Skip to main content

Getters and Getter Processes

  • Chapter
  • 135 Accesses

Abstract

Various gettering materials are used to shorten the exhaust process, to improve or maintain the vacuum in sealed-off tubes or to maintain the purity of rare gases in gas-filled tubes. In the simplest case, large, particularly porous surface areas of glass or carbon cooled much below room temperature, may be used. Solid surfaces of some clean metals (tantalum, zirconium) as well as phosphorous and most metals in a vaporized state or film may also be used as getters (tungsten, nickel, copper, especially alkali and alkaline-earth metals). Phosphorous pentoxide, calcium chloride, and other drying agents are used exclusively for absorption of water vapor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Getters and Getter Processes

Fundamentals

  1. Brunauer, S.: The Sorption of Gases and Vapors. Princeton 1942.

    Google Scholar 

  2. De Ment, J., and H. C. Dake: Rarer Metals. New York 1946.

    Google Scholar 

  3. Dushman, S.: Scientific Foundations of Vacuum Technique. New York: John Wiley and Sons 1949.

    Google Scholar 

  4. Espe, W.: New Getter Materials for the High Vacuum Technique. Powder Metallurgy Bulletin (Oct. 1948) p. 100.

    Google Scholar 

  5. Espe, W., and M. Knoll: Materials of the High Vacuum Technique, p. 305. Ann. Arbor 1944. (In German.)

    Google Scholar 

  6. Espe, W., M. Knoll and M. Wilder: Getter Materials for Electron Tubes. Electronics vol. 23 (Oct. 1950) p. 82.

    Google Scholar 

  7. Faraday Society London: The Adsorption of Gases by Solids, p. 447. Oxford 1932.

    Google Scholar 

  8. Fast, J. D.: Metals and Getters. Philips Tech. Rev. vol.5 (1940) p. 217.

    Google Scholar 

  9. Gettering and Getters: Light Metals (Jan. 1944 p. 34 and (Feb. 1944) p. 77.

    Google Scholar 

  10. Gregg, S. I.: Adsorption of Gases by Solids, p. 116. London 1934.

    Google Scholar 

  11. Harrison, J. S.: Production and Use of Getters and Materials in German Radio Valves, Thermionic Devices, and Electric Lamps. B. I. O. S., Final Report No. 1834. London 1948.

    Google Scholar 

  12. Int. Crit. Tables vol.1 (1926) p. 91. (Vapor pressure at low temperatures.)

    Google Scholar 

  13. Langmuir, D. B., and L. Malter: The Rate of Evaporation of Ta. Phys. Rev. vol.55 (1939) p. 748.

    Article  Google Scholar 

  14. Littmann. M.: Getterstoffe. Leipzig 1938.

    Google Scholar 

  15. McBain, I. W.: The Sorption of Gases and Vapours by Solids. London 1932.

    Google Scholar 

  16. Van Arkel: Reine Metalle, Herstellung, Eigenschaften, Verwendung. Berlin 1939.

    Google Scholar 

Gettering by Evaporated Metals and Alloys

  1. Ahrens, G.: Cerium. Mod. Metals (Sept. 1945) p. 20.

    Google Scholar 

  2. Andrews, M. R., and J. S. Bacon: The Comparison of Certain Chemical Getters. J. Amer. Chem. Soc. vol.53 (1931) p. 1674.

    Article  Google Scholar 

  3. Beauvais, G. A.: Öst. Pat. 91,271/17/23. (Stem shields.)

    Google Scholar 

  4. Benjamin, M., C. W. Cosgrove and G. W. Warren. Modern Receiving Valves; Design and Manufacture. J. Inst. Electr. Engrs. vol.80 (1937) p. 421.

    Google Scholar 

  5. De Graff, J. E., and H. C. Hamaker: The Sorption of Gases by Ba. Physics vol.9 (1942) p. 297.

    Google Scholar 

  6. Davis, R. H., and A. S. Divatia. Design and Operation of Evapor-Ion Pumps. Rev. Scient. Instr. (1954).

    Google Scholar 

  7. Divatia, A. S., H. Davis and R. G. Herb: Getter-Ion Pump. Phys. Rev. vol. 93 (1954) pp. 926–927

    Google Scholar 

  8. Dushman, S.: Recent Advances in the Production and Measurement of High Vacua. J. Franklin Inst. p.211 (1931) p. 689.

    Google Scholar 

  9. Ehrke, L. F., and C. M. Slack: An Investigation into the Gettering Powers of Various Metals for the Gases H 2, O 2, N 2, CO 2, and Air. J. Appl. Phys. vol. 11 (Feb. 1940) p. 129.

    Article  Google Scholar 

  10. Espe, W.: DRP 591,392/29/34. (Stem protection by metal shields.)

    Google Scholar 

  11. Hasse. G.: Die Getterwirkung dünner Ba-Filme bei tiefen Drucken. Z. angew. Phys. vol.2 (1950) p. 188.

    Google Scholar 

  12. Hunt, G. L.: Telefunken Metal Ceramic Radio Valves. B. I. O. S. Final Report 30. London 1945 (Dept. of Commerce), P. B. 18,901.

    Google Scholar 

  13. Johnson, G. W., W. H. Payne and P. A. Anderson: A Quantitative Study of the Clean Up of H2 by Ba. Phys. Rev. vol.56 (1939) p. 852A.

    Google Scholar 

  14. Getters and Gettering Methods for Electronic Tubes, Kernet Labs, 1947.

    Google Scholar 

  15. Lederer, E. A., and C. H. Wamsley. Batalum, a Ba Getter for Metal Tubes. RCA Rev. (1937) p. 117.

    Google Scholar 

  16. Lederer, E. A., and C. H. Wamsley: Recent Advances in Ba Getter Technique. RCA Rev. (Jan. 1940) p. 310.

    Google Scholar 

  17. Loewe, S.: Öst. Pat. 113,452/26/29. (Movable getter holder.); DRP 545,905/24/32. (Tube getters.)

    Google Scholar 

  18. Mackay, G. M. I.: (Resistivity of oxides.)Int. Crit. Tables 6 (929) p. 153.

    Google Scholar 

  19. Philips: DRP 610,877/27/25. (Stem insulation with CaO coating.)

    Google Scholar 

  20. Porte della, P.: Performance Characteristics of Ba-getters at Elevated Working Temperatures of the Valves. Vacuum vol. 4 (October, 1954) No. 4 pp. 464–475.

    Article  Google Scholar 

  21. Reimann, A. L.: Phil. Mag. vol.123 (1934) p. 1117. (Mg, Ca, Ba as getter.)

    Google Scholar 

  22. Reimann, A. L.: The Clean Up of Various Gases by Mg, Ca and Ba. Phil. Mag. vol.16 (1933) p. 673; vol. 18 (1934) p. 1, 117.

    Google Scholar 

  23. Robinson, N. W.: Rugged Valves and Mechanical Tests for Valves and Components. B. I. O. S. Final Report 501. London 1954.

    Google Scholar 

  24. Sykes, Ch., and others: Brit. Pat. 421,209/33/34. (“Brushing” of contaminations by inductor discharge.)

    Google Scholar 

  25. Van Voorhis, C. C., A. G. Shenstone and A. W. Pike: Purification of Inert Gas with Mischmetal. Rev. Sci. Instr. vol.5 (1934) p. 367.

    Article  Google Scholar 

  26. Vereinigte Glühlampen u. El.-Ges. Ujpest: DRP 593,719/27/34. (Barium-magnesium alloys.)

    Google Scholar 

  27. Wild, R.: Les Getters et leur Emplois. Le Vide vol.2 (1947) p. 252.

    Google Scholar 

Gettering by Solid Metals and Alloys

  1. Bradford, C. L, J. P. Catlin and E. L. Wemple: Properties of Wrought Commet cially Pure Titanium Prepared by Arc Melting and Casting. Metal Progr. vol.55 (1949) p. 348.

    Google Scholar 

  2. Campbell, I. E., and others: The Preparation and Properties of Pure Ti. J. Electrochem. Soc. vol.93 (1948) p. 271.

    Article  Google Scholar 

  3. Daellenbach, W.: Großgleichrichter ohne Vakuumpumpe. Elektrotechn. Z. vol.55 (1934) p. 85.

    Google Scholar 

  4. Dean, R. S., and B. Silkes: Metallic Titanium and Its Alloys. U. S. Dept. Int., Bur. of Mines Information Circular 7381 (Nov. 1946) p. 38.

    Google Scholar 

  5. DeBoer, I. H., and J. D. Fast: The α — β Transition in Zr in the Presence of H2. Rec. Trav. Chim. vol.55 (1936) p. 350, 459.

    Article  Google Scholar 

  6. DeBoer, I. H., and J. D. Fast: Electrolysis of Solid Solutions of Oxygen in Metallic Zr. Rec. Trav. Chim. vol.59 (1940) p. 161.

    Article  Google Scholar 

  7. DeBoer, I. H., and J. D. Fast: Zr: I: Z. An. Chemie vol.153 (1926) p. 1; vol 187 (1930) p. 177.

    Article  Google Scholar 

  8. Deck, W.: The Adsorption of Gases by Steel Walls of a Vacuum Discharge Apparatus and Its Bearing on the Life of Pumpless Mutators. BBC Review vol. 29 (Aug. 1942) p. 202.

    Google Scholar 

  9. Dicke, G. H., and Crosswhite H. M.: Purification of Rare Gases by Activated Uranium. J. Opt. Soc. Amer. vol. 42 (June 1952) p. 433. (Uranium powder prepared from hydride UH 3.)

    Article  Google Scholar 

  10. Dicke, R. H., and S. P. Cumingham: A New Type of Hydrogen Discharge Tube. J. Opt. Soc. Amer. vol. 42 (March 1952) p. 187. (Preparation of Uranium hydride for powder gettering.)

    Article  Google Scholar 

  11. E. I. du Pont des Nemours, Inc.: Titanium Metal. Electronics vol. 22 (March 1949) p. 207.

    Google Scholar 

  12. Espe, W.: Platované železo jako nový material vakuové techniky. Slaboproudy Obzor vol.11 (1950) p. 31, No. 2 (in Czscho-slovakian).

    Google Scholar 

  13. Espe, W.: Metalické Thorium, nový zajimavý material techniky vakua. Slaboproudy Obzor vol. 11 (1950) No. 5.

    Google Scholar 

  14. Espe, W., and V. Kratochvil: Titan — kov blízke budoucnosti. Slaboproudy Obzor vol. 11 (1950).

    Google Scholar 

  15. Espersen, G. A.: Zr for Electron Tubes. Foote Prints vol.18 (1946) p. 3, No. 1.

    Google Scholar 

  16. Fansteel Metallurgical Corp.: Information for Use of Columbium Getter Pellets. Chicago.

    Google Scholar 

  17. Fansteel Metallurgical Corp.: Columbium. Technical Information. Chicago 1946.

    Google Scholar 

  18. Fansteel Metallurgical Corp.: Tantalum. Technical Information. Data Bulletin Ta 500. Chicago.

    Google Scholar 

  19. Fast, J. D.: Ductile Shaping of Zirconium and Titanium. Metalwiss. p. 17 (1938) p. 459.

    Google Scholar 

  20. Fast, J. D.: Zirconium. Foote Prints on Chemicals, Metals. Alloys and Ores vol. 10 (Dec. 1937) p. 1; vol.13 (1940) p. 22.

    Google Scholar 

  21. Fast, J. D.: Zirconium and Its Compounds With a High Melting Point. Philips Tech. Rev. vol.3 (1938) p. 345.

    Google Scholar 

  22. Fetkenheuer, B., and E. Cremer: Siemens-Z. vol.12 (1932) p. 168. (Tantalum manufacture.)

    Google Scholar 

  23. Gillet, H. W.: Some Features of Ductile Zirconium and Titanium. Foote Prints vol.13 (1940) p. 1.

    Google Scholar 

  24. Greenwood, A.: Titanium, Some Properties and Applications. Metallurgia vol. 36 (1947) No. 211.

    Google Scholar 

  25. Guldner, W. G., and L. A. Wooten: Reactions of Zr with Gases at Low Pressure. J. Electrochem. Soc. vol.93 (1948) p. 223.

    Article  Google Scholar 

  26. Güntherschulze, A.: Z. Phys. vol.36 (1926) p. 563; vol. 37 (1926) p. 868; vol. 38 (1926) p. 575; vol.62 (1930) p. 607; vol.71 (1931) p. 279. (Cathode sputtering.)

    Article  Google Scholar 

  27. Hamburger, L.: Proc. Amst. vol.21 (1919) p. 1022 — Engineering vol. 108 (1919) p. 365. (Decoloration of incandescent lamps.)

    Google Scholar 

  28. Hukagawa, S., and J. Nambo: Absorption Properties of Metallic Zr and Its Application to Electron Tubes. Electrotechn. J. Japan vol.5 (1941) p. 27.

    Google Scholar 

  29. Kobayashi, M., and O. Harashima: Some Properties of Ta, and its Applications to Ultra Short Wave Tubes. Electrotechn. J., Tokyo vol. 4 (Oct. 1950) p. 224.

    Google Scholar 

  30. Kroll, W. J., and A. W. Schlechten: Survey of Literature on the Metallurgy of Zr. Bureau of Mines Information Circular No. 7341 (1946).

    Google Scholar 

  31. Kroll, W. J., and W. Schlechten: Titanium and Zirconium — Two Metals of the Future. Metal Industry vol.69 (1946) p. 319.

    Google Scholar 

  32. Kubaschewsky, O.: Die Löslichkeit von Gasen in Metallen. Z. Elektrochem. vol.44 (1938) p. 152.

    Google Scholar 

  33. Langmuir, I.: J. Amer. Chem. Soc. vol.41 (1919) p. 167. (Mo → N2 cycle.)

    Article  Google Scholar 

  34. Lilliendahl, W. C., and others: The Quantitative Evaluation of O2 in Zr. J, Electrochem. Soc. vol. 93, (1948) p. 235.

    Article  Google Scholar 

  35. Long, J. R.: The Consolidation of Titanium Powder by Sheet Rolling. Metal Progr. vol.55 (1949) p. 191.

    Google Scholar 

  36. Marden, J. W., and M. N. Rich: Investigations of Zirconium. Ind. Engng. Chem. vol.12 (1920) p. 651, No. 7 — Bureau of Mines Bulletin 186, Mineral Technology 25, 1921.

    Article  Google Scholar 

  37. Michels, W. C., and S. Wilford: The Physical Properties of Titanium. J. Appl. Phys. vol.20 (1949) p. 1, 223.

    Article  Google Scholar 

  38. Owen, E. R.: Telefunken Special Materials for Radio Valves. B.I.O.S. Final Report 276. London 1945. (Dept. of Commerce, P. B. 27,712.)

    Google Scholar 

  39. Pirani, M.: Z. Elektrochem. vol.11 (1905) p. 555. (Gas absorption by Ta.)

    Article  Google Scholar 

  40. Pirani, M.: Ta und H 2. Z. Elektrochem. vol.11 (1905) p. 555.

    Article  Google Scholar 

  41. Ralston, O. C., and F. J. Cserveniak: Potential Uses of Titanium Metal. Industr. Engng. Chem. vol.42 (1950) p. 214.

    Article  Google Scholar 

  42. Raynor, M. W.: The Use of Zi Metal for Gas Absorption. Foote prints vol.18 (1947) p. 22, No. 2. (Workable getter metal, e. g. used as a heat shield in cathode-ray tubes. Opt. getter temperature 200-800° C.)

    Google Scholar 

  43. Reimann A. L., and C. K. Granz: Some High Temperature Properties of Niobium. Phil. Mag. (1936) p. 34.

    Google Scholar 

  44. Rogers, A.N.: Use of Zr in the Vacuum Tube. Trans. Electrochem. Soc. vol.88 (1945) p. 207.

    Article  Google Scholar 

  45. Simmons, O. W., and others: Arc Melting of Titanium. Metal Progr. vol.55 (1949) p. 197.

    Google Scholar 

  46. Spedding, F. H., A. S. Newton and J. C. Warfe et al.: Uranium hydride (Preparation, composition, and chemical properties). Nucleonics vol.4 (1949) p. 1, No. 1; p. 17, No. 2; p. 43, No. 3.

    Google Scholar 

  47. Sutton, I. B., and T. D. McKinley: Induction Melting of Titanium in Graphite. Metal Progr. vol.55 (1949) p. 195.

    Google Scholar 

  48. Telefunken: DRP 370,292/18/23. Anode parts of Ta.)

    Google Scholar 

  49. Warner, E.: Technology of Zr and Ti and their Compounds. Ceram. Age vol. 48 (Nov. 1946) p. 198.

    Google Scholar 

  50. Wartmann, F. S.: Production of Titanium Powder by the Bureau of Mines. Metal Progr. vol.55 (1949) p. 188.

    Google Scholar 

  51. Wedekind, E.: Über die Darstellung des sog. kristallisierten Zr im el. Ofen. Z.Elektro-chem. vol.10 (1904) p. 331.

    Article  Google Scholar 

  52. Whitney, L. V.: Temperature Scale of Cb, Th, Rh, Mo at.667μ. Phys. Rev. vol.48 (1935) p. 458.

    Article  Google Scholar 

Gettering by Phosphorus, Charcoal, and Liquid Air

  1. Banneitz, F., and others: Ann. Phys. vol.61 (1920) p. 113. (Containers for liquid air.)

    Article  Google Scholar 

  2. Bartlett, W. C.: Chemistry in Incandescent Lamp Manufacture. Industr. Engng. Chem. vol.21 (1929) p. 970.

    Article  Google Scholar 

  3. Claude, A.: (Gas discharge lamps.) Bull. Soc. franc. Electr. vol 3 (1933) p. 1145.

    Google Scholar 

  4. Dushman, S.: Methods of Production and Measurement of High Vacua, Part IX, Physical Chemical Methods. Gen. Elect. Rev. vol.24 (1921) p. 669.

    Google Scholar 

  5. Hamburger, L.: (Decoloration of incandescent lanps.) Engineering vol.108 (1919) p. 365.

    Google Scholar 

  6. Huthsteiner, H., and S. Dushman: Gen. Electr. Rev. vol.24 (1921) p. 677. (Phosphorus getter.)

    Google Scholar 

  7. Knepper, E.: Die Fabrikation und Berechnung der modernen Metalldraht-Glühlampen. Leipzig 1926. (Phosphorus getter.)

    Google Scholar 

  8. Winkler, O.: Z. techn. Phys. vol.14 (1933) p. 319. (Silica gel and charcoal.)

    Google Scholar 

Drying Agents

  1. Bower, J. H.: Bur. Stand. J. Res. vol.12 (1934) p. 246. (Drying agents.)

    Google Scholar 

  2. Shepherd, M.: Int. Crit. Tables vol.3 (1928) p. 385. (Drying agents.)

    Google Scholar 

Cleanup-Effect

  1. Duffendack, O. S., R. A. Wolfe and F. Lederer: The Cleanup of Hg Vapour in Discharges Through H2, He, and N2. J. Opt. Soc. Amer. vol.31 (1941) p. 174.

    Article  Google Scholar 

  2. Mierdel, G.: Ann. Phys. (4) vol.85 (1928) p. 612.

    Article  Google Scholar 

  3. Pietsch, E.: Ergebn. exakt, Naturw. vol.5 (1926) p. 213.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1959 Springer-Verlag OHG., Berlin Göttingen/Heidelberg

About this chapter

Cite this chapter

Knoll, M. (1959). Getters and Getter Processes. In: Materials and Processes of Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45936-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45936-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45938-2

  • Online ISBN: 978-3-642-45936-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics