Advertisement

Shaping, Surface Treatment and Degassing of Vacuum-Tube Parts Made from Glass

Chapter
  • 92 Downloads

Abstract

Shaping of Raw Glass (Barr and Akhom [5] and Turner [81]). In the glass works, “raw glass” bulbs, tubes, and solid rods are produced from the liquid batch. In smaller plants, this is usually accomplished by hand work on a blow pipe. In larger plants, however, standard tubes and bulbs are produced by machinery.

Keywords

Glass Surface Vacuum Tube Glass Bulb Hard Glass Television Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Shaping, Surface Treatment and Degassing of Vacuum-Tube Parts Made from Glass

  1. [1]
    Acheson, E. G. Ltd.: Techn. Bull. vol. 191, p. 1. London 1934. (Graphitizing of glass.)Google Scholar
  2. [2]
    Adams, L. H., and E.D. Williamson: The Annealing of Glass. J. Franklin Inst. vol. 190 (1920) pp. 597–631, 835-870.CrossRefGoogle Scholar
  3. [3]
    Angerer, E. v.: Technische Kunstgriffe bei physikalischen Untersuchungen, 2. Aufl. Braunschweig 1928.Google Scholar
  4. [3a]
    Anon.: Universal Glass-Working Machine. Helios, Lpz. vol.14 (1935) p. 1373Google Scholar
  5. [3b]
    Anonymus: A Discussion on the Making of Reflecting Surfaces. London 1920.Google Scholar
  6. [3c]
    Auwärter, M.: Ergebnisse der Hochvakuumtechnik und der Physik dünner Schichten. Stuttgart 1957, pp. 67-99.Google Scholar
  7. [4]
    Baldwin, C.F.: A Quantitative Glass-Strain Analyzer. Gen. Electr. Rev. vol.40 (1937) pp. 319–320, No. 7. (Sample in glass container between polarizer and compensator of the film type.)Google Scholar
  8. [5]
    Barr, W. C., and V. J. Anhom: Scientific and Industrial Glass Blowing and Laboratory Techniques. Pittsburgh: Inst. Publ. Co. 1949.Google Scholar
  9. [6]
    Bartels, H. v.: Über die Feststellung und Messung von Spannungen in Glas und anderen durchsichtigen Stoffen.Google Scholar
  10. [7]
    Becker, A., and H. Salmang: Glastechn. Ber. vol.7 (1929) p. 241. (Gas containers of glass.)Google Scholar
  11. [8]
    Breadner, R. L., and C. H. Simms: Glass Working Machines. Gen. El. Co. J., Lond. vol.12 (1943) p. 192.Google Scholar
  12. [9]
    Breadner, R. L., and C. H. Simms: Planning a Glass Working Department. J. Sci. Instr., Lond. vol. 21 (Oct. 1944) pp. 164–173. (Glass working machines, Figs. 3, 4.) General Elec. Co.Google Scholar
  13. [10]
    Dale, A. E., and J. E. Stanworth: On the Viscosity of Some Glasses in the Annealing Range. J. Soc. Glass Technol. vol. 29 (1945) pp. 414–427.Google Scholar
  14. [11]
    Daudt, W., and H. Ewest: Z. techn. Phys. vol.6 (1925) p. 329. (Gas output of glass surfaces.)Google Scholar
  15. [12]
    De Lucia, V. E., and W. J. Ramler: Glass Techniques in Tube Manufacture. Machlett Cathode Press, vol.4 (1947) p. 25 and 27, No. 1.Google Scholar
  16. [13]
    Dietzel, A., and F. Nitschmann: Untersuchungen über Entspannung und Schnellkühlung von Gläsern. Glastechn. Ber. vol.20 (1942) p. 10, H. 1.Google Scholar
  17. [14]
    Dralle-Keppeler: Die Glasfabrikation. München 1926.Google Scholar
  18. [15]
    Ebert, H.: Anleitung zum Glasblasen. Leipzig 1926.Google Scholar
  19. [16]
    Endell, K.: Ber. dtsch. glastechn. Ges. vol.13 (1932) p. 97. (Glass strains.)Google Scholar
  20. [17]
    Eisler, Ch.: U.S.A. Pat. 1,522,001/24/25. (Manufacturing of stems.)Google Scholar
  21. [18]
    Enss, J.: Das Blasen des Glases bei der Weiterverarbeitung vor der Flamme. Glastechn. Ber. vol.14 (1936) p. 225, H. 7.Google Scholar
  22. [19]
    Espe, W.: French Pat. 760,692/32/34; Austrian Pat. 144,177/32/35. (High-resistance potential discharges in vacuum-tube construction.)Google Scholar
  23. [20]
    Espe, W., and H. Kosack: Maschinelle Vorrichtungen zur Glasschmelzformung in der Hochvakuumtechnik. Feinmech. u. Präz. vol.47 (1939) p. 1, H. 1, and p. 329, H. 3.Google Scholar
  24. [21]
    Fehse, A., and K. Schröter: Wiss. Abh. Osram-Konz. vol.2 (1931) p. 207. (Glass working with Widia.)Google Scholar
  25. [22]
    Fischer, H.: Verschmelzen von Glasteilen. Glastechn. Ber. vol.9 (1931) p. 204-211, No. 4 — Glas u. App. vol. 12 (1931) pp. 81-83, No. 11.Google Scholar
  26. [23]
    Frary, F. C., C. S. Taylor and I. D. Edwards: Laboratory Glass Blowing. New York: McGraw-Hill 1928.Google Scholar
  27. [24]
    Freytag, H.: Optische Untersuchungsverfahren in der Glaskunde. Umschau vol. 43 (1939) pp. 568–570, H. 24.Google Scholar
  28. [25]
    Ghering, L. G., and F.W. Preston: Stability of Birefringence in Glass Articles. J. Amer. Ceram. Soc. vol. 33 (1950) pp. 321–322.CrossRefGoogle Scholar
  29. [26]
    Graaf, J. E. de: X-ray Tube for Crystal Analysis and Stress Measurements. J. Sci. Instr. vol. 15 (1938) No. 9.Google Scholar
  30. [27]
    Guyer, E. M.: Electronic Welding of Glass. Electronics vol. 18 (June 1945) pp. 92–96. Dielectric, induction and conduction heating by H. F.) Fig. 3, 4.Google Scholar
  31. [28]
    Guyer, E. M.: High-Frequency Electric Glass Welding. Trans. Electrochem. Soc. vol. 79 (1941).Google Scholar
  32. [29]
    Guyer, E. M.: Electric Welding of Glass. Electr. Engng. (May 1948).Google Scholar
  33. [30]
    Haase, M.: Beispiele zur Wirkungsweise der Polarisationsfilter. Zeiss-Nachrichten vol.2 (1936) p. 8.Google Scholar
  34. [31]
    Haase, M.: Dichroitische Kristalle und ihre Verwendung für Polarisationsfilter. Zeiss-Nachrichten vol.2 (1936) p. 2.Google Scholar
  35. [32]
    Haase, M.: Filterpolarisatoren und ihre Anwendungsgebiete. Glastechn. Ber. vol. 15 (1937) pp. 295–299, H. 8.Google Scholar
  36. [33]
    Hauser, F.: Optische Untersuchungsgeräte in der Glasindustrie und deren Anwendung Glastechn. Ber. vol. 20 (1942) pp. 193–203, H. 7.Google Scholar
  37. [34]
    Harris, J. E., and E. E. Schumacher: Industr. Engng Chem. vol.15 (1923) p. 174. (Gases released from glasses.)CrossRefGoogle Scholar
  38. [35]
    Heldman, J. D.: Techniques of Glass Manipulation. New York: Prentice Hall 1946.Google Scholar
  39. [36]
    Hull, A. W., and E. E. Burger: A Simple Strain Analyzer for Glass Seals. Rev. Sci. Instr. (N. S.) vol. 7 (1936) pp. 98–100, Nr. 2.CrossRefGoogle Scholar
  40. [37]
    Hull, W., and E. E. Burger: Glass-to-Metal Seals. Physics vol. 5 (1934) pp. 385–405.CrossRefGoogle Scholar
  41. [38]
    Jebsen-Marwedel, H.: Glastechnische Fabrikationsfehler. Herausgeg. mit Unterstützung der Dtsch. Glastechn. Ges. Berlin: Springer 1936.Google Scholar
  42. [39]
    Karvonen, A.: Verfahren zum Reparieren von Glasgegenständen durch Schmelzen. Z. Instrumentenkde, vol.54 (1934) p. 159, H. 5.Google Scholar
  43. [40]
    Kohlrausch, F.: Lehrbuch der praktischen Physik. Leipzig 1930.Google Scholar
  44. [41]
    Knepper, E.: Die Fabrikation und Berechnung der modernen Metalldraht-Glühlampen. Leipzig 1926.Google Scholar
  45. [42]
    Kremenezky, J.: DRP 212,860/08/09. (Bulb sealing with machines.)Google Scholar
  46. [43]
    Laug, E. P.: Industr. Engng. Chem. vol.6 (1934) p. 111. (Purification of Glass.)Google Scholar
  47. [44]
    Lewis, E. J.: Proper Care Will Prolong the Life of Chemical Glassware. Chem. and Engng. News (April 25, 1943).Google Scholar
  48. [45]
    Littleton, J. T.: The Effect of Temperature Treatment in Glass-to-Metal Seals. J. Amer. Ceram. Soc. vol. 18 (1935) pp. 239–245, No. 8.CrossRefGoogle Scholar
  49. [46]
    Littleton, J. T.: A Method for Measuring the Softening Temperature of Glass. J. Amer. Ceram. Soc. vol. 10 (1927) pp. 259–263.CrossRefGoogle Scholar
  50. [47]
    Littleton, J. T.: The Effect of Heat Treatment on the Physical Properties of Glass. Bull. Amer. Ceram. Soc. vol.15 (1936) p. 306.Google Scholar
  51. [48]
    Littleton, J. T., and E.H. Roberts: A Method for Determining the Annealing Temperature of Glass. J. Opt. Soc. Amer. vol. 4 (1920) pp. 224–299.CrossRefGoogle Scholar
  52. [49]
    Littleton, J. T.: The Physical Processes Occurring in the Melting and Cooling of Glass. J. Amer. Ceram. Soc. vol. 17 (March 1934) No. 3.Google Scholar
  53. [50]
    Lillie, H. R.: Viscosity-Time-Temperature Relations in Glass at Annealing Temperatures. J. Amer. Ceram. Soc. vol.16 (1933) p. 619.CrossRefGoogle Scholar
  54. [51]
    Lillie, H. R.: Basic Principles of Glass Annealing. Glass Ind. vol. 31 (1950) pp. 355 to 358, 382.Google Scholar
  55. [52]
    Loebner, F.: Veröff. Geb. Nachrichtentechnik vol.3 (1933) p. 253. (Depth of Penetration of High Frequencies.)Google Scholar
  56. [53]
    Mendenhall, M. E.: Bell Lab. Rec. vol.11 (1932) p. 30. (Manufacturing of Transmitter Tubes.)Google Scholar
  57. [54]
    Monack, A. J., and E. E. Beeton: Analysis of Strains and Stress in Glass. I-Polarized Light and Polariscopes. Glass Ind. vol. 20 (1939) No. 4.Google Scholar
  58. [55]
    Monack, A. J., and E. E. Beeton: Analyse von Spannungserscheinungen in Gläsern. Glastechn. Ber. vol. 17 (1939) H. 10.Google Scholar
  59. [56]
    Mindt, W.: Glas u. App. vol.9 (1928) p. 11. (Chemical surface working of glass.)Google Scholar
  60. [57]
    Möbius, P.: Die Neon-Leuchtröhren. Leipzig 1932.Google Scholar
  61. [58]
    Nokes, M. C.: Modern Glass Working and Laboratory Technique. London: Heinemann 1938. (p. 167: Polaroid strain detector.)Google Scholar
  62. [59]
    Parkin, M., and W. E. S. Turner (Univ. Sheffield): The Use of Special Alloys in the Glass Industry. J. Soc. Glass Technol. vol. 21 (1937) pp. 247–262. (No sealings.)Google Scholar
  63. [60]
    Percival, G. A.: The Technique of Glass Manipulation. Electr. Engng. (April 1944) pp. 453-457.Google Scholar
  64. [61]
    Padmos, A. A., and J. de Vries: Stresses in Glass and their Measurement. Philips Tech. Rev. vol. 9 (1947) (1948) pp. 222–284, No. 9.Google Scholar
  65. [62]
    Pickels, E.G.: Note on the Cutting and Tempering of Glass Discs and the Grinding of Glass Tubing Ends. Rev. Sci. Instr. vol. 6 (1935) vol. 202.Google Scholar
  66. [63]
    Parker, H. W., and F. J. Fox: Proc. Inst. Radio Engrs. vol.21 (1933) p. 710. (Metal coating of tubes.)Google Scholar
  67. [64]
    Philips: DRP 427,354/22/26, DRP 466,639/25/28. (Automatic pumping).Google Scholar
  68. [65]
    Polaroid Prod. Ltd.: Apparatus for the Examination of Strains in Glass. J. Sci. Instr., Lond. vol. 15 (1938) pp. 142–143. (Electric bulb reflector and two Polaroid discs, Figs. 1 and 2.)CrossRefGoogle Scholar
  69. [66]
    Poritsky, H.: Analysis of Thermal Stresses in Sealed Cylinders and the Effect of Viscous Flow During Annealing. Physics vol. 5 (1934) pp. 406–411.zbMATHCrossRefGoogle Scholar
  70. [67]
    Reche, K.: Wiss. Veröff. Siemens-Konzern (1) vol.12 (1933) p. 1. (Coreless induction oven for high frequency heating.)Google Scholar
  71. [68]
    Richardson, H. K. (Westinghouse Lamp Co): Correlation of Viscosity-Measurements with Flow of Glass. J. Amer. Ceram. Soc. vol. 17 (1934) pp. 35–248. (Pt-alloy-lined die with unvarying diameter; flow of glass through tubular orifice; automatic temp. control of small glass streams.)Google Scholar
  72. [69]
    Rottgardt, K.: DRP 492,768/26/30. (Automatic pump.)Google Scholar
  73. [70]
    Scholes, S. R.: Modern Glass Practice. Chicago: Ind. Publ. Inc. 1946.Google Scholar
  74. [71]
    Sherwood, R. G.: Effects of Heat on Chemical Glassware. J. Amer. Chem. Soc. vol. 40 (1918) pp. 1644–1653.CrossRefGoogle Scholar
  75. [72]
    Slack, C. M.: Lenard-Ray Tube with Thin Glass Window. J. Opt. Soc. and Rev. Sci. Instr. (Feb. 1929) p. 123.Google Scholar
  76. [73]
    Simon, H., and R. Suhrmann: Lichtelektrische Zellen und ihre Anwendung. Berlin 1932.Google Scholar
  77. [74]
    Späte, F.: Glastechn. Ber. vol.2 (1924) p. 1; vol. 4 (1926) p. 121. (Glasses for vacuum tube construction and their testing.)Google Scholar
  78. [75]
    Späte, F.: Weiß-, Hohl-und Geräteglas. Leipzig 1931.Google Scholar
  79. [76]
    Strong, J., and others: Procedures in Experimental Physics, Chap. 1. New York, Prentice Hall 1941.Google Scholar
  80. [77]
    Strong, J.: Phys. Rev. vol.43 (1933) p. 498. (Manufacture of aluminum mirrors by evaporation in a vacuum.)CrossRefGoogle Scholar
  81. [78]
    Thomas, M.: Über das Verhalten von Gläsern beim Verarbeiten vor der Lampe. Glastechn. Ber. vol. 14 (1936) pp. 341–350, No. 10.Google Scholar
  82. [79]
    Thomas, M.: Glastechn. Ber. vol. 4 (1926–1927) p. 323. (Cooling of glass.)Google Scholar
  83. [80]
    Tool, A. Q.: Relation between Inelastic Deformability and Thermal Expansion of Glass in its Annealing Range. J. Amer. Ceram. Soc. vol.29 (1946) p. 240.CrossRefGoogle Scholar
  84. [81]
    Turner, W. E. S.: The Elements of Glass Technology for Scientific Glass Blowers. Sheffield University 1940.Google Scholar
  85. [82]
    Van der Tunk, J. H.: Hard glass X-ray Tubes in Oil. Philips Tech. Rev. vol. 6 (Oct. 1941) pp. 309–315. (Decrease of dimensions of all-glass X-ray tubes.)Google Scholar
  86. [83]
    Wehnelt. A.: Handfertigkeitspraktikum. Braunschweig 1920.Google Scholar
  87. [84]
    Woytacek, C.: Lehrbuch der Glasbläserei. Wien 1932.Google Scholar
  88. [85]
    Winter, A.: Transformation Kegion of Glass. J. Amer. Ceram. Soc. vol.26 (1943) p. 189.CrossRefGoogle Scholar
  89. [86]
    Zimber, R. M., and A. B. DuMont: Radio Engrs. vol.10 (1930) p. 31. (Tube-making machines.)Google Scholar
  90. [87]
    Zschacke, F. H.: Über die Abhängigkeit verschiedener Eigenschaften des Glases, vornehmlich des Rauhwerdens vor der Lampe, von der chemischen Zusammensetzung. Sprechsaal vol. 69 (1936) pp. 310–313, No. 22.Google Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations