [282]
    Espe, W.: Platovane zelezo jako novy meterial, valuove techniky. Slaboproudy Obzor vol. 11, No.2 (1950) p. 31.Google Scholar
  11. [283]
    Espe, W., and V. Kratochvil: Titan-kov blitzke budoucnosti. Slaboproudy Obzor vol. 11 (1950).Google Scholar
  12. [284]
    Greenwood, A.: Titanium, some Properties and Applications. Metallurgia vol. 36, No. 211 (1947).Google Scholar
  13. [285]
    Hunter, M. A., and A.Jones: Electrochem. Soc. Vordruck 66-20 (Sept. 1934). (Titan, Konel.)Google Scholar
  14. [286]
    Long, J. R.: The Consolidation of Titanium Powder by Sheath Rolling. Metal Progr. vol.55 (1949) p. 191.Google Scholar
  15. [287]
    Michels, W. C., and S. Wilford: The Physical Properties of Titanium. J. Appl. Phys. vol.20 (1949) p. 1, 223.Google Scholar
  16. [288]
    Michels and Wilford: Spectral Emissivity and Conductivity of Titanium. Bull. Amer. Phys. Soc., Washington meeting vol. 12 (April 1949) p. 20. (Resistivity curve: 20 to 1400° K; spec, emissivity curve: 1050–1400° K.)Google Scholar
  17. [289]
    Michels, W. C., and S. E. Wilford: Spectral Emissivity and Conductivity of Titanium. Phys. Rev. vol.76 (1949) p. 174. (Resistivity curve: 20–1400° K, spec. emissivity curve: 1050–1400° K.)Google Scholar
  18. [290]
    Ralston, O. C., and F. J. Oservenyak: Potential Uses of Titanium Metal. Industr. Engng. Chem. vol.42 (1950) p. 214.Google Scholar
  19. [291]
    Robinson, D. Jr.: The Effect of Absorbed Oxygen on the Thermionic Emission from Titanium. E. E. Dept., Princeton University, Tech. Report No.2. Naval Contract N6onr-27010, NR074-333.Google Scholar
  20. [292]
    Rohn, W.: DRP 558948/29/32. (NiBe, NiTi for vacuum tubes.)Google Scholar
  21. [293]
    Schulze, W.: Z. Metallkde. vol.23 (1931) p. 263. (Ti and Zr.)Google Scholar
  22. [294]
    Simmons, O. W., and others: Arc-Melting of Titanium. Metal Progr. vol.55 (1949) p. 197.Google Scholar
  23. [295]
    Sutton, I. B., and T. D. McKinley: Induction-Melting of Titaniumin Graphite. Metal Progr. vol.55 (1949) p. 195.Google Scholar
  24. [296]
    Wartmann, F. S.: Production of Titanium Powder by the Bureau of Mines. Metal Progr. vol.55 (1949) p. 188.Google Scholar


  1. [297]
    Espe, W.: Metalicke Thorium, novy zajimavy material techniky, vakua. Slaboproudy Obzor vol. 11, No. 5 (1950).Google Scholar
  2. [298]
    Espe, W.: Powder. Met. Bull. vol. 3 (Oct. 1948) p. 100 and vol. 4 (Jan. 1949).Google Scholar


  1. [299]
    Ahrens, G.: Cerium. Modern Metals vol. 1 (Sept. 1945) p. 20.Google Scholar


  1. [230]
    Sims, Chester T.: Rhenium Metal. Materials and Methods (March 1955).Google Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations