Skip to main content

Working and Pre-Outgassing of Metallic Vacuum Tube Parts

  • Chapter
Materials and Processes of Electron Devices
  • 125 Accesses

Abstract

The methods used for shaping metals employed in vacuum technique do not differ essentially from those usually employed for drawing, curling, grooving, bending, rolling, punching and cutting of thin sheets or wires [926]. In contrast with common practice, however, it is essential to avoid the use of greases and oils as much as possible, particularly during rolling and deep drawing. The material must be washed before each necessary intermediate annealing and such annealing should take place in a hydrogen atmosphere or in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References on Working and Pre-Outgassing of Metallic Vacuum Tube Parts Shaping and Assembling

  1. Bell, J., J. W. Davies and B. S. Gossling (Gen. El. Co.): High Power Valves: Construction, Testing and Operation. J. Inst. Electr. Engng. vol. 83 (1938) pp. 176–207.

    Google Scholar 

  2. Colvin, F.H., and L. L. Haas: Jigs and Fixtures. 354 pages. New York: McGraw Hill 1938.

    Google Scholar 

  3. Hall, E. W., and J. W. Davies: Electrician vol.113 (1934) p. 694. (Testing of Electrode Systems by X-rays.)

    Google Scholar 

  4. Stanley, F. A.: Punches and Dies. 476 pages. New York: McGraw Hill 1936.

    Google Scholar 

  5. Wilder, M. P.: Electrodes for Vacuum Tubes by Photogravure. Proc. I. R. E. vol.37 (1949) p. 1182.

    Article  Google Scholar 

Outgassing General

  1. Coblenz, W. W.: Int. Crit. Tables vol.5 (1929) p. 238. (Constants of Radiation.)

    Google Scholar 

  2. Dällenbach, W.: Mikroanalyse von Gasen aus Metallen. Elektrotechn. Zeitschrift, vol.55 (1934) p. 89.

    Google Scholar 

  3. Forsythe, W.E.: Int. Crit. Tables vol.5 (1929) p. 245. (True and Black-Body Temperature.)

    Google Scholar 

  4. Fowler, R. H., and C. J. Smithells: A Theoretical Formula for the Solubility of Hydrogen in Metals. Proc. Roy. Soc., Lond. vol. 160 (1937) pp. 37–47.

    Article  Google Scholar 

  5. Hirst, H.: Modern Pyrometry — I. Chem. Eng. Mining Rev. vol. 32 (1939) pp. 19–23, 52-54, 115-119. is allowed to burn at the exit opening1. Because of the danger of explosive mixtures of O2 and H2 a well-ventilated hood is recommended.2

    Google Scholar 

  6. Rohn, W.: Z. Metallkde. vol.21 (1929) p. 12. (Properties of Vacuum-Melted Metals).

    Google Scholar 

  7. Rohn, W.: Large Vacuum Melting Furnaces. Jubil.-Festschrift Heräus-Vakuumschmelze (1922) Hanau, p. 24.

    Google Scholar 

  8. Scaff, J. H., and E. E. Schumacher: Metals & Alloys vol.4 (1933) p. 7 (Gases in metals.)

    Google Scholar 

  9. Schumacher, E. E.: Gases in Metals. BeU. Lab. Rec. vol. 12 (1933) pp. 17–20. (Apparatus for Freeing Metals of Gases by HF.)

    Google Scholar 

  10. Sieverts, A.: (Solubility of H2 in metals.) Z. physik. chern. vol.60 (1907) p. 129; 74 (1910) p. 277; 77 (1911) p. 591; Z. Metallkunde vol. 21 (1929) p. 37.

    Google Scholar 

  11. Smithells, C. J., and Ramsley, C. E.: Proc. Roy. Soc., Lond. vol.150 (1935) p. 172. (Diffusion of gases through metals.)

    Article  Google Scholar 

  12. Smithells, C. J.: Gases and Metals. London: Chapman and Hall 1937.

    Google Scholar 

  13. Sosman, R. B. (U.S. Steel Corp.): The Pyrometry of Solids and Surfaces. 98 pages. Detroit: Amer. Soc. for Metals 1938.

    Google Scholar 

  14. Von Wartenberg, H.: Die Löslichkeit von Gasen in geschmolzenen Metallen. (The Solubility of Gases in Molten Metals.) Z. Elektrochem. vol. 42 (1936) pp. 841–845.

    Google Scholar 

Degassing by Melting or Distillation

  1. Hultgren, R., and M. H. Pekkala (Harvard Univ.): Preparation of High Melting Alloys with the Aid of Electron Bombardment. J. Appl. Phys. vol. 11 (1940) pp. 643–646. (700 watts for melting Ta, 2800° C; Pt-W, Pt-Mo and Pt-Co alloys.)

    Article  Google Scholar 

  2. Kroll, W.: Vorgänge beim Schmelzen im Hochvakuum. Metallwirtschaft vol.13 (1934) p. 725. (Distillation of metals in vacuo and procedures in high-vacuum melting.) Z. Elektrochem. vol. 42 (1936) pp. 873-876.

    Google Scholar 

  3. Rose, K.: Vacuum-Casting of Electronic Parts. Metals & Alloys (1945) pp. 1324-1326. (Melting of Cu anodes in high vacuum.)

    Google Scholar 

Preliminary Degassing in H 2 and High Vacuum

  1. Cieciorra, H., and W. Dawihl: Fortschritte auf dem Gebiet der Wolframwendelöfen für hohe Temperaturen. (Progress in high-temperature tungsten furnaces.) Keram. Rdsch. vol.44 (1936) p. 171, No. 15 — Wiss. Abh. Osram-Konzern vol. 4 (1936).

    Google Scholar 

  2. Fairbrother, J. A. V.: Small High-Temperature Hydrogen Furnace. J. Sci. Instr. vol. 12 (1935) pp. 200–201. (Quartz tube 10″ long and 5/8″ diam.; 1300° C.)

    Article  Google Scholar 

  3. Lowry, E. F.: A Vacuum-Annealing Furnace of Novel Design. Rev. Sci. Instr. vol. 4 (1933) pp. 606–609. (Power 3.5 to 5 kw; 0 to 1000° C; discussion of the pressure and temperature curve.)

    Article  Google Scholar 

  4. Smithells, C. J., and C. E. Ransley: Proc. Roy. Soc., Lond. (A) vol.155 (1936) p. 195. (Escaping of “volume gas” of a metal in a hydrogen furnace.)

    Article  Google Scholar 

  5. Wagner, E.R.: Raw Materials in Vacuum-Tube Manufacture. Electronics vol. 7 (1934) pp. 104–106. (Firing temperatures of metal parts; use of different materials; methods of coating cathodes; cleanliness.)

    Google Scholar 

High Frequency Degassing

  1. Bell, G. E.: A Valve-Maintained High-Frequency Induction Furnace, and Some Notes on the Performance of Induction Furnaces. Proc. Phys. Soc., Lond. vol. 40 (1928) pp. 193 to 205.

    Article  Google Scholar 

  2. Esmarch, W.: Theoretische Grundlagen der Induktionsöfen, (Theoretical foundations of induction furnaces.) Siemens-Z. vol. 17 (1937) pp. 269–275, No. 6.

    Google Scholar 

  3. Oatley, C. W., and J. B. Smith: The Design of Eddy-Current Heating Apparatus for Outgassing Electrodes in a Vacuum. Phil. Mag. vol. 22 (1936) pp. 453–462. (Design of heating coil, and optimum frequency.)\

    Google Scholar 

  4. Osborn, H. B., and others: Induction Heating. 172 pages. Cleveland, Ohio: Amer. Soc of Metal 1946.

    Google Scholar 

  5. Reche, K.: Wiss. Veröff. Siemens-Konzern (1) vol.12 (1933) p. 1. (Theory of induction furnaces and high-frequency heating.)

    Google Scholar 

  6. Shover, E. G.: High-Frequency Supply for Degassing. Bell. Lab. Rec vol. 15 (1937) pp. 391–397.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1959 Springer-Verlag OHG., Berlin Göttingen/Heidelberg

About this chapter

Cite this chapter

Knoll, M. (1959). Working and Pre-Outgassing of Metallic Vacuum Tube Parts. In: Materials and Processes of Electron Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45936-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45936-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45938-2

  • Online ISBN: 978-3-642-45936-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics