Surface Treatment of Metallic Vacuum Tube Elements



The treatment of metal surfaces may be considered from three points of view: First, all metal surfaces should be carefully cleaned before sealing into the tube. This implies not only the removal of surface impurities, but also the removal of the causes of formation of chemical compounds (e. g. metallic oxides). It is recommended that initially all rough impurities be removed mechanically (sanding, brushing, swabbing). Thin layers of impurities are removed by etching either with acid or alkalies according to the type of material to be cleaned. Grease is removed by use of suitable solvents. The choice of type of cleaning depends considerably upon the degree and nature of impurities, the chemical properties of the piece to be cleaned and the subsequent operational demands on it.


Surface Treatment Spot Welding Vacuum Tube Tantalum Carbide Sand Blasting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Surface Treatment of Metals

  1. [2]
    Allen, V. O.: Radio-Engng. vol.10 (1930) p. 19. (Carbonized Ni-anodes.)Google Scholar
  2. [2]
    Andrews, A. I.: Enamels. Twin City Publishing Co., Champaign, Illinois 1932.Google Scholar
  3. [2a]
    Auwärter, M.: Ergebnisse der Hoch Vakuumtechnik und der Physik dünner Schichten. Stuttgart 1957, pp. 67-99.Google Scholar
  4. [3]
    Andrews, A. I., and R. K. Smith: The Thermal Expansion of Sheet-Iron Ground-Coat Enamels. J. Amer. Ceram. Soc. vol. 16 (1933) No. 7.Google Scholar
  5. [4]
    Arkel, A. E. van: Physica vol.3 (1923) p. 76. (Growth of tungsten.)Google Scholar
  6. [5]
    Arkel, A. E. van: Physica vol.4 (1924) p. 286. (W, Ti, Ta Carbide growth.)Google Scholar
  7. [6]
    Arkel, A. E. van, and H. de Boer: Z. anorg. allg. Chem. vol.148 (1925) p. 345. (Growth of tungsten.)CrossRefGoogle Scholar
  8. [7]
    Arndt, K., and H. Endrass: Über die Verchromung, unter besonderer Berücksichtigung der Schwarzverchromung. Z. Metallkde vol. 30 (1938) pp. 21–24, No. 1.Google Scholar
  9. [8]
    Baukloh, W.: Gießerei vol.22 (1925) p. 406. (Decrease of H 2-diffusion by aluminizing iron.)Google Scholar
  10. [9]
    Becker, K., and H. Ewest: Z. techn. Phys. vol.11 (1930) p. 148 and 216. (Work function of tantalum carbide.)Google Scholar
  11. [10]
    Becker, K.: Hochschmelzende Hartstoffe und ihre technische Anwendung. Berlin 1933.Google Scholar
  12. [10a]
    Boettcher, A., and G. Hass: Über die elektrische Leitfähigkeit und Oxydation aufgedampfter Aluminiumschichten. Optik, vol. 6, No. 5 (1950) pp. 299–309.Google Scholar
  13. [11]
    Buchner, G.: Hilfsbuch für Metalltechniker. Berlin 1923.Google Scholar
  14. [12]
    Bureau of Standards: The Total Emissivity of Nickel Oxide. Bull. Bur. Stand vol. 11 (1914) pp. 55–63, No. 1.Google Scholar
  15. [13]
    De Boer, I. H., and J.D. Fast: Z. anorg. allg. Chem. vol.187 (1930) p. 177. (Development of Hafni)CrossRefGoogle Scholar
  16. [14]
    Elssner, G.: Z. VDI vol.78 (1934) p. 415. (Chromium plating.)Google Scholar
  17. [15]
    Espe, W., and E. B. Steinberg: Al-Clad Iron for Electron Tubes. Tele-Tech, vol.10 (1951) p. 10 and 28.Google Scholar
  18. [16]
    Field, S., and A. D. Weill: Electro-plating. A Survey of Modern Practice. 483 pages. New York: Pitman 1945.Google Scholar
  19. [17]
    Fischvoigt, H., and F. Koref: Z. techn. Phys. vol.6 (1925) p. 296. (Growth of Molybdenum.)Google Scholar
  20. [18]
    Gray, A. G.: Modern Electroplating. 563 pages. New York 1953.Google Scholar
  21. [19]
    Hall, L. G.: On the Low Temperature Diffusion of Solid Aluminum into Iron (A). Phys. Rev. vol.47 (1935) p. 418. (Diffusion approx. 1 mm in 6 hours under pressure, rapid diffusion of Cr powder into Fe at 900° C., and of Cu sheet into Fe at 850° C.)CrossRefGoogle Scholar
  22. [20]
    Harrison, W. N., R. E. Stephens and S. Shelton: Consistency of Eight Types of Vitreous Enamel Frits at and Near Firing Temperatures. J. Res. Nat. Bur. Stand, vol. 20 (Jan. 1938).Google Scholar
  23. [21]
    Hild, K.: Mitt. K.-Wilh.-Inst. Eisenforschg. vol.14 (1932) p. 60. (Radiation power of metal oxides.)Google Scholar
  24. [22]
    Holstein, E.: Beiträge zur Trichloräthylenvergiftung. Zbl. Gew.-Hyg. vol. 24 (1937) pp. 49–54.Google Scholar
  25. [23]
    Jacquet, P.: Sur une nouvelle methode d’obtention de surfaces metalliques parfaitement polies. C. R. Acad. Sci., Paris vol. 201 (1935) pp. 1473–1475, No. 27 — Genie civ. vol.108 (936) p. 420.Google Scholar
  26. [24]
    Koref, F.: Z. Elektrochem. vol.8 (1922) p. 511. (Tungsten manufacture.)Google Scholar
  27. [25]
    Krause, H.: Masch.-Bau Betrieb vol.12 (1933) p. 599. (Chemical cleaning of metals.)Google Scholar
  28. [26]
    Lewkonja, G., and W. Baukloh: Z. Metallkde. vol.25 (1933) p. 309. (Hydrogen diffusion through iron.)Google Scholar
  29. [27]
    Moers, K.: Z. anorg. allg. Chem. vol.198 (1931) p. 233. (Growth.)CrossRefGoogle Scholar
  30. [28]
    Muth and Co.: DRP 515,763/27/31. (Electrolytic cleaning of seal-in wires.)Google Scholar
  31. [29]
    Nawo, L.: Elektrotechn. Z. vol.55 (1934) p. 904. (Chromoxide.)Google Scholar
  32. [30]
    Pfanhauser, W.: Die elektrolytischen Metallnieder schlage. Berlin 1928.Google Scholar
  33. [31]
    Pirani, M.: Elektrothermie. Berlin 1930.Google Scholar
  34. [32]
    Pollack, A.: Chemiker-Ztg. vol.59 (1935) p. 56. (Electroplating with black chromium.)Google Scholar
  35. [33]
    Rueckel, W. C., and R. M. King: Mechanics of Enamel Adherence II. J. Amer. Ceram. Soc. vol. 10 (1931) No. 10.Google Scholar
  36. [34]
    Schlesinger, Geo.: Surface Finish. 225 pages. London: Inst. Proc. Eng. 1942. (Measurement, tracer instruments, classification of surfaces, photomicrography, gauges, instruments.)Google Scholar
  37. [35]
    Schoene, E., and W. Raedecker: Die Herstellung plattierter Stahlbleche. Stahl u. Eisen vol. 58 (1938) pp. 313–316, No. 12.Google Scholar
  38. [35 a]
    Seiter, G. J.: Recent Developments in Vacuum Coating. Vacuum Symposium Transactions 1954, pp. 116-120.Google Scholar
  39. [36]
    S&H (Siemens & Halske): DRP 607,420/29/35. (Electroplating of electrodes with black chromium.)Google Scholar
  40. [37]
    Simonds, H., and A. Bregman: Finishing Metal Products. 332 pages. New York.Google Scholar
  41. [38]
    Skaupy, F.: DRP 417,165/24/26. (Tantalum-carbide coating on W.)Google Scholar
  42. [39]
    T.K.D. (Südd. Tel., App., Kab. u. Draht-Werke A.G.): DRP 556,089/30/32. (Blackening of electrodes by vanadium-trioxide.)Google Scholar
  43. [40]
    Wagner, E. R.: Processes in Vacuum Tube Manufacture. Electronics 7 (1934) p. 213 and 229. (Damage by liberation of gas and vapors from surface layers in the tube; getters, ageing of tubes.)Google Scholar
  44. [41]
    Weber, A. P.: Telefunkenztg. vol.27 (July 1954) p. 73. (Al-plated iron as used in vacuum tubes.)Google Scholar
  45. [42]
    Wegener, X.: Z. Metallkde. vol.23 (1931) p. 285. (Rinsing of metal parts.)Google Scholar
  46. [43]
    Wendt, K.: Krupp. Mh. vol.3 (1922) p. 133; vol.6 (1925) p. 29. (Calorization of molten iron.)Google Scholar
  47. [44]
    Western El. Co.: DRP 545,329/24/32, Brit. Pat. 228,760/24/25. (Oxidized Cr-Ni-grids.)Google Scholar
  48. [45]
    Westinghouse: DRP 549,282/29/32. (Blackening of metals by carbonizing.)Google Scholar
  49. [46]
    Anon.: Siemens-Z. vol.15 (1935) p. 188. (Blackening of vacuum electrodes by chromium coatings.)Google Scholar

Copyright information

© Springer-Verlag OHG., Berlin Göttingen/Heidelberg 1959

Authors and Affiliations

  1. 1.Technische Hochschule MünchenGermany
  2. 2.Dept. El. EngineeringPrinceton UniversityUSA

Personalised recommendations