Getters and Getter Processes



Various gettering materials are used to shorten the exhaust process, to improve or maintain the vacuum in sealed-off tubes or to maintain the purity of rare gases in gas-filled tubes. In the simplest case, large, particularly porous surface areas of glass or carbon cooled much below room temperature, may be used. Solid surfaces of some clean metals (tantalum, zirconium) as well as phosphorous and most metals in a vaporized state or film may also be used as getters (tungsten, nickel, copper, especially alkali and alkaline-earth metals). Phosphorous pentoxide, calcium chloride, and other drying agents are used exclusively for absorption of water vapor.


Vacuum Tube Incandescent Lamp Secondary Emission Electron Bombardment Amyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Getters and Getter Processes


  1. [1]
    Brunauer, S.: The Sorption of Gases and Vapors. Princeton 1942.Google Scholar
  2. [2]
    De Ment, J., and H. C. Dake: Rarer Metals. New York 1946.Google Scholar
  3. [3]
    Dushman, S.: Scientific Foundations of Vacuum Technique. New York: John Wiley and Sons 1949.Google Scholar
  4. [4]
    Espe, W.: New Getter Materials for the High Vacuum Technique. Powder Metallurgy Bulletin (Oct. 1948) p. 100.Google Scholar
  5. [5]
    Espe, W., and M. Knoll: Materials of the High Vacuum Technique, p. 305. Ann. Arbor 1944. (In German.)Google Scholar
  6. [6]
    Espe, W., M. Knoll and M. Wilder: Getter Materials for Electron Tubes. Electronics vol. 23 (Oct. 1950) p. 82.Google Scholar
  7. [7]
    Faraday Society London: The Adsorption of Gases by Solids, p. 447. Oxford 1932.Google Scholar
  8. [8]
    Fast, J. D.: Metals and Getters. Philips Tech. Rev. vol.5 (1940) p. 217.Google Scholar
  9. [9]
    Gettering and Getters: Light Metals (Jan. 1944 p. 34 and (Feb. 1944) p. 77.Google Scholar
  10. [10]
    Gregg, S. I.: Adsorption of Gases by Solids, p. 116. London 1934.Google Scholar
  11. [11]
    Harrison, J. S.: Production and Use of Getters and Materials in German Radio Valves, Thermionic Devices, and Electric Lamps. B. I. O. S., Final Report No. 1834. London 1948.Google Scholar
  12. [12]
    Int. Crit. Tables vol.1 (1926) p. 91. (Vapor pressure at low temperatures.)Google Scholar
  13. [13]
    Langmuir, D. B., and L. Malter: The Rate of Evaporation of Ta. Phys. Rev. vol.55 (1939) p. 748.CrossRefGoogle Scholar
  14. [14]
    Littmann. M.: Getterstoffe. Leipzig 1938.Google Scholar
  15. [15]
    McBain, I. W.: The Sorption of Gases and Vapours by Solids. London 1932.Google Scholar
  16. [16]
    Van Arkel: Reine Metalle, Herstellung, Eigenschaften, Verwendung. Berlin 1939.Google Scholar

Gettering by Evaporated Metals and Alloys

  1. [17]
    Ahrens, G.: Cerium. Mod. Metals (Sept. 1945) p. 20.Google Scholar
  2. [18]
    Andrews, M. R., and J. S. Bacon: The Comparison of Certain Chemical Getters. J. Amer. Chem. Soc. vol.53 (1931) p. 1674.CrossRefGoogle Scholar
  3. [19]
    Beauvais, G. A.: Öst. Pat. 91,271/17/23. (Stem shields.)Google Scholar
  4. [20]
    Benjamin, M., C. W. Cosgrove and G. W. Warren. Modern Receiving Valves; Design and Manufacture. J. Inst. Electr. Engrs. vol.80 (1937) p. 421.Google Scholar
  5. [21]
    De Graff, J. E., and H. C. Hamaker: The Sorption of Gases by Ba. Physics vol.9 (1942) p. 297.Google Scholar
  6. [21a]
    Davis, R. H., and A. S. Divatia. Design and Operation of Evapor-Ion Pumps. Rev. Scient. Instr. (1954).Google Scholar
  7. [21b]
    Divatia, A. S., H. Davis and R. G. Herb: Getter-Ion Pump. Phys. Rev. vol. 93 (1954) pp. 926–927Google Scholar
  8. [22]
    Dushman, S.: Recent Advances in the Production and Measurement of High Vacua. J. Franklin Inst. p.211 (1931) p. 689.Google Scholar
  9. [23]
    Ehrke, L. F., and C. M. Slack: An Investigation into the Gettering Powers of Various Metals for the Gases H 2, O 2, N 2, CO 2, and Air. J. Appl. Phys. vol. 11 (Feb. 1940) p. 129.CrossRefGoogle Scholar
  10. [24]
    Espe, W.: DRP 591,392/29/34. (Stem protection by metal shields.)Google Scholar
  11. [25]
    Hasse. G.: Die Getterwirkung dünner Ba-Filme bei tiefen Drucken. Z. angew. Phys. vol.2 (1950) p. 188.Google Scholar
  12. [26]
    Hunt, G. L.: Telefunken Metal Ceramic Radio Valves. B. I. O. S. Final Report 30. London 1945 (Dept. of Commerce), P. B. 18,901.Google Scholar
  13. [27]
    Johnson, G. W., W. H. Payne and P. A. Anderson: A Quantitative Study of the Clean Up of H2 by Ba. Phys. Rev. vol.56 (1939) p. 852A.Google Scholar
  14. [28]
    Getters and Gettering Methods for Electronic Tubes, Kernet Labs, 1947.Google Scholar
  15. [29]
    Lederer, E. A., and C. H. Wamsley. Batalum, a Ba Getter for Metal Tubes. RCA Rev. (1937) p. 117.Google Scholar
  16. [30]
    Lederer, E. A., and C. H. Wamsley: Recent Advances in Ba Getter Technique. RCA Rev. (Jan. 1940) p. 310.Google Scholar
  17. [31]
    Loewe, S.: Öst. Pat. 113,452/26/29. (Movable getter holder.); DRP 545,905/24/32. (Tube getters.)Google Scholar
  18. [31a]
    Mackay, G. M. I.: (Resistivity of oxides.)Int. Crit. Tables 6 (929) p. 153.Google Scholar
  19. [32]
    Philips: DRP 610,877/27/25. (Stem insulation with CaO coating.)Google Scholar
  20. [32a]
    Porte della, P.: Performance Characteristics of Ba-getters at Elevated Working Temperatures of the Valves. Vacuum vol. 4 (October, 1954) No. 4 pp. 464–475.CrossRefGoogle Scholar
  21. [33]
    Reimann, A. L.: Phil. Mag. vol.123 (1934) p. 1117. (Mg, Ca, Ba as getter.)Google Scholar
  22. [34]
    Reimann, A. L.: The Clean Up of Various Gases by Mg, Ca and Ba. Phil. Mag. vol.16 (1933) p. 673; vol. 18 (1934) p. 1, 117.Google Scholar
  23. [35]
    Robinson, N. W.: Rugged Valves and Mechanical Tests for Valves and Components. B. I. O. S. Final Report 501. London 1954.Google Scholar
  24. [36]
    Sykes, Ch., and others: Brit. Pat. 421,209/33/34. (“Brushing” of contaminations by inductor discharge.)Google Scholar
  25. [37]
    Van Voorhis, C. C., A. G. Shenstone and A. W. Pike: Purification of Inert Gas with Mischmetal. Rev. Sci. Instr. vol.5 (1934) p. 367.CrossRefGoogle Scholar
  26. [38]
    Vereinigte Glühlampen u. El.-Ges. Ujpest: DRP 593,719/27/34. (Barium-magnesium alloys.)Google Scholar
  27. [39]
    Wild, R.: Les Getters et leur Emplois. Le Vide vol.2 (1947) p. 252.Google Scholar

Gettering by Solid Metals and Alloys

  1. [40]
    Bradford, C. L, J. P. Catlin and E. L. Wemple: Properties of Wrought Commet cially Pure Titanium Prepared by Arc Melting and Casting. Metal Progr. vol.55 (1949) p. 348.Google Scholar
  2. [41]
    Campbell, I. E., and others: The Preparation and Properties of Pure Ti. J. Electrochem. Soc. vol.93 (1948) p. 271.CrossRefGoogle Scholar
  3. [42]
    Daellenbach, W.: Großgleichrichter ohne Vakuumpumpe. Elektrotechn. Z. vol.55 (1934) p. 85.Google Scholar
  4. [43]
    Dean, R. S., and B. Silkes: Metallic Titanium and Its Alloys. U. S. Dept. Int., Bur. of Mines Information Circular 7381 (Nov. 1946) p. 38.Google Scholar
  5. [44]
    DeBoer, I. H., and J. D. Fast: The α — β Transition in Zr in the Presence of H2. Rec. Trav. Chim. vol.55 (1936) p. 350, 459.CrossRefGoogle Scholar
  6. [45]
    DeBoer, I. H., and J. D. Fast: Electrolysis of Solid Solutions of Oxygen in Metallic Zr. Rec. Trav. Chim. vol.59 (1940) p. 161.CrossRefGoogle Scholar
  7. [46]
    DeBoer, I. H., and J. D. Fast: Zr: I: Z. An. Chemie vol.153 (1926) p. 1; vol 187 (1930) p. 177.CrossRefGoogle Scholar
  8. [47]
    Deck, W.: The Adsorption of Gases by Steel Walls of a Vacuum Discharge Apparatus and Its Bearing on the Life of Pumpless Mutators. BBC Review vol. 29 (Aug. 1942) p. 202.Google Scholar
  9. [48]
    Dicke, G. H., and Crosswhite H. M.: Purification of Rare Gases by Activated Uranium. J. Opt. Soc. Amer. vol. 42 (June 1952) p. 433. (Uranium powder prepared from hydride UH 3.)CrossRefGoogle Scholar
  10. [49]
    Dicke, R. H., and S. P. Cumingham: A New Type of Hydrogen Discharge Tube. J. Opt. Soc. Amer. vol. 42 (March 1952) p. 187. (Preparation of Uranium hydride for powder gettering.)CrossRefGoogle Scholar
  11. [50]
    E. I. du Pont des Nemours, Inc.: Titanium Metal. Electronics vol. 22 (March 1949) p. 207.Google Scholar
  12. [51]
    Espe, W.: Platované železo jako nový material vakuové techniky. Slaboproudy Obzor vol.11 (1950) p. 31, No. 2 (in Czscho-slovakian).Google Scholar
  13. [52]
    Espe, W.: Metalické Thorium, nový zajimavý material techniky vakua. Slaboproudy Obzor vol. 11 (1950) No. 5.Google Scholar
  14. [53]
    Espe, W., and V. Kratochvil: Titan — kov blízke budoucnosti. Slaboproudy Obzor vol. 11 (1950).Google Scholar
  15. [54]
    Espersen, G. A.: Zr for Electron Tubes. Foote Prints vol.18 (1946) p. 3, No. 1.Google Scholar
  16. [55]
    Fansteel Metallurgical Corp.: Information for Use of Columbium Getter Pellets. Chicago.Google Scholar
  17. [56]
    Fansteel Metallurgical Corp.: Columbium. Technical Information. Chicago 1946.Google Scholar
  18. [57]
    Fansteel Metallurgical Corp.: Tantalum. Technical Information. Data Bulletin Ta 500. Chicago.Google Scholar
  19. [58]
    Fast, J. D.: Ductile Shaping of Zirconium and Titanium. Metalwiss. p. 17 (1938) p. 459.Google Scholar
  20. [59]
    Fast, J. D.: Zirconium. Foote Prints on Chemicals, Metals. Alloys and Ores vol. 10 (Dec. 1937) p. 1; vol.13 (1940) p. 22.Google Scholar
  21. [60]
    Fast, J. D.: Zirconium and Its Compounds With a High Melting Point. Philips Tech. Rev. vol.3 (1938) p. 345.Google Scholar
  22. [61]
    Fetkenheuer, B., and E. Cremer: Siemens-Z. vol.12 (1932) p. 168. (Tantalum manufacture.)Google Scholar
  23. [62]
    Gillet, H. W.: Some Features of Ductile Zirconium and Titanium. Foote Prints vol.13 (1940) p. 1.Google Scholar
  24. [63]
    Greenwood, A.: Titanium, Some Properties and Applications. Metallurgia vol. 36 (1947) No. 211.Google Scholar
  25. [64]
    Guldner, W. G., and L. A. Wooten: Reactions of Zr with Gases at Low Pressure. J. Electrochem. Soc. vol.93 (1948) p. 223.CrossRefGoogle Scholar
  26. [65]
    Güntherschulze, A.: Z. Phys. vol.36 (1926) p. 563; vol. 37 (1926) p. 868; vol. 38 (1926) p. 575; vol.62 (1930) p. 607; vol.71 (1931) p. 279. (Cathode sputtering.)CrossRefGoogle Scholar
  27. [66]
    Hamburger, L.: Proc. Amst. vol.21 (1919) p. 1022 — Engineering vol. 108 (1919) p. 365. (Decoloration of incandescent lamps.)Google Scholar
  28. [67]
    Hukagawa, S., and J. Nambo: Absorption Properties of Metallic Zr and Its Application to Electron Tubes. Electrotechn. J. Japan vol.5 (1941) p. 27.Google Scholar
  29. [68]
    Kobayashi, M., and O. Harashima: Some Properties of Ta, and its Applications to Ultra Short Wave Tubes. Electrotechn. J., Tokyo vol. 4 (Oct. 1950) p. 224.Google Scholar
  30. [69]
    Kroll, W. J., and A. W. Schlechten: Survey of Literature on the Metallurgy of Zr. Bureau of Mines Information Circular No. 7341 (1946).Google Scholar
  31. [70]
    Kroll, W. J., and W. Schlechten: Titanium and Zirconium — Two Metals of the Future. Metal Industry vol.69 (1946) p. 319.Google Scholar
  32. [71]
    Kubaschewsky, O.: Die Löslichkeit von Gasen in Metallen. Z. Elektrochem. vol.44 (1938) p. 152.Google Scholar
  33. [72]
    Langmuir, I.: J. Amer. Chem. Soc. vol.41 (1919) p. 167. (Mo → N2 cycle.)CrossRefGoogle Scholar
  34. [73]
    Lilliendahl, W. C., and others: The Quantitative Evaluation of O2 in Zr. J, Electrochem. Soc. vol. 93, (1948) p. 235.CrossRefGoogle Scholar
  35. [74]
    Long, J. R.: The Consolidation of Titanium Powder by Sheet Rolling. Metal Progr. vol.55 (1949) p. 191.Google Scholar
  36. [75]
    Marden, J. W., and M. N. Rich: Investigations of Zirconium. Ind. Engng. Chem. vol.12 (1920) p. 651, No. 7 — Bureau of Mines Bulletin 186, Mineral Technology 25, 1921.CrossRefGoogle Scholar
  37. [76]
    Michels, W. C., and S. Wilford: The Physical Properties of Titanium. J. Appl. Phys. vol.20 (1949) p. 1, 223.CrossRefGoogle Scholar
  38. [77]
    Owen, E. R.: Telefunken Special Materials for Radio Valves. B.I.O.S. Final Report 276. London 1945. (Dept. of Commerce, P. B. 27,712.)Google Scholar
  39. [78]
    Pirani, M.: Z. Elektrochem. vol.11 (1905) p. 555. (Gas absorption by Ta.)CrossRefGoogle Scholar
  40. [79]
    Pirani, M.: Ta und H 2. Z. Elektrochem. vol.11 (1905) p. 555.CrossRefGoogle Scholar
  41. [80]
    Ralston, O. C., and F. J. Cserveniak: Potential Uses of Titanium Metal. Industr. Engng. Chem. vol.42 (1950) p. 214.CrossRefGoogle Scholar
  42. [81]
    Raynor, M. W.: The Use of Zi Metal for Gas Absorption. Foote prints vol.18 (1947) p. 22, No. 2. (Workable getter metal, e. g. used as a heat shield in cathode-ray tubes. Opt. getter temperature 200-800° C.)Google Scholar
  43. [82]
    Reimann A. L., and C. K. Granz: Some High Temperature Properties of Niobium. Phil. Mag. (1936) p. 34.Google Scholar
  44. [83]
    Rogers, A.N.: Use of Zr in the Vacuum Tube. Trans. Electrochem. Soc. vol.88 (1945) p. 207.CrossRefGoogle Scholar
  45. [84]
    Simmons, O. W., and others: Arc Melting of Titanium. Metal Progr. vol.55 (1949) p. 197.Google Scholar
  46. [85]
    Spedding, F. H., A. S. Newton and J. C. Warfe et al.: Uranium hydride (Preparation, composition, and chemical properties). Nucleonics vol.4 (1949) p. 1, No. 1; p. 17, No. 2; p. 43, No. 3.Google Scholar
  47. [86]
    Sutton, I. B., and T. D. McKinley: Induction Melting of Titanium in Graphite. Metal Progr. vol.55 (1949) p. 195.Google Scholar
  48. [87]
    Telefunken: DRP 370,292/18/23. Anode parts of Ta.)Google Scholar
  49. [88]
    Warner, E.: Technology of Zr and Ti and their Compounds. Ceram. Age vol. 48 (Nov. 1946) p. 198.Google Scholar
  50. [89]
    Wartmann, F. S.: Production of Titanium Powder by the Bureau of Mines. Metal Progr. vol.55 (1949) p. 188.Google Scholar
  51. [90]
    Wedekind, E.: Über die Darstellung des sog. kristallisierten Zr im el. Ofen. Z.Elektro-chem. vol.10 (1904) p. 331.CrossRefGoogle Scholar
  52. [91]
    Whitney, L. V.: Temperature Scale of Cb, Th, Rh, Mo at.667μ. Phys. Rev. vol.48 (1935) p. 458.CrossRefGoogle Scholar

Gettering by Phosphorus, Charcoal, and Liquid Air

  1. [92]
    Banneitz, F., and others: Ann. Phys. vol.61 (1920) p. 113. (Containers for liquid air.)CrossRefGoogle Scholar
  2. [93]
    Bartlett, W. C.: Chemistry in Incandescent Lamp Manufacture. Industr. Engng. Chem. vol.21 (1929) p. 970.CrossRefGoogle Scholar
  3. [93a]
    Claude, A.: (Gas discharge lamps.) Bull. Soc. franc. Electr. vol 3 (1933) p. 1145.Google Scholar
  4. [94]
    Dushman, S.: Methods of Production and Measurement of High Vacua, Part IX, Physical Chemical Methods. Gen. Elect. Rev. vol.24 (1921) p. 669.Google Scholar
  5. [94a]
    Hamburger, L.: (Decoloration of incandescent lanps.) Engineering vol.108 (1919) p. 365.Google Scholar
  6. [95]
    Huthsteiner, H., and S. Dushman: Gen. Electr. Rev. vol.24 (1921) p. 677. (Phosphorus getter.)Google Scholar
  7. [96]
    Knepper, E.: Die Fabrikation und Berechnung der modernen Metalldraht-Glühlampen. Leipzig 1926. (Phosphorus getter.)Google Scholar
  8. [97]
    Winkler, O.: Z. techn. Phys. vol.14 (1933) p. 319. (Silica gel and charcoal.)Google Scholar

Drying Agents

  1. [98]
    Bower, J. H.: Bur. Stand. J. Res. vol.12 (1934) p. 246. (Drying agents.)Google Scholar
  2. [99]
    Shepherd, M.: Int. Crit. Tables vol.3 (1928) p. 385. (Drying agents.)Google Scholar


  1. [100]
    Duffendack, O. S., R. A. Wolfe and F. Lederer: The Cleanup of Hg Vapour in Discharges Through H2, He, and N2. J. Opt. Soc. Amer. vol.31 (1941) p. 174.CrossRefGoogle Scholar
  2. [101]
    Mierdel, G.: Ann. Phys. (4) vol.85 (1928) p. 612.CrossRefGoogle Scholar
  3. [102]
    Pietsch, E.: Ergebn. exakt, Naturw. vol.5 (1926) p. 213.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations