Advertisement

General Structure and Properties of Materials (Including Metallographic Methods)

Chapter
  • 90 Downloads

Abstract

For maintaining a high vacuum or a defined gas pressure throughout the life of a tube, it is necessary that all materials employed in its construction be thoroughly outgassed. The process of outgassing is usually accomplished by heating, either prior to or during the pumping process. The rate of gas evolved throughout this process increases with the outgassing temperature. Generally no further gas should be evolved from the parts contained in the tube structure provided that the temperature attained in the exhaust process is greater than that attained throughout the operational life of the tube.

Keywords

Powder Metallurgy Eutectic Alloy Vacuum Tube Recrystallization Temperature Brinell Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on General Structure and Properties of Materials General References on Materials and Processes

  1. [1]
    A.S.M.: Symposium on the Surface Treatment of Metals, 427 pages, Cleveland, Ohio (Am. Soc. for Metals) 1940. (Al, stainless steel, Mg-alloys, tin plating, Zn, diffusioncoatings, induction-heating, shot blasting, tempered color films on stainless steel.)Google Scholar
  2. [2]
    ASME and ASTM: Symposium on Effect of Temperature on the Properties of Metals. 827 pages. New York (Am. Soc. of Testing Mat. and A. S. of Mech. Engng.) 1931. (Metals at elevated temperatures in ceramic industry; mechanical properties of metals at elevated temperatures; thermal expansion and thermal conductivity of metals. Bibliography.)Google Scholar
  3. [3]
    ASTM Committee B-4: El. Heating and Resistance Materials, Thermostat Metals, Mat. for Lamps, Radio Tubes and Furnaces. 282 pages. Philadelphia, Pa. (1941 and 1942).Google Scholar
  4. [4]
    ASTM: Methodes of Chemical Analysis of Metals. 223 pages. Philadelphia, Pa. (Am. Soc. for Testing Mat.) 1943.Google Scholar
  5. [5]
    Bray: Non-Ferrous Metallurgy, 1941.Google Scholar
  6. [6]
    Clark, F. H.: Metals at High Temperatures. 372 pages. New York: Reinhold 1950.Google Scholar
  7. [7]
    Espe, W., and M. Knoll: Werkstoffkunde der Hochvakuumtechnik (Technolcgy of high vacuum materials). In German. Berlin: Springer 1936, Ann Anbor: 1944.Google Scholar
  8. [8]
    Everhard, J. L., W. E. Lindlief, J. Kanegis, P. G. Weissler and F. Siegel: Mechanical Properties of Metals and Alloys. Circular of the N. B. of Standards C 447. 476 pages. Washington: U.S. Gvt. Printing Office 1943.Google Scholar
  9. [9]
    Frier, W. T. (Gen. El.): Elementary Metallurgy. 207 pages. New York: McGraw-Hill 1942.Google Scholar
  10. [10]
    Greaves, R. H., and H. Wrighton: Practical Microscopic Metallography, 271 pages. London: Chapman 1941.Google Scholar
  11. [11]
    Heyer: Engineering Physical Metallurgy 1929.Google Scholar
  12. [12]
    Humer-Rothery, W.: The Structure of Metals and Alloys. Brooklyn: Chem. Publ. Co. 1939.Google Scholar
  13. [13]
    Hutchinson, E.: Diffusion in Solids, Liquids, Gases. New York 1952.Google Scholar
  14. [14]
    Jonhson, C.G.: Metallurgy. Chicago (Am. Techn. Soc.) 1942.Google Scholar
  15. [15]
    Kohl, W. M.: Materials Technology of Electron Tubes. New York 1951.Google Scholar
  16. [16]
    Le Claire, A. D.: Diffusion of Metals in Metals. Progress in Metal Physics vol. 1 (1949) pp. 306–379 (Survey; 132 References).CrossRefGoogle Scholar
  17. [17]
    Liddell: Handbook of Non-Ferrous Metallurgy. 1935.Google Scholar
  18. [18]
    Manjoine, M., and A. Nadai: High Speed Tension Tests at Elevated Temperatures, Part. I. Proc. ASTM vol. 10 (1940) pp. 822–837.Google Scholar
  19. [19]
    Manual on the Presentation of Data: Philadelphia, Pa. (Amer. Soc. for Testing Mat.) 1941.Google Scholar
  20. [20]
    Mason, C. W.: Introductory Physical Metallurgy. Cleveland, Ohio 1947.Google Scholar
  21. [21]
    Merlub-Sobel, M.: Metals and Alloys Dictionary, 239 pages. Brooklyn: Chem. Publ. Co. 1944.Google Scholar
  22. [22]
    Metals Handbook: 1803 pages. Cleveland, Ohio (Am. Soc. for Metals) 1948. (Ferrous section: construction of ferrous alloys; properties; testing; technology; shaping and forming; heat treatment; case hardening; surface treatments; cladding. Non-ferrous section: aluminium, bismuth, cadmium, copper, gold, lead, lithium, magnesium, rickel, platinum, tin, zinc, and their alloys.)Google Scholar
  23. [23]
    Rosenhain, W., and J. L. Haughton: Introduction to Physical Metallurgy. London: Constable 1935.Google Scholar
  24. [24]
    Ruff, O.: Chemistry of High Temperatures. Chim. et Ind. vol.35 (1936) p. 255.Google Scholar
  25. [25]
    Sachs and von Horn: Practical Metallurgy. Cleveland, Ohio (Am. Soc. for Metals) 1940.Google Scholar
  26. [26]
    Smith, G. V.: Properties of Metals at Elevated Temperatures, 401 pages. New York: McGraw-Hill 1950.Google Scholar
  27. [27]
    Smithells, C. J.: Metals Reference Book, 735 pages. London and New York: Interscience 1949. (Spectral lines for use in analysis; crystallography including X-ray data; metallography; many equilibrium diagrams for alloys; gas-metal systems; diffusion; general, electrical, thermodynamical, thermoelectric, radiating and magnetic properties; electron emission; mechanical testing and mechanical properties; casting alloys; welding, soldering and brazing.)Google Scholar
  28. [28]
    Van Wert, L. R.: Inside a Metal. Mining and Metallurgy, Oct. 1937.Google Scholar
  29. [29]
    Wells, A. F.: Structural Inorganic Chemistry. Oxford: Clarendon 1945.Google Scholar
  30. [30]
    Woldman, N. E., and A. J. Dornblatt: Engineering Alloys (names, properties, uses), 568 pages. Cleveland, Ohio (Am. Soc. for Metals) 1942.Google Scholar
  31. [31]
    Working of Metals. Am. Soc. for Metals.Google Scholar

Crystallization

  1. [32]
    Alterthum, H.: Phys. Z. vol.32 (1931) p. 305.Google Scholar
  2. [33]
    Bragg, L.: The Crystalline State, London (1939).Google Scholar
  3. [34]
    Evans, R. C: Crystal Chemistry. Cambridge: Univ. Press 1939.Google Scholar
  4. [35]
    Johnson, C. G.: Metallurgy. Chicago (Am. Techn. Soc.) 1942.Google Scholar
  5. [36]
    Smithells, C. J.: Impurities in Metals, 1930.Google Scholar

Shaping of Chrystals by Cold Working

  1. [37]
    Jeffries, Z.: Trans. Amer. Inst. Min. Metallurgy Engrs. vol.60 (1919) p. 474. (Mechanical properties of tungsten from 0–900° C.)Google Scholar
  2. [38]
    Rosenhain, W., and J. L. Haughton: Introduction to Physical Metallurgy. London: Constable 1935.Google Scholar
  3. [39]
    Schwarz, O.: Die technischen Werkstoffe. Leipzig 1932.Google Scholar

Recrystallization

  1. [40]
    Alterthum, H.: Phys. Z. vol.32 (1931) p. 305 (Recrystallization).Google Scholar
  2. [41]
    Oberhoffer, P., and W. Oertel: Stahl u. Eisen vol.39 (1919) p. 1061. (Diagram of Iron.)Google Scholar
  3. [42]
    Schwarz, O.: Die technischen Werkstoffe. Leipzig 1932.Google Scholar
  4. [43]
    Tapsell, H. J.: Creep of Metals. London 1931.Google Scholar
  5. [44]
    Van Liempt, M. A. M.: Rec. Trav. chim. Pays-Bas vol.53 (1934) p. 941. (Recrystallization.)CrossRefGoogle Scholar

Creep Limit and Form Retention

  1. [45]
    Grunert, H.: “Heraeus Vakuumschmelze 1932–33”, 139 pages. Hanau 1933. (Creepage of iron, nickel and alloys.)Google Scholar
  2. [46]
    Pomp, A.: Werkstoffhandbuch Stahl and Eisen, sec. C, vol. 47 (1935) pp. 1–5. (Form retention.)Google Scholar
  3. [47]
    Ransley, C. A., and C. J. Smithells: J. Inst. Met. vol.49 (1932) p. 287. (Mechanical manufacture of nickel wire.)Google Scholar
  4. [48]
    Rohn, W.: Festschrift W. Heraeus, Hanau 1930. (Bestimmung der Kriechgrenzen von Metallen.)Google Scholar
  5. [49]
    Sauerwald, F.: Lehrbuch der Metallkunde. Berlin 1929.Google Scholar
  6. [50]
    Sully, A. H.: Metallic Creep and Creep Resistant Alloys, 292 pages. New York: Interscience 1949. (Measurement, characteristics, ferrous and non-ferrous alloys.)Google Scholar
  7. [51]
    Tapsell, H. J.: Creep of Metals. London 1931.Google Scholar
  8. [52]
    Van Liempt, J. A. M., and H. W. Geiss: DRP 529, 338/24/31 (Mo-core for W-helices)Google Scholar

Impurities

  1. [53]
    Smithells, C. J.: Impurities in Metals, 1930.Google Scholar

Cast Metal Alloys

  1. [54]
    Cast Metals Handbook: 1940.Google Scholar
  2. [55]
    Hansen, M.: Aufbau der Zweistofflegierungen (Structure of binary alloys). Berlin: Springer 1933 (Equlibrium diagrams).Google Scholar
  3. [56]
    Johnson, C. G.: Metallurgy. Chicago (Am. Techn. Soc.) 1942.Google Scholar
  4. [57]
    Metals Handbook: 1803 pages. Cleveland, Ohio (Am. Soc. for Metals) 1939. (Ferrous section: Construction of ferrous alloys; properties; testing; technology; shaping and forming; heat treatment; case hardening; surface treatments; cladding. Non-ferrous section: aluminium, bismuth, cadmium, copper, gold, lead, lithium, magnesium, nickel, platinum, tin, zinc, and their alloys.)Google Scholar
  5. [58]
    Smithells, C. J.: Metals Reference Book, 735 pages. London and New York: Interscience 1949 (contents see ref [27]).Google Scholar

Sintered Metals and Alloys

  1. [59]
    ASM: Powder Metallurgy, Ed. by John Wulff, 622 pages. Cleveland, Ohio (Am. Soc. for Metals) 1942.Google Scholar
  2. [60]
    Cassirer-Bano, S., and J. A. Hedrall: Über die Herstellung gesinterter Kobalt-Nickel-Legierungen (Manufacturing of Sintered Cobalt-Nickel Alloys). Z. Metallkde. vol. 1 (1939) pp. 12–14.Google Scholar
  3. [61]
    Coolidge, W. D.: Ductile Tungsten. Proc. Aiee vol.29 (1910) p. 953 (Discussion on impurities and mechanical working).Google Scholar
  4. [62]
    Baeza, W. I.: A Course in Powder Metallurgy, 212 pages. New York: Reinhold Publ. Co. 1943.Google Scholar
  5. [63]
    Baukloh, W., and G. Henke: Sinterfähigkeit von Nickel (Sintering ability of nickel). Metallwirtsch. vol. 3 (1939) pp. 59–61.Google Scholar
  6. [64]
    Duwez, P., and H.E. Martens: The Powder Metallurgy of Porous Metals and Alloys Having a Controlled Porosity. Trans AIME vol.175 (1948) p. 848.Google Scholar
  7. [65]
    Fast, J. D.: The Preparation of Metals in a Compact Form by Pressing and Sintering. Philips Techn. Rev. vol.4 (1939) p. 309.Google Scholar
  8. [66]
    Goetzel, C. G.: 1. Metallpulver als Ausgangswerkstoff in der Reihenfertigung (Metal powder as a material for manufacturing in numbers). Werkstattechnik und Werksleiter vol. 31 (1937) pp. 446–449, No.20. 2. Treatise on Powder Metallurgy, 2 vols. New York: Interscience 1950. (Exhaustive survey).Google Scholar
  9. [67]
    Grube, G., and W. H. Schlecht: Über Sinterung von Metallpulvern (Sintering of Metal Powders). Z. Elektrochem. vol. 44 (1938) pp. 367–374, No. 6.Google Scholar
  10. [68]
    Jones, W. D.: Powder Metallurgy. London: Longmans 1937.Google Scholar
  11. [69]
    Kieffer, R., and W. Hotop: Pulvermetallurgie und Sinterwerkstoffe. Berlin: Springer 1943.Google Scholar
  12. [70]
    Kingston, W. E.: The Physics of Powder Metallurgy. New York 1951.Google Scholar
  13. [71]
    Rollfinke, F.: Metallkeramik (Metal ceramics). Z. VDI vol.84 (1940) pp. 681–689 and 953-958.Google Scholar
  14. [72]
    Schwarzkopf, P.: Powder Metallurgy. Mech. Engng. (1950) pp. 543-548.Google Scholar
  15. [73]
    Skaupy, F. (Osram Ges.): Metallkeramik (Metal ceramics). Berlin 1930.Google Scholar
  16. [74]
    Wanke, K.: Einführung in die Pulvermetallurgie. 1948.Google Scholar

Structure of Glasses; Phase and Viscosity Diagrams

  1. [75]
    Berger, E.: Glastechn. Ber. vol.12 (1934) p. 172. (Determination of transformation temperature of glass.)Google Scholar
  2. [76]
    Hodgman, D.: Handbook of Chemistry and Physics, 2686 pages. Cleveland, Ohio.Google Scholar
  3. [77]
    Littleton, J. T.: The Effect of Heat Treatment on the Physical Properties of Glass. Bull. Amer. Cer. Soc. vol.15 (1936) p. 306. (Creeping effect on physical properties, shown by Babinet pattern.)Google Scholar
  4. [78]
    Littleton, J. T., and F. W. Preston: Theory of the Strength of Thermally Toughened Glass. J. Soc. Glass Technol. (1929) p. 336.Google Scholar
  5. [79]
    Littleton, J. T., and E.H. Roberts: J. Opt. Soc. Ann. vol.4 (1920) p. 224. (Definition of transformation temperature for annealing processes.)CrossRefGoogle Scholar
  6. [80]
    Morey, G. W.: The Properties of Glass, 561 pages. New York: Reinhold 1938.Google Scholar
  7. [81]
    Preston, F. W.: The Use of Polariscopes in the Glass Industry. J. Amer. Ceram. Soc. vol. 13 (1930) pp. 595–623.CrossRefGoogle Scholar
  8. [82]
    Späte, F.: Glastechn. Ber. vol.12 (1934) p. 34. (Definitions of transformation temperature.)Google Scholar
  9. [83]
    von Wartenberg, M.: Z. techn. Phys. vol.13 (1932) p. 479. (Determ. of transformation temperature of glasses.)Google Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations