Advertisement

Testing Methods for Vacuum Tube Materials

Chapter
  • 94 Downloads

Abstract

X-ray Spectrography. The diffraction of a monochromatic X-ray beam passing through a monocrystal or polycrystalline specimen produces interference phenomena similar to those observed with gratings and ordinary light. The reflection on a lattice plane follows known optical laws; as the diffracted beams, reflected from successive planes, are superposed, these beams produce maximum reinforcement only if the path difference is a whole number n of wave lengths λ (Fig. 2/1).

Keywords

Vacuum System Leak Detector Vacuum Gauge Ionization Gauge Negative Glow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Testing Methods for Vacuum Tube Materials General

General

  1. [1]
    Chalmers, B.: The Physical Examination of Metals, 2 vols., 181 and 280 pages London: Arnold 1941.Google Scholar
  2. [2]
    Churchill: Physical Testing of Metals. Cleveland, Ohio (Am. Soc. for Metals) 1936.Google Scholar
  3. [3]
    Greaves, R. H., and H. Wrighton: Practical Microscopical Metallography, 271 pages. London: Chapman 1941.Google Scholar
  4. [4]
    Int. Nickel Co.: Spot Testing of Some Metals and Alloys, 47 pages. New York: Inco 1948. (Rapid chemical testing method.)Google Scholar
  5. [5]
    Pulsifer, H. B.: Inspection of Metals. Cleveland, Ohio (Am. Soc. for Metals) 1942.Google Scholar
  6. [6]
    Williams, R. S., and S. B. Honerberg: Principles of Metallography. New York: McGraw-Hill 1939.Google Scholar

Special Analysis

  1. [7]
    ASTM: Symposium of Radiography and X-Ray Diffraction Methods. 1936.Google Scholar
  2. [8]
    Boas, W.: Introduction to the Physics of Metals and Alloys. New York: Wiley 1947.Google Scholar
  3. [9]
    Bragg, L.: The Crystalline State. London (1939).Google Scholar
  4. [10]
    Bragg, L., and W. M. Lomer: A Dynamical Model of a Crystal Structure. Proc. Roy. Soc., Lond. vol.196 (1949) p. 171 and 182.CrossRefGoogle Scholar
  5. [11]
    Chalmers, B.: The Physical Examination of Metals, 2 vols., 181 and 280 pages. London: Arnold 1941.Google Scholar
  6. [12]
    Gerlach, W., and E. Schweitzer: Die chemische Emissions-Spektralanalyse, vols. l and 2. Leipzig 1935.Google Scholar
  7. [13]
    James, R. W.: X-ray Crystallography. London: Methuen 1954.Google Scholar
  8. [14]
    Lowe, F.: Optische Messungen des Chemikers und des Mediziners. Dresden 1933.Google Scholar
  9. [15]
    Moritz, H.: Z. VDI vol.77 (1933) p. 1321. (Spectral analysis.)Google Scholar
  10. [16]
    Parsons, S. L.: Spectrographic Analysis in the Manufacture of Radio Tubes. (Chemical, metallurgical, ceramic and fluorecent material problems; routine inspection and control.) Proc. Inst. Radio Engrs., N. Y. vol.32 (1944) pp. 130–135.Google Scholar
  11. [17]
    Randall, J. T.: The Diffraction of X-rays and Electrons by Amorphous Solids, Liquids and Gases. London: Chapman 1934.Google Scholar

X-Ray Radiography

  1. [18]
    ASTM: Symposium on Radiography and X-ray Diffraction Methods. 1936.Google Scholar
  2. [19]
    Bell, J., J. W. Davies and M. A. Gossling: High Power Valves. J. Inst. Electr. Engng. vol.83 (1938) p. 176 (X-ray radiographs.)Google Scholar
  3. [20]
    Compton, A. H., and S. K. Allison: X-Rays in Theory and Experiment. New York 1934.Google Scholar
  4. [21]
    Fisk, J. B., H. D. Hagstrum and P.L.Hartman: The Magnetron as a Generator of Centimeter Waves. Bell Syst. Techn. J. vol. 25, No. 2 (April 1946) p. 270.Google Scholar
  5. [22]
    West, R.: Low Energy Gamma-Ray Sources. Nucleonics vol.11 (Feb. 1953) p. 20. (Gamma-ray radiography for electron tubes.)Google Scholar

Inspection of Strains in Glass with the Polariscope

  1. [23]
    Adams, L. H.: The Annealing of Glass as a Physical Problem. J. Franklin Inst. vol. 216 (1933) pp. 39–71.CrossRefGoogle Scholar
  2. [24]
    Adams, L. H., and E.D. Williamson: The Annealing of Glass. J.Franklin Inst. vol. 190 (1920) pp. 597–631, 835-870.CrossRefGoogle Scholar
  3. [25]
    Adams, L.H., and E.D. Williamson: The Relation Between Birefringence and Stress in Various Types of Glass. J. Washington Acad. Sci. vol. 9 (1919) pp. 609–625.Google Scholar
  4. [26]
    Becton, E. E.: An Immersion Cell for Polariscope Use. Glass Ind. vol. 19 (1938) pp. 51–53.Google Scholar
  5. [27]
    Boys, C.V.: Annealing Glass. Nature, Lond. vol.98 (1916) pp. 150–151.CrossRefGoogle Scholar
  6. [28]
    Brewster, Sir David: Results of Some Recent Experiments on the Properties Impressed upon Light by the Action of Glass Raised to Different Temperatures and Cooled under Different Circumstances. Phil. Trans. Roy. Soc., Lond. (1814) pp. 436 to 439 Ibid. Numerous papers by the same author 1814-1816.Google Scholar
  7. [29]
    Coker, E. G., and L. N. G. Filon: A Treatise on Photoelasticity. Cambridge: Univ. Press 1931.zbMATHGoogle Scholar
  8. [30]
    Dictionary of Applied Physics vol. IV, pp. 490-511 (Macmillan).Google Scholar
  9. [30a]
    Engel, F.: Optimal Adaptation of Sealing Partners. Glastechn. Berichte, vol. 29 (1956) pp. 5–10.Google Scholar
  10. [31]
    Fortey, J.: A Projection Type of Strain Viewer. J. Soc. Glass Techn. vol. 29 (1945) pp. 124–127.Google Scholar
  11. [32]
    Frocht, M. M.: Photoelasticity. New York: Wiley 1941. (Stress patterns of compression and tension in Plastics; Polariscopes.)Google Scholar
  12. [33]
    Gage, H. P.: Color Filters for Altering Temperature, Pyrometer Absorption and Daylight Glasses. J. Amer. Opt. Soc. vol. 23, No. 2 (February 1933).Google Scholar
  13. [34]
    Goranson, R. W., and L. H. Adams: A Method for the Precise Measurement of Optical Path Differences, Especially in Stressed Glass. J. Franklin Inst. vol.216 (1933) p. 475. (Used for glass sealing test samples, e. g. FeCr and glass strips.)CrossRefGoogle Scholar
  14. [35]
    Hardy, A. C., and F. H. Perbin: The Principles of Optics. New York: McGraw-Hill Book Co. Inc. 1932.zbMATHGoogle Scholar
  15. [36]
    Hull, A. W., and E. E. Burger: Physics vol.5 (1934) p. 384. (Testing of Strains in Glass-Metal Sealings.)CrossRefGoogle Scholar
  16. [37]
    Johnson, B. K.: The Polarization Microscope. Endeavor vol. 7 (April 1948) p. 57. (Table of polarization colors as a function of retardation in microns.)Google Scholar
  17. [38]
    Martin, F. W.: Stresses in Glass-Metal Seals — I. The Cylindrical Seal. J. Amer. Ceram. Soc. vol. 33 (1950) pp. 224–229.CrossRefGoogle Scholar
  18. [39]
    Morey, G.W.: The Properties of Glass. New York: Reinhold 1938.Google Scholar
  19. [40]
    Mylonas, C., and M. Greek: The Optical System of Polariscopes as Used in Photoelasticity. J. Sci. Instr. vol.25 (1948) pp. 77–81.CrossRefGoogle Scholar
  20. [41]
    Neuman, F.: The Law of Birefringence in Compressed Non-uniformly Heated Non-crystalline Bodies. In German Ann. Phys. Chem. vol 54 (1841) pp. 449–476CrossRefGoogle Scholar
  21. [42]
    Nokes, M. C.: Modern Glass Working and Laboratory Technique, 154 pages. London: Heinemann 1938. (p. 167: Polaroid strain detector.)Google Scholar
  22. [43]
    Padmos. A.A., and J. de Vries: Stresses in Glass and Their Measurement. Philips Techn. Rev. vol. 9 (1947–48) pp. 277–284.Google Scholar
  23. [44]
    Partridge, J. H.: Glass to Metal Seals. Soc. Glass Techn. Sheffield vol. 10. England 1949.Google Scholar
  24. [45]
    Poritsky, H.: Analysis of Thermal Stresses in Sealed Cylinders and the Effect of Viscous Flow During Annealing. Physics vol. 5 (1934) pp. 406–411.zbMATHCrossRefGoogle Scholar
  25. [46]
    Preston, F. W.: The Use of Polariscopes in the Glass Industry. J. Amer. Ceramic. Soc. vol. 13 (1930) pp. 595–623.CrossRefGoogle Scholar
  26. [47]
    Read, W. T.: Optical Measurements of Residual Stresses in Glass Bulbs. Bell. Labor. Rec. vol. 28 (1950) pp. 62–65. J. Appl. Phys. vol. 21 (1950) pp. 250-257.Google Scholar
  27. [48]
    Rogers, A. F., and F. P. Kerr: Optical Mineralogy. New York: McGraw-Hill 1942.Google Scholar
  28. [49]
    Späte, F.: Über die Untersuchung von Glas mittels des polarisierten Lichtes. Glastechn. Ber. vol.2 (1924) p. 1; vol.4 (1926) p. 121. (Measurement of permissible glass strain.)Google Scholar
  29. [50]
    Spencer, C.D., and S. Jones S.: Design and Construction of Polariscopes for Use in Glass Factories. J. Amer. Ceram. Soc. vol.14 (1931) p. 512.CrossRefGoogle Scholar
  30. [51]
    Stanworth, J. E.: Physical Properties of Glass. London: Oxford Univ. Press 1950.Google Scholar
  31. [52]
    Strong, J.: Procedures in Experimental Physics. 538 pages. New York: Prentice Hall 1941. (Polariscope.)Google Scholar
  32. [53]
    Strong, J.: Strukturberichte. 7 vols. Leipzig: Becker, and Ann. Arbor: Edwards 1928–1939. (Structural data of solids, mostly based on X-ray analysis.)Google Scholar
  33. [54]
    Tait, P. G.: Properties of Matter, 4th ed. London: Adam and Charles Bladk. 1899.Google Scholar
  34. [55]
    Thomas, M.: Schnellkühlung von Glas. Glastechn. Ber. vol.4 (1926) pp. 323–332.Google Scholar
  35. [56]
    Trebuchon, G., and J. Kieffer: Physical Aspects of Glass to Metal Seals Used in the Electron Tube Industry. (In French.) Ann. Radioelectr. vol. 5 (1950) pp. 125–149; 243-258.Google Scholar
  36. [57]
    Turner, W. E. S.: Recording Dilatometer for Measuring Thermal Expansion of Solids. J. Amer. Ceram. Soc. vol.33 (1950) p. 54.CrossRefGoogle Scholar
  37. [57a]
    Zincke, A.: Über die Entstehung und schnelle Beseitigung von Spannungen in Glas bei seiner örtlich begrenzten thermischen Bearbeitung. Glastechn. Ber. vol. 28 (1955) pp. 10–15.Google Scholar

Thickness Measurement of Thin Films

  1. [58]
    Friedman, H.: Electronics vol. 18 (April 1945) pp. 132–137.Google Scholar
  2. [59]
    Friedman, H., and L. S. Birks: Rev. Sci. Instr. vol. 17, No. 8 (March 1946) pp.99–101.CrossRefGoogle Scholar
  3. [60]
    Mayer, H.: Physik dünner Schichten (Physics of thin films). In German. Stuttgart (1950) pp. 30-122. (Methods of thickness measurements.)Google Scholar
  4. [61]
    Rothery, A.: The Ellipsometer, an Apparatus to Measure Thicknesses of Thin Surface Films. Rev. Sci. Instr. vol.16 (1945) p. 26. (Accuracy ±. 3 A; based on the change of ellipticity of light after passing through the film.)CrossRefGoogle Scholar
  5. [62]
    Scott, G. D., T. A. McLaughlin and R. S. Scannett: The Thickness Measurement of Thin Films by Multiple Beam Interferometry. J. Appl. Phys. vol. 21 (Sept. 1950) p. 843.CrossRefGoogle Scholar

Measurement of Expansion

  1. [63]
    Braun, E.: Quartz-Dilatometer. Z. techn. Phys. vol.7 (1926) p. 505 and 640.Google Scholar
  2. [64]
    Bureau of Standards: Res. Paper II 515 (Jan. 1933). (Interferometer Method for Measurement of Expansion Coefficient.)Google Scholar
  3. [65]
    Burger, E. E.: The Expansion Characteristics of Some Common Glasses and Metals. Gen. Elect. Rev. vol.37 (1934) p. 93. (Description of differential dilatometer.)Google Scholar
  4. [66]
    Hull, W. E., and E. E. Burger: Physics vol.5 (1934) p. 384.CrossRefGoogle Scholar
  5. [67]
    Kingston, W. E.: New Type Recording Dilatometer. Metal Progr. vol.44 (1943) p. 1115.Google Scholar
  6. [68]
    Klemm, A., and E. Berger: Glastechn. Ber. vol.5 (1927) p. 405. (Coefficient of Expansion of Glass.)Google Scholar
  7. [69]
    Prytherch, W. E.: New Form of Dilatometer. Nat. Phys. Labor Collect. Res. vol 75 (1935) pp. 427–432.Google Scholar
  8. [70]
    Saunders, J. B.: Improved Interferometric Procedure with Application to Expansion Measurements. J. Res. Nat. Bur. Stand, vol.23 (1939) p. 779.Google Scholar
  9. [71]
    Schwieger, M., and H. Fiedler: Spannungsoptische Bestimmung des thermischen Ausdehnungskoeffizienten von Gläsern. Ann. Phys. vol. 14, No. 1/2 (1954) p. 64.CrossRefGoogle Scholar
  10. [72]
    Turnbull, J. C.: Recording Dilatometer for Measuring Thermal Expansion of Solids. J. Amer. Ceram. Soc. vol.33 (1950) p. 54.CrossRefGoogle Scholar
  11. [73]
    White, Clark and Thomassen: Trans Asme, FSP. pp. 52-40 (1930). (Dilatometer method for measuring of creep in steel at higher temperatures.)Google Scholar

Pyrometers

  1. [74]
    Amer. Inst. of Phys.: Temperature. New York 1939. (Optical and radiation pyrometry, pp. 1115-1226; p. 1199.C. H. Prescott: The Pyrometry of Oxide Coated Filaments.)Google Scholar
  2. [75]
    Coblenz, W. W.: Int. Crit. Tables vol.5 (1929) p. 238. (Strahlungskonstanten.)Google Scholar
  3. [76]
    Foote, P. D., C. O. Fairchild and T. R. Harrison: Pyrometric Practice. Nat. Bur. Standards, Technological Papers, p. 170. Washington 1948.Google Scholar
  4. [77]
    Forsythe, W. E.: Int. Crit. Tables vol.5 (1929) p. 245. (Wahre und schwarze Temperatur.)Google Scholar
  5. [78]
    Forsythe, W.: Measurement of Radiant Energy. New York 1937.Google Scholar
  6. [79]
    Keinath, G.: Elektrische Temperatur-Meßgeräte. München 1923. (Pyrometer.)Google Scholar
  7. [80]
    Knoll, M.: Anleitungen zum Arbeiten im Röhrenlaboratorium. Berlin 1936.Google Scholar
  8. [81]
    Lax, E., and M. Pirani in Geiger-Scheel: Handbuch der Physik vol.19 (1928) p. 27; vol.21 (1929) p. 241. (Radiation of solid bodies.)Google Scholar
  9. [82]
    Lax, E., and M. Pirani in Geiger-Scheel: Handbuch der Physik vol.19 (1928) p. 400. (Pyrometer-lamps.)Google Scholar
  10. [83]
    Miething, H.: Meßtechn. vol.4 (1928) p. 180. (T wT s Diagram.)Google Scholar

Testing Instruments for Luminous Materials

  1. [84]
    Hardy, A. E.: A Combination Phosphorometer and Spectroradiometer for Luminescent Materials. J. Electrochemical Soc. Reprint (1947) pp. 91-98.Google Scholar
  2. [85]
    Zworykin, V. K.: An Automatic Recording Spectroradiometer for Cathodoluminescent Materials. J. Opt. Soc. Amer. vol.29 (1939) p. 84.CrossRefGoogle Scholar

Leak Detectors

  1. [86]
    Amdur, I., and H. Pearlman: A New Type Vacuum Thermoelement. Rev. Sci. Instr. vol.10 (1939) p. 174. (Thermocouple gauge 10−5 to 10−1mm Hg.)CrossRefGoogle Scholar
  2. [87]
    Backus, J.: Chapt. 11 in “Characteristics of Electrical Discharges in Magnetic Fields”. Nat. Nucl. Engng. ser. vol. 5. New York 1949. (Philips Gauge used as Positive Ion Source in Small Mass Spectrometer for Vacuum Analysis up to m ≈ 50.)Google Scholar
  3. [88]
    Blears, J.: Application of the Mass Spectrometer to High Vacuum Problems. Vacuum Physics (Symp. 1950). London (1951) p. 36.Google Scholar
  4. [89]
    Blears, J., and J. H. Leck: General Principles of Leak Detection. J. Sci. Instr. vol. 1. (Vacuum Physics Symposium. Birmingham: June 1950.) London 1951 pp. 20 to 28.Google Scholar
  5. [90]
    Blears, J., and J. H. Leck: Differential Methods of Leak Detection. Brit. J. Appl. Phys. vol.2 (1951) p. 227. (Theory, procedure, and design.)CrossRefGoogle Scholar
  6. [91]
    Brubaker, W. M., and V. Wouk: Frequency Modulated Oscillator for Leak Hunting. Rev. Sci. Instr. vol.17 (1946) p. 97.CrossRefGoogle Scholar
  7. [92]
    Downing, J. R., and G. Mellen: A Sensitive Vacuum Gauge with Linear Response. Rev. Sci. Instr. vol.17 (1946) p. 218. (A radium ionization gauge: Alphatron.)CrossRefGoogle Scholar
  8. [93]
    Dumont, J. W. M., and W. M. Pickels: Superiority of a Knudsen Type Vacuum Gauge for Large Metal Systems with Organic Vapor Pump. (Its design and operation.) Rev. Sci. Instr. vol.6 (1935) p. 362. (Pirani gauge losses by gaseous transfer.)Google Scholar
  9. [94]
    Dunlap, G.G., and J. G. Trump: Thermocouple Gauge for Vacuum Measurement. Rev. Sci. Instr. vol.8 (1937) p. 37.CrossRefGoogle Scholar
  10. [95]
    Dushman, S.: Scientific Foundations of Vacuum Technique, p. 385. New York 1949.Google Scholar
  11. [96]
    Evans and Burmaster: A Philips-type Ionization Gauge for Measuring of Vacuum from 10−7 to 10−1mm Hg. Proc. IRE vol.38 (1950) p. 651.CrossRefGoogle Scholar
  12. [97]
    Forrester, A. T., and W. B. Whalley: Panoramic Mass Spectrometer Observation. Rev. Sci. Instr. vol.17 (1946) p. 549. (Vacuum analyzer for higher masses using low frequency scanning system to obtain mass-current curves on oscilloscope.)CrossRefGoogle Scholar
  13. [98]
    Graham, R. L., A. L. Harkness, and H. G. Thode: An a-c Operated Mass Spectrometer for Isotope Abundance Measurements. J. Sci. Instr. vol.24 (1947) p. 119. (Mass spectrometer of the Nier-type for high vacuum.)CrossRefGoogle Scholar
  14. [99]
    Guthrie, A.: Leak Detectors for Industrial Vacuum Systems. Electronics vol.23 (Sept. 1950) p. 96. (The mass monochromator as vacuum analyzer and leak detector.)Google Scholar
  15. [100]
    Guthrie, A., and R. K. Walkerling: Vacuum equipment and techniques, p. 209. New York 1949.Google Scholar
  16. [101]
    Jacobs, R. B., and H. F. Zuhr: New Developments in Vacuum Engineering. J. Appl. Phys. vol.18 (1947) p. 34. (Differential method of leak detection.)CrossRefGoogle Scholar
  17. [102]
    Jaeckel, R.: Kleinste Drucke, ihre Messung und Erzeugung. Heidelberg 1950.Google Scholar
  18. [103]
    Knoll, M., F. Ollendorff and R. Rompe: Gastabellen, p. 39. Berlin 1935.Google Scholar
  19. [104]
    Klumb, H., and H. Schwarz: Physics vol.1 (1944) p. 16.Google Scholar
  20. [105]
    Kuper, J. B. H.: A Vacuum Gauge for Leak Hunting. Rev. Sci. Instr. vol.8 (1937) p. 131. (Pirani gauge with loudspeaker.)CrossRefGoogle Scholar
  21. [106]
    Lawton, E. J.: More about Vacuum Leak Testing. Rev. Sci. Instr. vol.11 (1946) p. 134. (Decrease in work function of a hot tungsten filament when contaminated by oxygen is used for control of oxygen concentration.)CrossRefGoogle Scholar
  22. [107]
    Manley, J. H., L. J. Haworth and E. A. Luebke: Vacuum Leak Testing. Rev. Sci. Instr. vol.19 (1939) p. 389. (Temporary sealing substance on outside of vacuum system, change of pressure on inside for 6 different liquids.)CrossRefGoogle Scholar
  23. [108]
    Milner, C. J.: A Cold Cathode Mass Spectrometer Leak Detector. Vacuum Physics (Symp. 1950) London (1951) p. 29.Google Scholar
  24. [109]
    Mielenz, K. D.: Zur Druckmessung mit dem PiRANi-Manometer. Z.Physik vol. 6 (1954) No. 3.Google Scholar
  25. [110]
    Nelson, H.: The Hydrogen Gauge-an Ultrasensitive Device for Location of Air Leaks in Vacuum Device Envelopes. Rev. Sci. Instr. vol. 16 (Oct. 1945) p. 275.Google Scholar
  26. [111]
    Nelson, R. B.: An a–c Operated Leak Detector and Ionization Gauge. Rev. Sci. Instr. vol.16 (1945) p. 55.CrossRefGoogle Scholar
  27. [112]
    Nier, A. O.: A Mass Spectrometer for Routine Isotope Abundance Measurements. Rev. Sci. Instr. vol.11 (1940) p. 212. (Mass spectrometer for high vacuum.)CrossRefGoogle Scholar
  28. [113]
    Nier, A. O., C.M. Stevens, A. Hustrulid and T.A. Abbott: Mass Spectrometer for Leak Detection. J. Appl. Phys. vol.18 (1947) p. 30. (Low resolution helium mass spectrometer.)CrossRefGoogle Scholar
  29. [114]
    Penning, F. M., and K. Nienhuis: Construction and Applications of a New Design of the Philips Vacuum Gauge. Philips Techn. Rev. vol.11 (1949) p. 116.Google Scholar
  30. [115]
    Pirani, M.: Verh. dtsch. phys. Ges. vol.8 (1906) p. 24.Google Scholar
  31. [116]
    Rittner, E. S.: A Pirani Gauge for Use at Pressures up to 15 mm. Rev. Sci. Instr. vol.17 (1946) p. 113. (1 mil. W wire mounted in 2 mm pyrex capillary tube.)CrossRefGoogle Scholar
  32. [117]
    Scott, E. J.: An Automatic Pirani Vacuum Gauge. Rev. Sci. Instr. vol.10 (1939) p. 349.CrossRefGoogle Scholar
  33. [118]
    Spangenberg, K. R.: Vacuum Tubes, p. 860. New York 1948.Google Scholar
  34. [119]
    Steckelmacher, W.: Review of Vacuum Gauges. J. Sci. Instr. (Vacuum Physics Symposium, June 1950). London 1951 pp. 12-16.Google Scholar
  35. [120]
    Thomas, H. W., T.W. Williams and J. A. Hipple: A Mass Spectrometer Type of Leak Detector. Rev. Sci. Instr. vol.17 (1946) p. 368.CrossRefGoogle Scholar
  36. [121]
    White, W. C., and J. S. Hickey: Electronics Simulate Sense of Smell. Electronics vol. 21 (March 1948) p. 100. (Ionization leak detector for halogen vapors in atmosphere, using hot platinum cathode.)Google Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations