Skip to main content

Abstract

To find a zero of a maximal monotone operator T we use an enlargement T ε playing the role of the ε-subdifferential in nonsmooth optimization. We define a convergent and implementable algorithm which combines projection ideas with bundle-like techniques and a transportation formula. More precisely, first we separate the current iterate x k from the zeros of T by computing the direction of minimum norm in a polyhedral approximation of T ε k(x k). Then suitable elements defining such polyhedral approximations are selected following a bundle strategy. Finally, the next iterate is computed by projecting x k onto the corresponding separating hyperplane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Brøndsted and R.T. Rockafellar. On the subdifferentiability of convex functions. Proc. of the Amer. Math. Soc., 16:605–611, 1965.

    Google Scholar 

  2. R.S. Burachik, A.N. Iusem, and B.F. Svaiter. Enlargements of maximal monotone operators with application to variational inequalities. Set Valued Analysis, 5:159–180, 1997. Also (extended version) Tech. Rep. B-110/97, IMPA, Rio de Janeiro, Brazil.

    Article  Google Scholar 

  3. R.S. Burachik, C.A. Sagastizábal, and B. F. Svaiter. ε-Enlargements of maximal monotone operators: Theory and Application. In Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pages 25-43. Kluwer, 1998.

    Google Scholar 

  4. I. Ekeland and G. Lebourg. Sous-gradients approchés et applications. C.R. Acad. Sc. Paris, série A, 281:219–222, 1975.

    Google Scholar 

  5. J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms. Number 305-306 in Grund. der math. Wiss. Springer-Verlag, 1993. (two volumes).

    Google Scholar 

  6. J.-J. Strodiot and V.H. Nguyen. On the numerical treatment of the inclusion 0 ∈ ∂ f(x). In J. J. Moreau, P. D. Panagiotopolus, and G. Strang, editors, Topics in Nonsmooth Mechanics, pages 267-294. Birkhäuser Verlag, 1988.

    Google Scholar 

  7. E. N. Khobotov. Modifications of the extragradient method for solving variational inequalities and certain optimization problems. USSR Computational Mathematics and Mathematical Physics, 27(5):120–127, 1987.

    Article  Google Scholar 

  8. K.C. Kiwiel. Proximity control in bundle methods for convex nondifferentiable minimization. Mathematical Programming, 46:105–122, 1990.

    Article  Google Scholar 

  9. I.V. Konnov. A combined relaxation method for variational inequalities with nonlinear constraints. Mathematical Programming, 80:239–252, 1997.

    Google Scholar 

  10. G.M. Korpelevich. The extragradient method for finding saddle points and other problems. Matecon, 12:747–756, 1976.

    Google Scholar 

  11. J. E. Martínez Legaz and M. Théra. ε-subdifferentials in terms of subdifferentials. Set-Valued Analysis, 4:327–332, 1996.

    Article  Google Scholar 

  12. C. Lemaréchal. An extension of Davidon methods to nondifferentiable problems. Mathematical Programming Study, 3:95–109, 1975.

    Article  Google Scholar 

  13. C. Lemaréchal and C. Sagastizábal. Variable metric bundle methods: from conceptual to implementable forms. Mathematical Programming, 76:393–410, 1997.

    Article  Google Scholar 

  14. C. Lemaréchal, J.-J. Strodiot, and A. Bihain. On a bundle method for nonsmooth optimization. In O.L. Mangasarian, R. R. Meyer, and S. M. Robinson, editors, Nonlinear Programming 4, pages 245–282. Academic Press, 1981.

    Google Scholar 

  15. M. Nisipeanu. Somme variationnelle d’opérateurs et applications. PhD thesis, Université de Limoges — France, 1997.

    Google Scholar 

  16. J. P. Revalski and M. Théra. Enlargements and sums of monotone operators. Working paper, 1998.

    Google Scholar 

  17. R.T. Rockafellar. Local boundedness of nonlinear monotone operators. Michigan Mathematical Journal, 16:397–407, 1969.

    Article  Google Scholar 

  18. H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM Journal on Optimization, 2(1):121–152, 1992.

    Article  Google Scholar 

  19. D. Torralba. Convergence épigraphique et changements d’échelle en Analyse Variationnelle et Optimisation. PhD thesis, Université de Montpellier II France, 1996.

    Google Scholar 

  20. L. Veselý. Local uniform boundedness principle for families of ε-monotone operators. Nonlinear Analysis, Theory, Methods & Applications, 24(9):1299–1304, 1995.

    Article  Google Scholar 

  21. P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable functions. Mathematical Programming Study, 3:145–173, 1975.

    Article  Google Scholar 

  22. E. H. Zarantonello. Projections on convex sets in Hilbert spaces and spectral theory. In E. H. Zarantonello, editor, Contributions to Nonlinear Functional Analysis, pages 237-424. Academic Press, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burachik, R.S., Sagastizábal, C., Svaiter, B.F. (1999). Bundle Methods for Maximal Monotone Operators. In: Théra, M., Tichatschke, R. (eds) Ill-posed Variational Problems and Regularization Techniques. Lecture Notes in Economics and Mathematical Systems, vol 477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45780-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45780-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66323-2

  • Online ISBN: 978-3-642-45780-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics